shp3dv.cpp

Go to the documentation of this file.
00001 // Calculate Shape functions and parametric derivatives for a
00002 
00003 //   3-D finite element with varied nen between 8 and 27.
00004 
00005 
00006 
00007 // By Jinchi Lu, 04/15/2004
00008 
00009 // (Based on a Fortran code from R. Brockman 30 May 1986)
00010 
00011 
00012 
00013 #include <stdio.h>
00014 
00015 #include <math.h>
00016 
00017 
00018 
00019 void shap3dv(double *R, int *NP, double Q[27][4]){
00020 
00021 
00022 
00023 // Formal parameters:
00024 
00025 //
00026 
00027 //  R (Input) = Parametric coordinates, in the interval [-1,1],
00028 
00029 // at which shape functions are to be evaluated
00030 
00031 //  NP (Input) = List of flags for each local node of the finite
00032 
00033 // element. (Usually this is just the connectivity list)
00034 
00035 // = 0 if node is absent
00036 
00037 // > 0 if node is present
00038 
00039 // * Q (Output) = Shape functions and derivatives, as follows:
00040 
00041 // * Q[i][3] is the shape function for local node 'i'
00042 
00043 // * Q[i][0] is the r-derivative
00044 
00045 // * Q[i][1] is the s-derivative
00046 
00047 // * Q[i][2] is the t-derivative
00048 
00049 //
00050 
00051 // Local Node Pattern for Three-Dimensional Elements:
00052 
00053 //
00054 
00055 // * Nodes 1 - 4 Lower surface, counterclockwise
00056 
00057 // * Nodes 5 - 8 Upper surface, counterclockwise
00058 
00059 // * Nodes 9 - 12 Midsides of edges 1-2, 2-3, 3-4, 4-1
00060 
00061 // * Nodes 13 - 16 Midsides of edges 5-6, 6-7, 7-8, 8-5
00062 
00063 // * Nodes 17 - 20 Midsides of edges 1-5, 2-6, 3-7, 4-8
00064 
00065 // * Nodes 21 - 26 Mid-face nodes on +r, +s, +t, -r, -s, -t
00066 
00067 // * Node 27 Centroid node
00068 
00069 //
00070 
00071 
00072 
00073         double G[3][3], D[3][3], C;
00074 
00075         int L[27] = {3,1,1,3,3,1,1,3,2,1,2,3,2,1,2,3,3,1,1,3,1,2,2,3,2,2,2},
00076 
00077             M[27] = {3,3,1,1,3,3,1,1,3,2,1,2,3,2,1,2,3,3,1,1,2,1,2,2,3,2,2},
00078 
00079             N[27] = {3,3,3,3,1,1,1,1,3,3,3,3,1,1,1,1,2,2,2,2,2,2,1,2,2,3,2};
00080 
00081 
00082 
00083         int i, j, LR, LS, LT;
00084 
00085         for( i = 0; i < 3; i++ ) {
00086 
00087          G[0][i] = 0.5 + 0.5*R[i];
00088 
00089          G[1][i] = 1.0 - R[i]*R[i];
00090 
00091          G[2][i] = 0.5 - 0.5*R[i];
00092 
00093          D[0][i] =  0.5 ;
00094 
00095          D[1][i] = -2.0*R[i];
00096 
00097          D[2][i] = -0.5;
00098 
00099         }
00100 
00101         
00102 
00103         // Construct basic three-dimensional quadratic shape functions 
00104 
00105 
00106 
00107         for( i = 0; i < 27; i++ ) {
00108 
00109          LR = L[i]-1; 
00110 
00111          LS = M[i]-1;
00112 
00113          LT = N[i]-1;
00114 
00115          Q[i][0] = D[LR][0] * G[LS][1] * G[LT][2]; 
00116 
00117          Q[i][1] = G[LR][0] * D[LS][1] * G[LT][2];
00118 
00119          Q[i][2] = G[LR][0] * G[LS][1] * D[LT][2]; 
00120 
00121          Q[i][3] = G[LR][0] * G[LS][1] * G[LT][2];
00122 
00123 //               printf("%d %15.6e %15.6e %15.6e %15.6e\n", i, Q[i][0], Q[i][1], Q[i][2], Q[i][3]);
00124 
00125         }
00126 
00127 
00128 
00129         //   Modify basic shape functions to account for omitted nodes 
00130 
00131 
00132 
00133         for(j = 0; j < 4; j++ ) {
00134 
00135                 if( NP[26] == 0 ) Q[26][j] = 0.;        
00136 
00137         C = -0.5*Q[26][j]; 
00138 
00139                 for( i = 20; i < 26; i++ ) {
00140 
00141             Q[i][j] +=  C ;
00142 
00143                         if( NP[i] == 0 ) Q[i][j] = 0.;
00144 
00145                 }
00146 
00147 
00148 
00149                 C = 0.5*C; 
00150 
00151                 Q[ 8][j] +=  - 0.5* (Q[25][j] + Q[24][j]) + C; 
00152 
00153                 Q[ 9][j] +=  - 0.5* (Q[25][j] + Q[20][j]) + C; 
00154 
00155                 Q[10][j] +=  - 0.5* (Q[25][j] + Q[21][j]) + C; 
00156 
00157                 Q[11][j] +=  - 0.5* (Q[25][j] + Q[23][j]) + C; 
00158 
00159                 Q[12][j] +=  - 0.5* (Q[24][j] + Q[22][j]) + C; 
00160 
00161                 Q[13][j] +=  - 0.5* (Q[20][j] + Q[22][j]) + C; 
00162 
00163                 Q[14][j] +=  - 0.5* (Q[21][j] + Q[22][j]) + C; 
00164 
00165                 Q[15][j] +=  - 0.5* (Q[23][j] + Q[22][j]) + C; 
00166 
00167                 Q[16][j] +=  - 0.5* (Q[23][j] + Q[24][j]) + C; 
00168 
00169                 Q[17][j] +=  - 0.5* (Q[24][j] + Q[20][j]) + C; 
00170 
00171                 Q[18][j] +=  - 0.5* (Q[20][j] + Q[21][j]) + C; 
00172 
00173                 Q[19][j] +=  - 0.5* (Q[21][j] + Q[23][j]) + C; 
00174 
00175 
00176 
00177                 for( i = 8; i < 20; i++ ) {
00178 
00179                         if( NP[i] == 0 ) Q[i][j] = 0.;
00180 
00181                 }
00182 
00183  
00184 
00185         C = 0.5*C;
00186 
00187                 for( i = 0; i < 8; i++ ) {
00188 
00189                         Q[i][j] += C;
00190 
00191                 }
00192 
00193 
00194 
00195          Q[0][j] +=  - 0.50* (Q[16][j] + Q[11][j] + Q[ 8][j]) - 0.25* (Q[23][j] + Q[24][j] + Q[25][j]); 
00196 
00197          Q[1][j] +=  - 0.50* (Q[17][j] + Q[ 9][j] + Q[ 8][j]) - 0.25* (Q[20][j] + Q[24][j] + Q[25][j]); 
00198 
00199          Q[2][j] +=  - 0.50* (Q[10][j] + Q[ 9][j] + Q[18][j]) - 0.25* (Q[25][j] + Q[20][j] + Q[21][j]); 
00200 
00201          Q[3][j] +=  - 0.50* (Q[19][j] + Q[11][j] + Q[10][j]) - 0.25* (Q[25][j] + Q[21][j] + Q[23][j]); 
00202 
00203          Q[4][j] +=  - 0.50* (Q[16][j] + Q[15][j] + Q[12][j]) - 0.25* (Q[22][j] + Q[23][j] + Q[24][j]); 
00204 
00205          Q[5][j] +=  - 0.50* (Q[17][j] + Q[12][j] + Q[13][j]) - 0.25* (Q[24][j] + Q[20][j] + Q[22][j]); 
00206 
00207          Q[6][j] +=  - 0.50* (Q[18][j] + Q[13][j] + Q[14][j]) - 0.25* (Q[20][j] + Q[21][j] + Q[22][j]); 
00208 
00209          Q[7][j] +=  - 0.50* (Q[19][j] + Q[15][j] + Q[14][j]) - 0.25* (Q[21][j] + Q[22][j] + Q[23][j]); 
00210 
00211         }
00212 
00213 
00214 
00215 }
00216 
00217 
00218 
00219 int brcshl(double shl[4][20][27], double w[27], int nint, int nen) {
00220 
00221 /*
00222 
00223      PROGRAM TO CALCULATE INTEGRATION-RULE WEIGHTS, SHAPE FUNCTIONS
00224 
00225         AND LOCAL DERIVATIVES FOR A EIGHT-NODE BRICK ELEMENT
00226 
00227 
00228 
00229              R,S,T = LOCAL ELEMENT COORD ("XI", "ETA", "ZETA" RESP.)
00230 
00231         SHL(1,I,L) = LOCAL ("XI") DERIVATIVE OF SHAPE FUNCTION
00232 
00233         SHL(2,I,L) = LOCAL ("ETA") DERIVATIVE OF SHAPE FUNCTION
00234 
00235         SHL(3,I,L) = LOCAL ("ZETA") DERIVATIVE OF SHAPE FUNCTION
00236 
00237         SHL(4,I,L) = LOCAL  SHAPE FUNCTION
00238 
00239               W(L) = INTEGRATION-RULE WEIGHT
00240 
00241                  I = LOCAL NODE NUMBER
00242 
00243                  L = INTEGRATION POINT NUMBER
00244 
00245               NINT = NUMBER OF INTEGRATION POINTS, EQ. 1, 8 OR 27
00246 
00247 */
00248 
00249 
00250 
00251         double RA[27] = {-0.50, 0.50, 0.50,-0.50,-0.50, 0.50, 0.50,-0.50,
00252 
00253                  0.00, 0.50, 0.00,-0.50, 0.00, 0.50, 0.00,-0.50,
00254 
00255                 -0.50, 0.50, 0.50,-0.50, 0.50, 0.00, 0.00,-0.50,
00256 
00257                  0.00, 0.00, 0.00};
00258 
00259 
00260 
00261         double SA[27] = {-0.50,-0.50, 0.50, 0.50,-0.50,-0.50, 0.50, 0.50,
00262 
00263                 -0.50, 0.00, 0.50, 0.00,-0.50, 0.00, 0.50, 0.00,
00264 
00265                 -0.50,-0.50, 0.50, 0.50, 0.00, 0.50, 0.00, 0.00,
00266 
00267                 -0.50, 0.00, 0.00};     
00268 
00269 
00270 
00271         double TA[27] = {-0.50,-0.50,-0.50,-0.50, 0.50, 0.50, 0.50, 0.50,
00272 
00273                 -0.50,-0.50,-0.50,-0.50, 0.50, 0.50, 0.50, 0.50,
00274 
00275                  0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.50, 0.00,
00276 
00277                  0.00,-0.50, 0.00};             
00278 
00279         double five9 = 0.5555555555555556, eight9 = 0.8888888888888889;
00280 
00281         double G = 0., R[3], Q[27][4];
00282 
00283         int i, j, L, NP[27];
00284 
00285         w[0] = 8;
00286 
00287         if( nint == 8) {
00288 
00289                 G = 2/sqrt(3.0);
00290 
00291                 for(i = 0; i < nint; i++ )
00292 
00293                         w[i] = 1.;
00294 
00295         }
00296 
00297         else if ( nint == 27 ) {
00298 
00299                 G = 2.0*sqrt(3./5.);
00300 
00301                 w[0] = five9 * five9 * five9;
00302 
00303                 for( i = 1; i < 8; i++ ) 
00304 
00305                         w[i] = w[0];
00306 
00307                 w[8] = five9 * five9 * eight9;
00308 
00309                 for( i = 9; i < 20; i++ )
00310 
00311                         w[i] = w[8];
00312 
00313                 w[20] = five9 * eight9 * eight9;
00314 
00315                 for( i = 21; i < 26; i++ ) 
00316 
00317                         w[i] = w[20];
00318 
00319                 w[26] = eight9 * eight9 * eight9;
00320 
00321         }
00322 
00323         else {
00324 
00325                 //printf("invalid nint %d\n", nint);
00326 
00327                 //exit(-1);
00328 
00329                 return -1;
00330 
00331         }
00332 
00333 
00334 
00335         for( i = 0; i < 27; i ++ )
00336 
00337                 NP[i] = 1;
00338 
00339         if( nen < 27) {
00340 
00341                 for( i = nen; i < 27; i++ ) 
00342 
00343                         NP[i] = 0;
00344 
00345         }
00346 
00347         else if( nen < 8 ) {
00348 
00349                 //printf("invalid nen %d\n", nen);
00350 
00351                 //exit(-1);
00352 
00353                 return -1;
00354 
00355         }
00356 
00357 
00358 
00359         for( L = 0; L < nint; L++ ) {
00360 
00361                 R[0] = G * RA[L];
00362 
00363                 R[1] = G * SA[L];
00364 
00365                 R[2] = G * TA[L];
00366 
00367 
00368 
00369                 shap3dv(R, NP, Q);
00370 
00371 
00372 
00373                 for( j = 0; j < nen; j++) {
00374 
00375                         for( i = 0; i < 4; i++ ) {
00376 
00377                                 shl[i][j][L] = Q[j][i];
00378 
00379                         }
00380 
00381                 //printf("%5d %5d %15.6e %15.6e %15.6e %15.6e\n", L+1, j+1,
00382 
00383                 //      shl[0][j][L],shl[1][j][L],shl[2][j][L],shl[3][j][L]);
00384 
00385                 }
00386 
00387 
00388 
00389         }
00390 
00391         return 0;
00392 
00393 }
00394 
00395 
00396 
00397 
00398 
00399 
00400 
00401 
00402 
00403 
00404 
00405 
00406 
00407 
00408 
00409 
00410 
00411 
00412 
00413 
00414 
00415 
00416 
00417 
00418 
00419 
00420 
00421 
00422 
00423 
00424 
00425 
00426 
00427 
00428 
00429 
00430 
00431 
00432 
00433 
00434 
00435 
00436 

Generated on Mon Oct 23 15:05:11 2006 for OpenSees by doxygen 1.5.0