00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036 #include <KrylovNewton.h>
00037 #include <AnalysisModel.h>
00038 #include <StaticAnalysis.h>
00039 #include <IncrementalIntegrator.h>
00040 #include <LinearSOE.h>
00041 #include <Channel.h>
00042 #include <FEM_ObjectBroker.h>
00043 #include <ConvergenceTest.h>
00044 #include <Matrix.h>
00045 #include <Vector.h>
00046 #include <ID.h>
00047
00048
00049 KrylovNewton::KrylovNewton(int theTangentToUse, int maxDim)
00050 :EquiSolnAlgo(EquiALGORITHM_TAGS_KrylovNewton),
00051 theTest(0), tangent(theTangentToUse),
00052 v(0), Av(0), AvData(0), rData(0), work(0), lwork(0),
00053 numEqns(0), maxDimension(maxDim)
00054 {
00055 if (maxDimension < 0)
00056 maxDimension = 0;
00057 }
00058
00059 KrylovNewton::KrylovNewton(ConvergenceTest &theT, int theTangentToUse, int maxDim)
00060 :EquiSolnAlgo(EquiALGORITHM_TAGS_KrylovNewton),
00061 theTest(&theT), tangent(theTangentToUse),
00062 v(0), Av(0), AvData(0), rData(0), work(0), lwork(0),
00063 numEqns(0), maxDimension(maxDim)
00064 {
00065 if (maxDimension < 0)
00066 maxDimension = 0;
00067 }
00068
00069
00070 KrylovNewton::~KrylovNewton()
00071 {
00072 if (v != 0) {
00073 for (int i = 0; i < maxDimension+1; i++)
00074 delete v[i];
00075 delete [] v;
00076 }
00077
00078 if (Av != 0) {
00079 for (int i = 0; i < maxDimension+1; i++)
00080 delete Av[i];
00081 delete [] Av;
00082 }
00083
00084 if (AvData != 0)
00085 delete [] AvData;
00086
00087 if (rData != 0)
00088 delete [] rData;
00089
00090 if (work != 0)
00091 delete [] work;
00092 }
00093
00094 int
00095 KrylovNewton::setConvergenceTest(ConvergenceTest *newTest)
00096 {
00097 theTest = newTest;
00098 return 0;
00099 }
00100
00101 int
00102 KrylovNewton::solveCurrentStep(void)
00103 {
00104
00105
00106 AnalysisModel *theAnaModel = this->getAnalysisModelPtr();
00107 IncrementalIntegrator *theIntegrator = this->getIncrementalIntegratorPtr();
00108 LinearSOE *theSOE = this->getLinearSOEptr();
00109
00110 if ((theAnaModel == 0) || (theIntegrator == 0) || (theSOE == 0)
00111 || (theTest == 0)){
00112 opserr << "WARNING KrylovNewton::solveCurrentStep() - setLinks() has";
00113 opserr << " not been called - or no ConvergenceTest has been set\n";
00114 return -5;
00115 }
00116
00117
00118 numEqns = theSOE->getNumEqn();
00119 if (maxDimension > numEqns)
00120 maxDimension = numEqns;
00121
00122 if (v == 0) {
00123
00124 v = new Vector*[maxDimension+1];
00125 for (int i = 0; i < maxDimension+1; i++)
00126 v[i] = new Vector(numEqns);
00127 }
00128
00129 if (Av == 0) {
00130 Av = new Vector*[maxDimension+1];
00131 for (int i = 0; i < maxDimension+1; i++)
00132 Av[i] = new Vector(numEqns);
00133 }
00134
00135 if (AvData == 0)
00136 AvData = new double [maxDimension*numEqns];
00137
00138 if (rData == 0)
00139
00140
00141
00142 rData = new double [(numEqns > maxDimension) ? numEqns : maxDimension];
00143
00144
00145
00146 lwork = 2 * ((numEqns < maxDimension) ? numEqns : maxDimension);
00147
00148 if (work == 0)
00149 work = new double [lwork];
00150
00151
00152 if (theIntegrator->formUnbalance() < 0) {
00153 opserr << "WARNING KrylovNewton::solveCurrentStep() -";
00154 opserr << "the Integrator failed in formUnbalance()\n";
00155 return -2;
00156 }
00157
00158
00159
00160 theTest->setEquiSolnAlgo(*this);
00161 if (theTest->start() < 0) {
00162 opserr << "KrylovNewton::solveCurrentStep() -";
00163 opserr << "the ConvergenceTest object failed in start()\n";
00164 return -3;
00165 }
00166
00167
00168
00169 if (theIntegrator->formTangent(tangent) < 0){
00170 opserr << "WARNING KrylovNewton::solveCurrentStep() -";
00171 opserr << "the Integrator failed in formTangent()\n";
00172 return -1;
00173 }
00174
00175
00176 int k = 1;
00177
00178
00179 int dim = 0;
00180
00181 int result = -1;
00182
00183 do {
00184
00185
00186 if (dim > maxDimension) {
00187 dim = 0;
00188 if (theIntegrator->formTangent(tangent) < 0){
00189 opserr << "WARNING KrylovNewton::solveCurrentStep() -";
00190 opserr << "the Integrator failed to produce new formTangent()\n";
00191 return -1;
00192 }
00193 }
00194
00195
00196 if (theSOE->solve() < 0) {
00197 opserr << "WARNING KrylovNewton::solveCurrentStep() -";
00198 opserr << "the LinearSysOfEqn failed in solve()\n";
00199 return -3;
00200 }
00201
00202
00203 if (this->leastSquares(dim) < 0) {
00204 opserr << "WARNING KrylovNewton::solveCurrentStep() -";
00205 opserr << "the Integrator failed in leastSquares()\n";
00206 return -1;
00207 }
00208
00209
00210 if (theIntegrator->update(*(v[dim])) < 0) {
00211 opserr << "WARNING KrylovNewton::solveCurrentStep() -";
00212 opserr << "the Integrator failed in update()\n";
00213 return -4;
00214 }
00215
00216
00217 if (theIntegrator->formUnbalance() < 0) {
00218 opserr << "WARNING KrylovNewton::solveCurrentStep() -";
00219 opserr << "the Integrator failed in formUnbalance()\n";
00220 return -2;
00221 }
00222
00223
00224 dim++;
00225
00226 result = theTest->test();
00227 this->record(k++);
00228
00229 } while (result == -1);
00230
00231 if (result == -2) {
00232 opserr << "KrylovNewton::solveCurrentStep() -";
00233 opserr << "the ConvergenceTest object failed in test()\n";
00234 return -3;
00235 }
00236
00237
00238
00239 return result;
00240 }
00241
00242 ConvergenceTest *
00243 KrylovNewton::getConvergenceTest(void)
00244 {
00245 return theTest;
00246 }
00247
00248 int
00249 KrylovNewton::sendSelf(int cTag, Channel &theChannel)
00250 {
00251 return -1;
00252 }
00253
00254 int
00255 KrylovNewton::recvSelf(int cTag, Channel &theChannel,
00256 FEM_ObjectBroker &theBroker)
00257 {
00258 return -1;
00259 }
00260
00261 void
00262 KrylovNewton::Print(OPS_Stream &s, int flag)
00263 {
00264 s << "KrylovNewton";
00265 s << "\n\tMax subspace dimension: " << maxDimension;
00266 s << "\n\tNumber of equations: " << numEqns << endln;
00267 }
00268
00269 #ifdef _WIN32
00270
00271 extern "C" int DGELS(char *T, int *M, int *N, int *NRHS,
00272 double *A, int *LDA, double *B, int *LDB,
00273 double *WORK, int *LWORK, int *INFO);
00274
00275 #else
00276
00277 extern "C" int dgels_(char *T, int *M, int *N, int *NRHS,
00278 double *A, int *LDA, double *B, int *LDB,
00279 double *WORK, int *LWORK, int *INFO);
00280
00281 #endif
00282
00283 int
00284 KrylovNewton::leastSquares(int k)
00285 {
00286 LinearSOE *theSOE = this->getLinearSOEptr();
00287 const Vector &r = theSOE->getX();
00288
00289
00290 *(v[k]) = r;
00291 *(Av[k]) = r;
00292
00293
00294 if (k == 0)
00295 return 0;
00296
00297
00298 Av[k-1]->addVector(1.0, r, -1.0);
00299
00300 int i,j;
00301
00302
00303 Matrix A(AvData, numEqns, k);
00304 for (i = 0; i < k; i++) {
00305 Vector &Ai = *(Av[i]);
00306 for (j = 0; j < numEqns; j++)
00307 A(j,i) = Ai(j);
00308 }
00309
00310
00311 Vector B(rData, numEqns);
00312 B = r;
00313
00314
00315 char *trans = "N";
00316
00317
00318 int nrhs = 1;
00319
00320
00321 int ldb = (numEqns > k) ? numEqns : k;
00322
00323
00324 int info = 0;
00325
00326
00327 #ifdef _WIN32
00328 DGELS(trans, &numEqns, &k, &nrhs, AvData, &numEqns, rData, &ldb, work, &lwork, &info);
00329 #else
00330 dgels_(trans, &numEqns, &k, &nrhs, AvData, &numEqns, rData, &ldb, work, &lwork, &info);
00331 #endif
00332
00333
00334 if (info < 0) {
00335 opserr << "WARNING KrylovNewton::leastSquares() - \n";
00336 opserr << "error code " << info << " returned by LAPACK dgels\n";
00337 return info;
00338 }
00339
00340
00341 double cj;
00342 for (j = 0; j < k; j++) {
00343
00344
00345 cj = rData[j];
00346
00347
00348 v[k]->addVector(1.0, *(v[j]), cj);
00349
00350
00351 v[k]->addVector(1.0, *(Av[j]), -cj);
00352 }
00353
00354 return 0;
00355 }
00356