

SimCenter Scientific Workflow Systems and connection to DesignSafe Infrastructure

NSF award: CMMI 2131111 and 1612843

Start With a Quote

"An estimate without uncertainty is **no** estimate at all." (attributed to Sir Harold Jeffreys)

How this relates to OpenSees

 A single OpenSees analysis produces a single set of results, it is a deterministic result, it is just one of the many possible outcomes. By itself such a simulation is practically meaningless.

One deterministic result

 In order to make informed decisions, you also need to know how probable the outcome is.

Surface Representing all Possible Outcom (actual surface is N-dimensional)

Conclusion

- 99% 95% of OpenSees users do not apply it correctly!
- SimCenter Provides Applications to Fix this as they force users to employ uncertainty quantification algorithms.
- These SimCenter Applications (quoFEM, EE-UQ, WE-UQ, Hydro-UQ, PBE & R2D) provide features other than UQ which are incredibly useful.

CONVERGE Social Science/Interdisciplinary Resources NSF Award #1841338

UNIVERSITY OF WASHINGTON Reconnaissance (Post-disaster RAPID) Facility NSF Award #2130997

OREGON STATE UNIVERSITY Large Wave Flume and Directional Wave Basin

Directional Wave Basin NSF Award #2037914

UNIVERSITY OF TEXAS, AUSTIN Mobile Field Shakers NSF Award #2037900

> UNIVERSITY OF CALIFORNIA, DAVIS Geotechnical Centrifuges NSF Award #2037883

> > UNIVERSITY OF CALIFORNIA, SAN DIEGO Large High-Performance Outdoor Shaker Table

11 1

PURDUE UNIVERSITY Network Coordination Office NSF Award #2129782

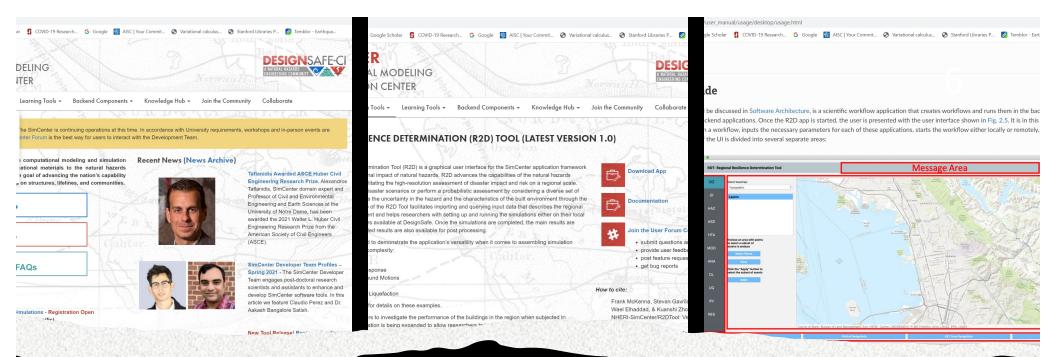
NSF Award #1520904

UNIVERSITY OF CALIFORNIA, BERKELEY SimCenter

NSF's Facilities/Programs

Computational Modeling and Simulation NSF Award #2131111

> UNIVERSITY OF TEXAS, AUSTIN DesignSafe Community Cyberinfrastructure NSF Award #2022469


> > LEHIGH UNIVERSITY Large-Scale Multi-Directional Hybrid Simulation Testing NSF Award #2037771

UNIVERSITY OF FLORIDA Boundary Layer Wind Tunnel NSF Award #2037725

FLORIDA INTERNATIONAL UNIVERSITY Wind Simulation NSF Award #2037899

NICHE Planning for the new, shared-used National Full-Scale Testing infrastructure for Community Hardening in Extreme Wind, Wave and Surge Events NSF Award #2131961

For more information, visit the NHERI DesignSafe website: DesignSafe-ci.org

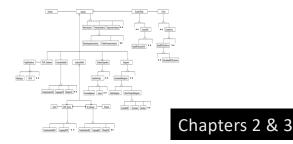
SimCenter Portal

- Software & Documentation
- Education and Training Webinars
- Forum & Other Communication

https://simcenter.designsafe-ci.org/

SimCenter Objectives

- Develop a flexible, extensible, and scalable software framework for creation of scientific workflow systems that support decision-making to enhance community resilience to natural hazards in the face of uncertainty;
- Release open-source tools/applications built using this framework that meet the computational needs of researchers in natural hazards engineering;
- Provide an ecosystem that fosters collaboration between scientists, engineers, urban planners, public officials, and others who seek to improve community resilience to natural hazards.



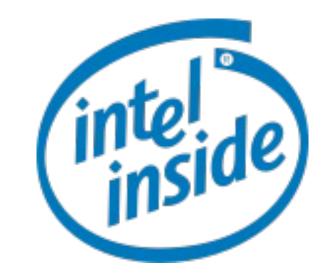
What is a Software Framework

Definition: A Software Framework is a collection of interfaces (abstract classes if C++) that define how components interact and a set of concrete components (instantiable C++ subclasses in C++) that allow you to build an example application from the framework.

is an example of a Software framework (C++ Framework). Applications Built using OpenSees Framework

https://opensees.berkeley.edu/OpenSees/doc/fmkdiss.pdf

G3 OpenSees OpenSeesSP OpenSeesMP OpenSeesPy all SimCenter Tools


Fun(Depressing!) Fact

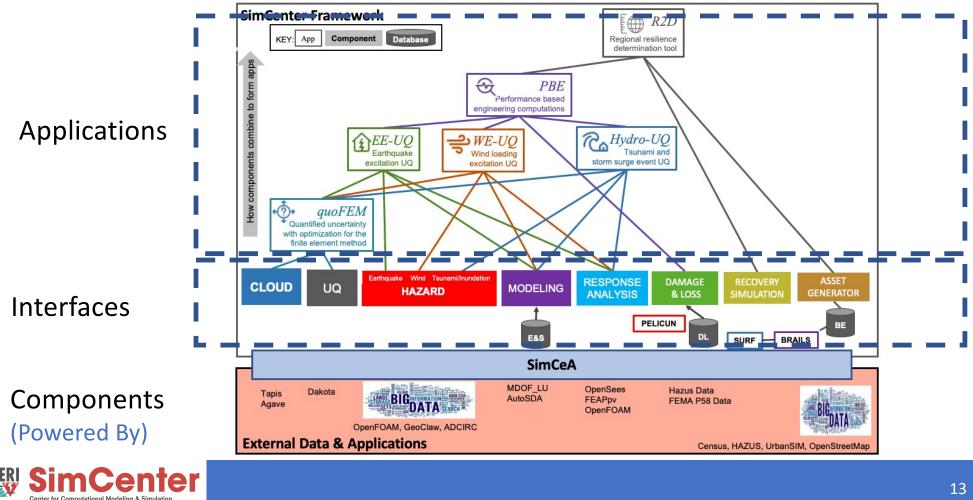
Intel has a Slogan

A SimCenter App Equivalent

and TACC and Dakota and

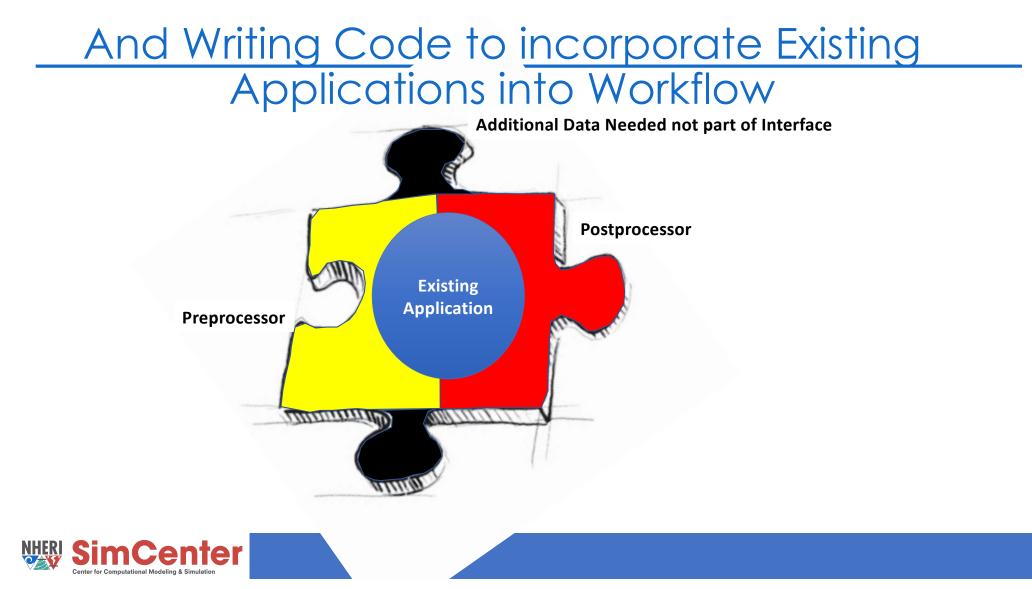
Scientific Workflow System?

Definition: a Scientific Workflow System is

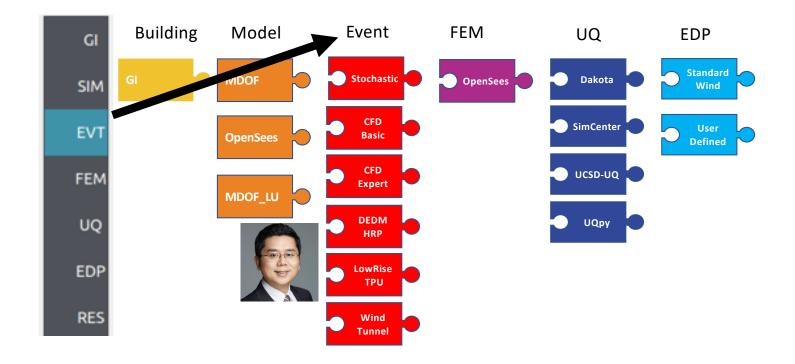

software that allows users to build, launch and monitor Scientific Workflows.

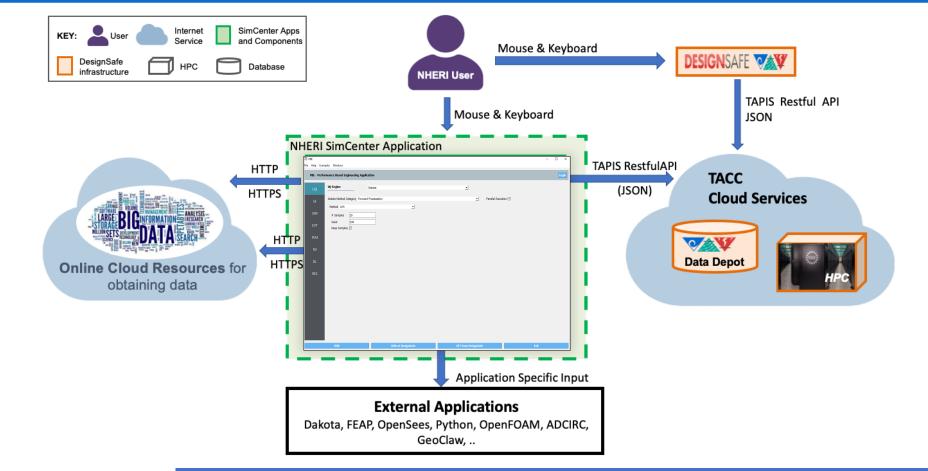
Definition: a **Scientific Workflow** is the **automation** of a process in which information is passed from **one application to the next**.


SimCenter Applications Framework

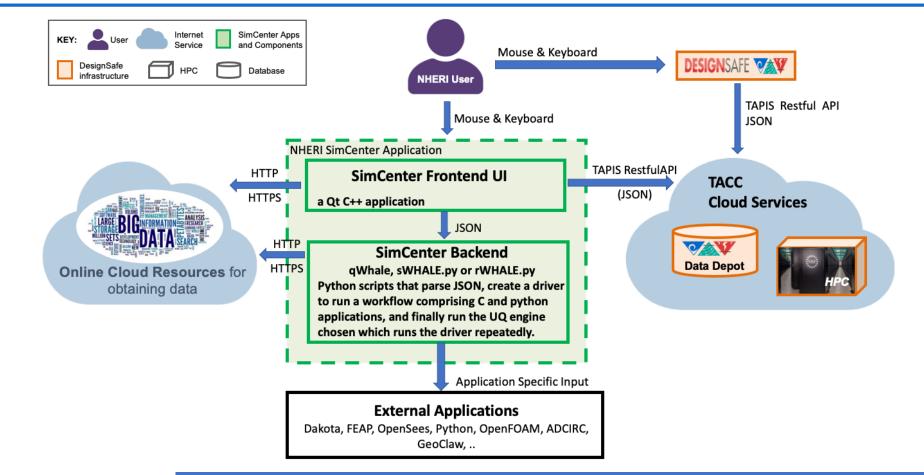


Existing Applications of course do not of Course work together


SimCenter defining interfaces they must meet!

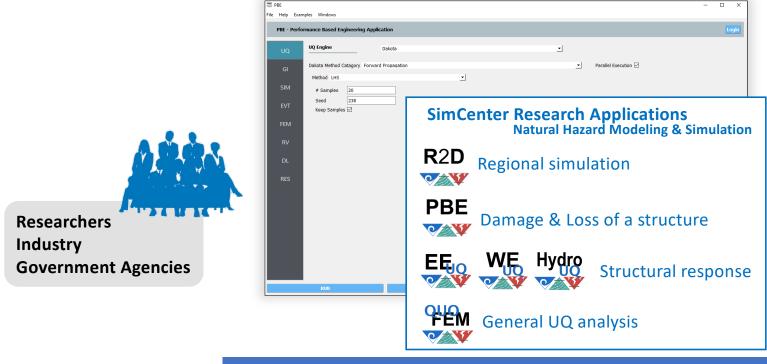


Putting workflow together in UI



UI Launches Scientific Workflows

UI Launches Scientific Workflows


Overview

- SimCenter Objectives & Scientific Workflow Systems
- SimCenter Status
- ML use in SimCenter
- Why UQ
- quoFEM Demo

SimCenter Status

Released a number of open-source **software applications** that researchers in **Natural hazard engineering** are using, modifying and extending

Workflow Application

UNCERTAINTY QUANTIFICATION 8 RESPONSE

quoFEM (v3.0)

Integrates Simulation Applications (OpenSees, OpenSeesPy,...) with UQ Applications

JQ Problem Types:

ANALYSIS

MODELING

1. Forward Uncertainty

Sampling Sensitivity Reliability **Surrogate Modeling**

2. Inverse Uncertainty

Calibration **Bayesian Calibration**

UQ	Input Random V	ariables	Add	Clear All	Correlation	a Matrix	Export	Import				
	-		Add	Clear All	Correlation	n matrix		import				
EM	Variable Name	Input Type	Distribution	Mean	Standard Dev						-	
RV	E	Moments \$	Lognormal 🔇	205	15	Show PDF						
κv	Variable Name	Input Type	Distribution	Mean	Standard Dev		0.	02 -				
DP	P	Parameter \$	Normal	25	3	Show PDF						
	Variable Name	Input Type	Distribution	Mean	Standard Dev							
ES	🛛 Ao	Moments 🗘	Lognormal	250	10	Show PDF	0.0	15	\wedge			
	Variable Name		Distribution	Mean	Standard Dev							
	🛛 Au	Parameter 🗘	Normal	500	25	Show PDF	Probability Density Function					
							0.0	400	450 500 x	550 600		
	RUN			RUN	at DesignSafe			GET fro	om DesignSafe		Exit	
							ram Output					
B - Loadin	g Example file. Wait	till Done Loading Exa	uoFEM/build/quoFEM.ap ample appears before pro M/build/quoFEM.app/Co	ogressing.								

EE-UQ V3.0

Integrates Forward UQ applications of quoFEM, Earthquake Loading Applications, Building Model Generators with analysis application to determine response of building to earthquake loading

Hazard (Earthquake):

Stochastic Motions PEER NGA Search with target spectrum Site Response with Random Fields

Modeling (Building):

OpenSees Nonlinear Shear Spring (MDOF) Steel Building Design & Build (AutoSDA) Concrete Building Design & Build

EE-UQ:	Response of Building to Earthquake		Login
UQ	Load Generator PEER N	NGA Records	
GI SIM EVT FEM	Target Spectrum Type Unform Hazard Spectrum Latitude 578/75 Longitude -122.273 Edition 2014 v4.2.0 (Dynamic)	Fault Type All Types Pault Pulse All Magnitude 5:0 Box	
EDP RV RES	Va30 259 (Setf Sol D) Return Period 2500	ms vs30 150.0 300.0 m/s years D5-95 ise ise	
	Output Directory Output Directory Ground Motion Components		
	Acceleration Components Suite Average RSN Scale Earthquake 1 6 4.0989 Imperial Valley-02 El Centro	Inti Intervention Intervention	
30	RUN	RUN at DesignSarle CET from DesignSarle Exit	
19:26:42 - Perform 19:26:43 - Retriev 19:26:44 - Downlo 19:26:45 - Ground	ming Record Selection ving Record Selection Results from PEER NGA West 2 Database oading Ground Motions from PEER NGA West 2 Database d Motions Downloaded Succesfully g Downloaded Records		

WE Workflow Application

WE-UQ V2.2.0

Integrates quoFEM Forward UQ applications, Wind Loading Applications and Building Model Generators with analysis engine to determine response of building subjected to wind loading.

Hazard (Wind):

Stochastic Wind

Database-enabled utilizing Vortex-Winds TPU's low-rise wind tunnel datasets User-provided wind tunnel test data Uncoupled or **coupled** CFD simulations using OpenFOAM & incorporating TinF options for expert users

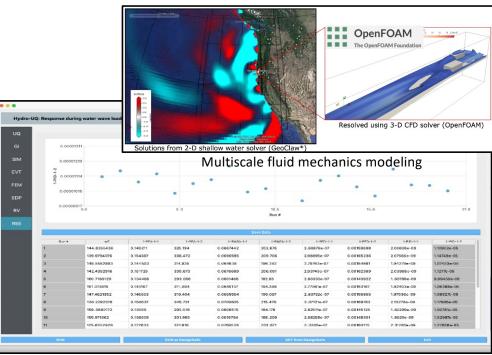
Modeling (Building)

OpenSees Nonlinear Shear Spring (MDOF)

•						
WE-UQ: W	/ind Engineerin	g with Uncertaint;	y Quantification	1		
UQ	Load Generator		CFD - Basic		0	
	Domain Size		Mesh Size		Boundary C	
SIM	Inlet Length (-X) Outlet Length (+X)		Building Domain Boundary	3 m 10 m		Symmetry Plane Symmetry Plane
EVT	Outward Length (-Y) Inward Length (+II)	8.D			Bottom (Z-) Top (Z+)	Wall Symmetry Plane
FEM	Rottom Length (+2) Top Length (+2)	8.0				
	Subdomains Number of Subdoma	ains		No subdomains		e
RES	Time Step Inflow Velocity Kinematic Viscosity Processors Building Forces Force Calculation	1.0 0.1 1.0	m/s Number of : m²/s Turbulence	Model Piso Correctors non-orthogonal Correctors	1	Turbulence Model (LBS) 🕃
	RUN			RUN at DesignSafe		GET tr

Workflow Application

Hydro-UQ V1.0.0 -


Integrates Forward UQ applications, Tsunami & Storm Surge Loading Applications and Building Model Generators with Analysis engine to determine response of structure.

Hazard (Tsunami and storm surge):

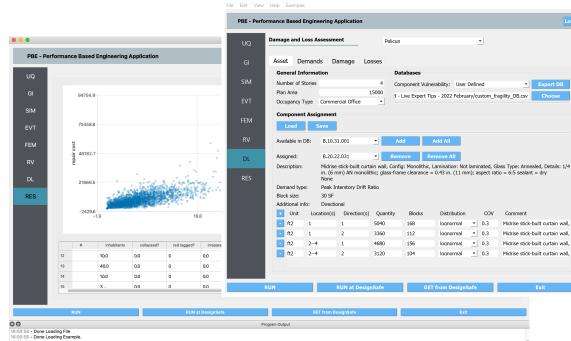
2D Shallow-water → 3D CFD OSU wave flume digital twin Easy to use turbulence models for studying broken & unbroken wave behavior

Modeling (Building)


OpenSees Nonlinear Shear Spring (MDOF)

Probabilistic structural response

PBE Workflow Application

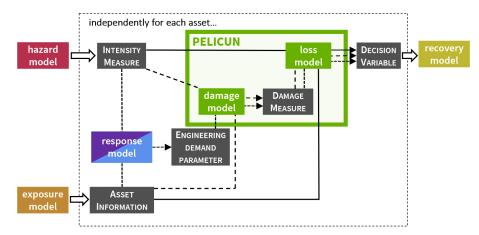

PBE v2.0 (3.0 coming this month!)–

Integrates UQ applications of quoFEM, Building Model Generators, Earthquake Loading, analysis engine and our PELICUN tool for damage and loss assessment.

POE PRE

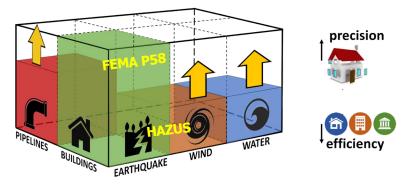
Damage & Loss (using PELICUN):

Building-level assessment (e.g., HAZUS) Component-level assessment (e.g., FEMA P58) Supports external response estimation Customizable fragility & consequence functions



16:01:42 -16:01:42 - SetUp Done .. Now starting application

Pelicun: Performance Assessment



Multi-Fidelity Approach

Newest Pelicun features:

- Standardized data schema that unifies performance model data across hazards, assets, and resolutions
- Cascading damages and damage processes
- Customizable damage consequence mapping
- Portfolio and regional assessment
- Uncertainty in component assignments

Community-Driven Development of New Models & Data

UNCERTAINTY QUANTIFICATION								
ASSET DESCRIPTION	HAZARD		ANALYSIS	D&L	RECOVERY			
		SUPPORTING	DATABASES					

R2D V2.1 -

Create complex workflows for regional hazard simulation to facilitate research in disaster risk management and recovery.

Asset definition

csv files GIS files

Hazard definition

Regional Site Response User-supplied earthquake and hurricane grids Raster-defined earthquake, hurricane, and tsunami intensity fields Earthquake scenario simulation Hurricane wind field simulation

Damage and loss

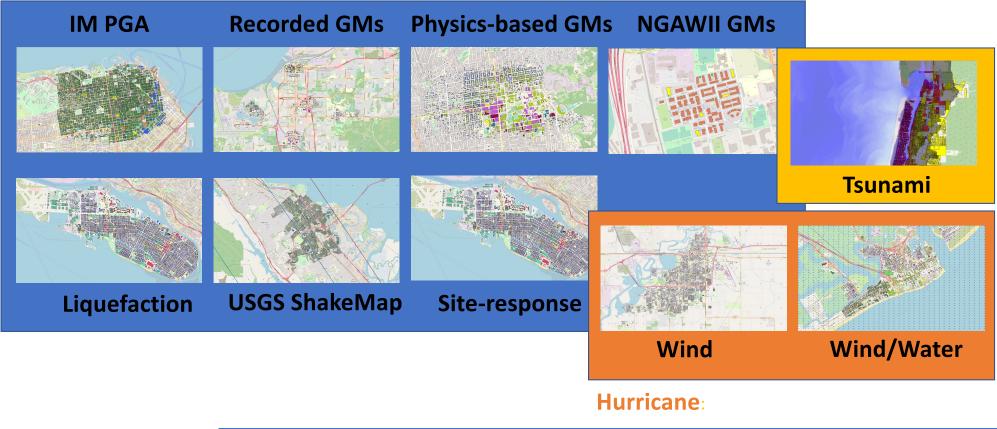
HAZUS User-provided fragility functions

Multiple Hazards


Multiple Assets

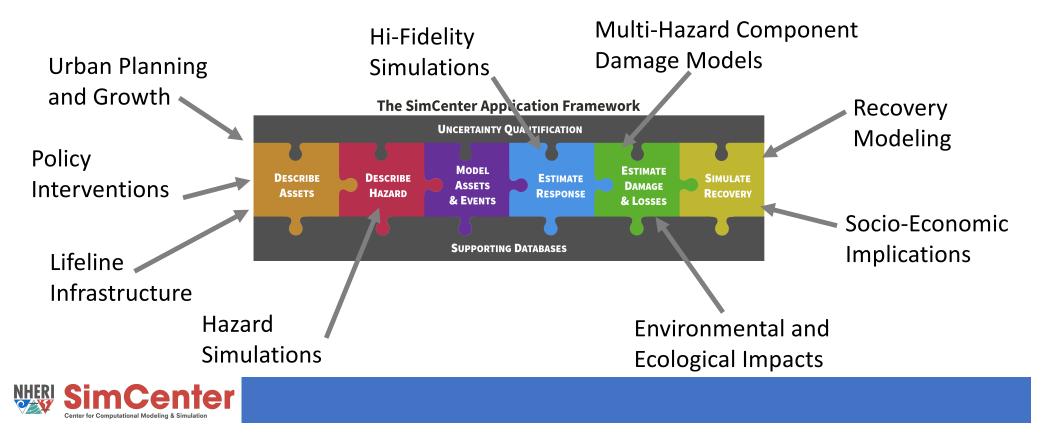
Hurricanes

Tsunamis


Buildings

Lifelines

Regional Testbeds & Examples Available


Earthquake

Open Framework to Further NHE

Extensible computational workflow to develop and share models and data to simulate natural hazard effects and design communities to be more resilient

Overview

- SimCenter Objectives & Scientific Workflow Systems
- SimCenter Status
- ML use in SimCenter
- Why UQ
- quoFEM Demo

Usage of AI/ML in SimCenter Workflows

1.Inventory Collection

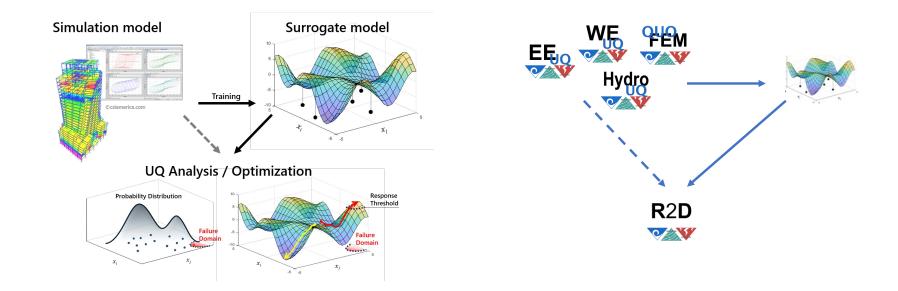
2.Reduction of Simulation Time

1. Inventory Generation

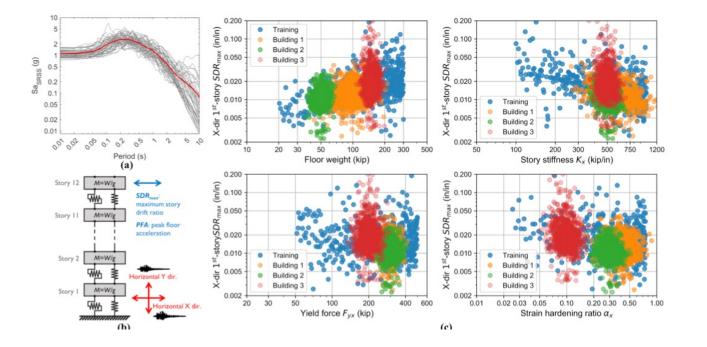
- 3 Categories of ML Methods Used:
- Image Classification: to assign to an input image a single label from a fixed set of labels
- 2. Image Segmentation: to locate (detect) objects and object boundaries in an input image
- 3. Image Processing: using image segmentation combine object location

with mathematics of pinhole cameras to determine information

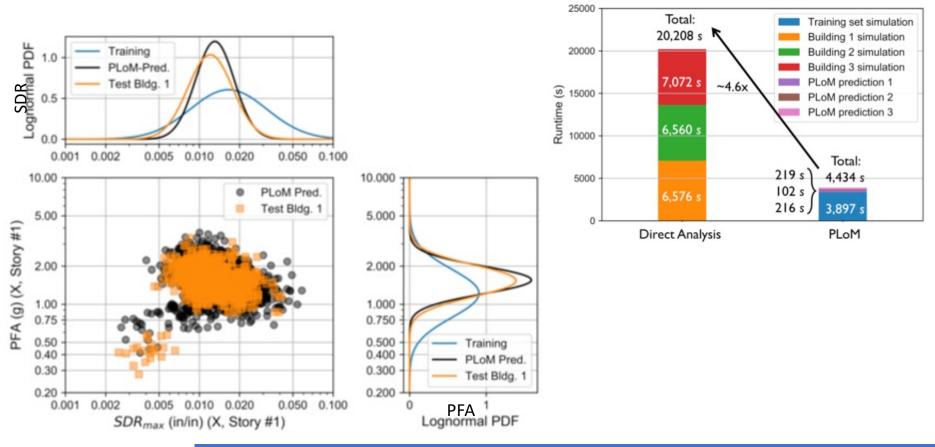
BRAILS Workflow: Inventory


BRAILS creates regional-scale building inventories at building-level granularity using deep learning and computer vision techniques. BRAILS is capable of predicting:

-	
Roof shape	
Roof cover type	Classification
 Occupancy type 	
Era of construction	
Number of floors	Object
Existence of chimneys	Detection
Existence of garages	
 Building height 	
 Roof eave height 	Image
 Roof pitch angle 	Processing
Window area	
First floor height	

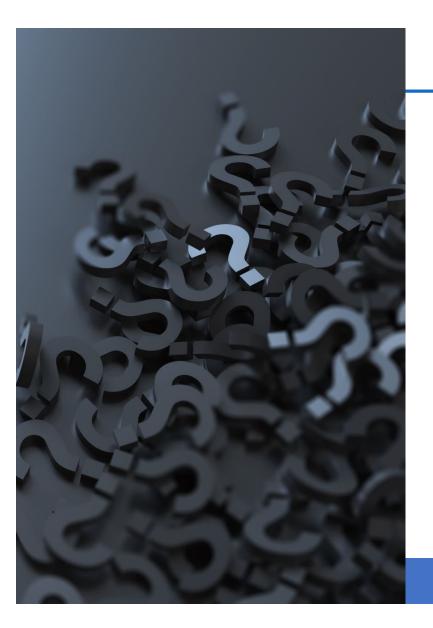

2. Reduction of Simulation Time

Use ML to generate Surrogates to replace Numerical Simulations in Workflow



PLoM Example

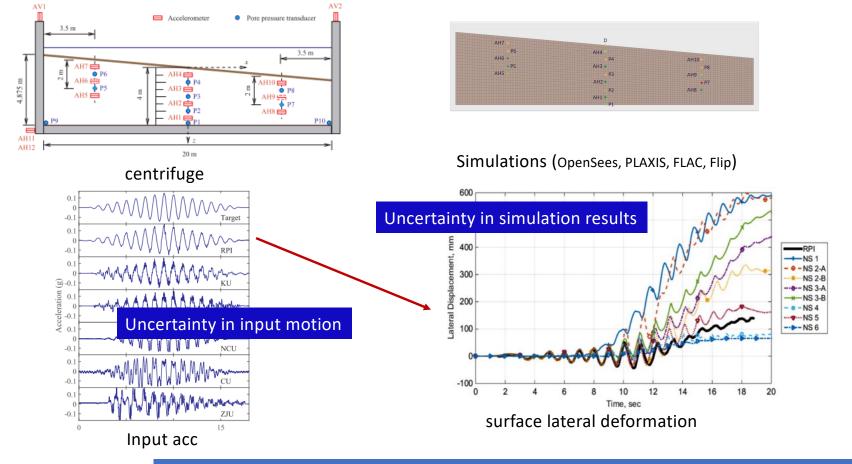
PLoM Example



Overview

- SimCenter Objectives & Scientific Workflow Systems
- SimCenter Status
- ML use in SimCenter
- Why UQ
- quoFEM Demo

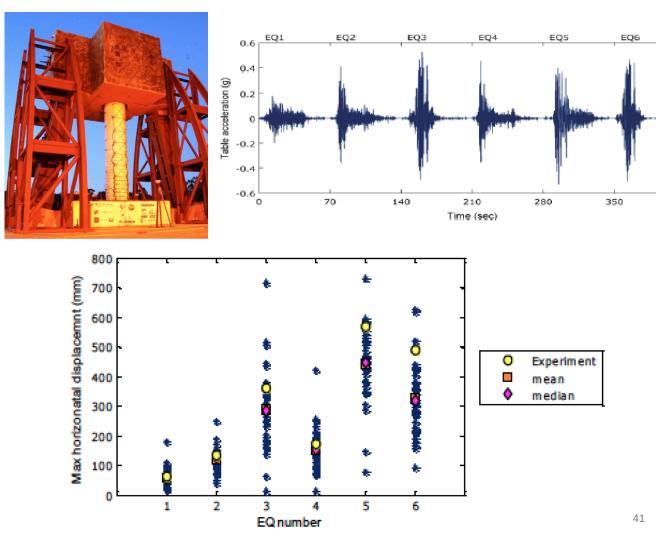
That Quote Again!

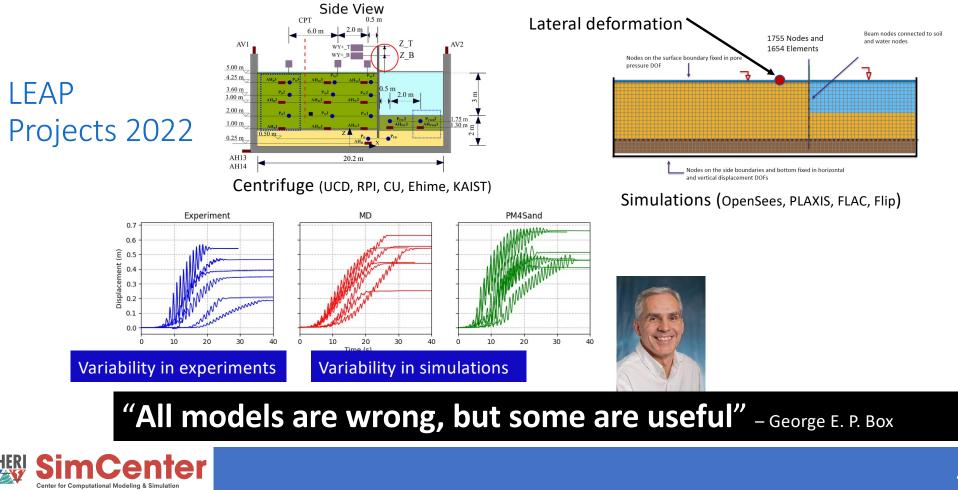

"An estimate without uncertainty is **no** estimate at all." (attributed to Sir Harold Jeffreys)

Thoughts from Prof. Graham Powell

- Exact prediction of behavior is impossible, can't be done" Performance Based Design, https://www.youtube.com/watch?v=HpnICZuoQdU
- While geotechnical Engineers cannot predict within 300% surface motion given a rock motion, structural engineers can predict within 10% the response of the structure given surface motion" CE221 Nonlinear Structural Analysis Spring 1992.

LEAP Projects 2019 (Liquefaction Experiments and Analysis Projects)




Can Structural Engineers Do Better?

NO!

RC Bridge Column, NEES@UCSD 2010

Probably Need Multi Model

Authoritative Expert on the Subject .. ChatGPT!

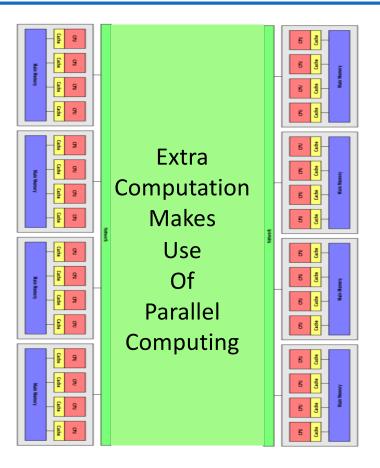
- Should numerical simulations be performed without uncertainty quantification?
- \$
- No, numerical simulations should not be performed without uncertainty quantification. Uncertainty quantification is the process of estimating the uncertainty in the results of numerical simulations. This is important because numerical simulations are often based on models that include assumptions and approximations, which can lead to errors in the results. By performing uncertainty quantification, one can estimate the range of possible results and determine how sensitive the results are to changes in the input data or model assumptions. This information can help in making decisions and drawing meaningful conclusions from the simulation results.

 \Box

Good News ... SimCenter Tools Produce UQ

YEAH! BUT!

User Has More Work To Do

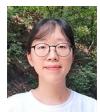

User has to identify certain parameters as being **Random Variables**

User then has to define the **Distribution** associated with these Random Variable

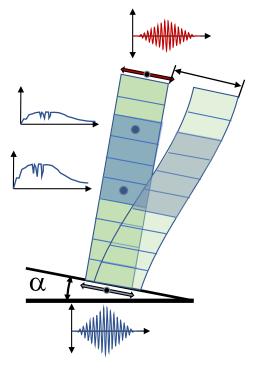
Computer Has More Work To Do

- SimCenter Applications can run these computations in parallel using the cores of your local computer;
- They also allow you to run the simulations through the Cloud on the HPC resources at TACC provided through

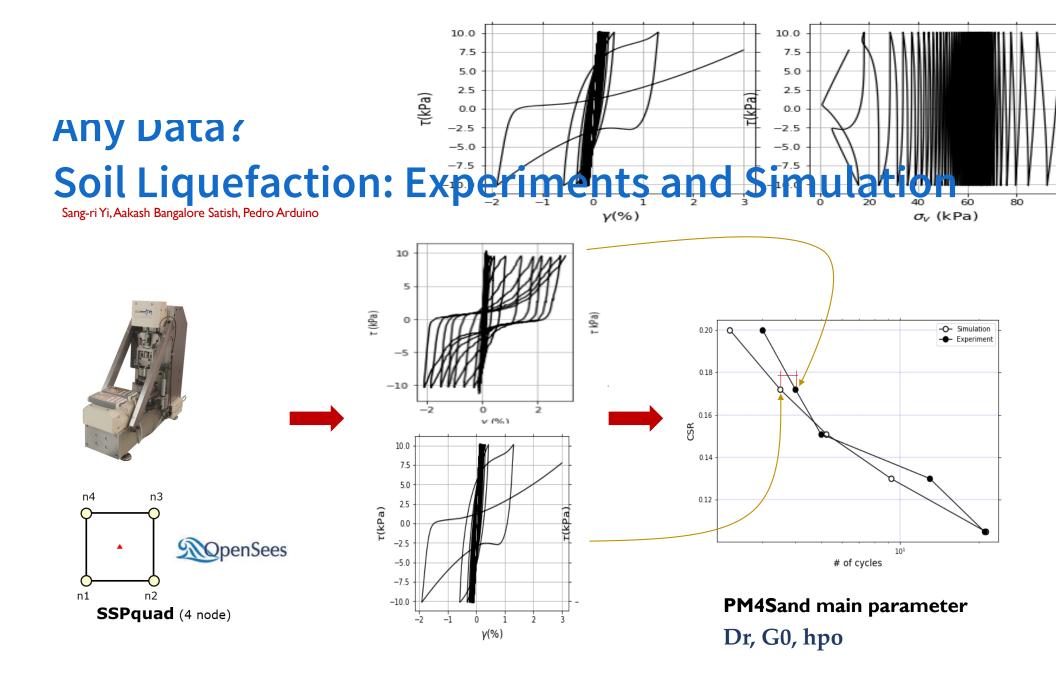
DesignSafe-ci.

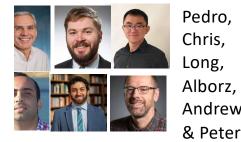


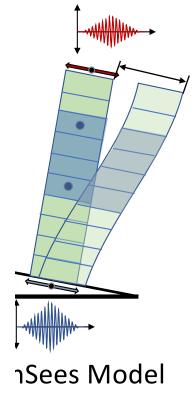
A Geotechnical Example of How to Apply OpenSees correctly!



I UG AKORFEM: Soil Liquefaction: Lateral Spreading Sang-ri Yi, Aakash Bangalore Satish, Pedro Arduino






MopenSees

- OpenSees Model
 - Element: SSPQuad-UP
 - Const. Model: PM4Sand v3 D_r , G_o , h_{p0}

:ep 1:Build a Model (Multiple Models if Possible)


```
# Material parameters
                        pset Dr 0.61
                        pset G0 255
                                                         model BasicBuilder -ndm 2 -ndf 3
                        pset hpo 0.14
                        set grade 3.0
                        set layerT 3.0
                                                         set yCoord 0.0
                        # ---SOIL GEOMETRY
                                                         set count 0
                        set numLayers
                                           3
                                                         set gwt
                                                                    1
                        set layerThick(3) 2.0
Andrew,
                                                         set waterHeight [expr $soilThick-$waterTable]
                        set layerThick(2) $layerT
                                                         set nodesInfo [open nodesInfo.dat w]
                        set layerThick(1) 1.0
                                                         # loop over layers
                        set waterTable
                                           2.0
                                                         for {set k 1} {$k <= $numLayers} {incr k 1} {</pre>
                        # mesh geometry
                                                                 # loop over nodes
                        set nElemX 1
                                                                 for {set j 1} {$j <= $nNodeL($k)} {incr j $nNodeX} {</pre>
                        set nNodeX [expr $nElemX + 1]
                                                                         for {set i 1} {$i <= $nNodeX} {incr i} {</pre>
                        set sElemX 0.25
                                                                                  node [expr $j+$count+$i-1] [expr ($i-1)*$sElemX]
                                                                                                                                             $vCoord
                        set nElemY(3) 8
                                                                                  # designate nodes above water table
                        set nElemY(2) [expr int($layerT
                                                                                 if {$yCoord>=$waterHeight} {
                        set nElemY(1) 4
                                                                                          set dryNode($gwt) [expr $j+$count+$i-1]
                       # define grade of slope (%)
                                                                                          set gwt [expr $gwt+1]
                        set g -9.81
                                                                                 }
                        # material param
                                                                         }
                        set N160 10.0
                        set Cd 46.0
                                                                         set yCoord [expr $yCoord + $sElemY($k)]
                        set Gs 2.67
                                                                 }
                        set emax 0.8
                                                                 set count [expr $count + $nNodeL($k)]
                        set emin 0.5
                        set void [expr $emax - $Dr * ($er}]
                        set por [expr $void / (1 + $void # define fixities for pore pressure nodes at base of soil column
                        set rho_d [expr $Gs / (1 + $void for {set i 1} {$i <= $nNodeX} {incr i} {</pre>
                                                                 fix $i 010
                        set rho s [expr $rho d *(1.0+$vo:
                                                                 # puts "fix $i 010"
                        set K0 0.5
                                                                                                           6. LYSMER DASHPOT
                                                                 if {$i > 1} {
                        set nu [expr $K0 / (1 + $K0)]
                                                                         equalDOF 1 $i 1
                        # define properties of the under!
                                                                                                         model BasicBuilder -ndm 2 -ndf 2
                                          182.0
                                                                 }
                        set rockVS
                       # define equal degrees of freedom for pore pre
# calculate the thickness of soi for {set j [expr $nNodeX + 1]} {$j < $nNodeT} art dath [expr $nNodeT+1]
set soilThick 0.0
                        set rockDen
                                                                 for {set i $j} {$i < [expr $j + $nNode] set dashS [expr $nNodeT+2]
                        set soilThick 0.0
                                                                         equalDOF $j [expr $i+1] 1 2
                        for {set i 1} {$i <= $numLayers}</pre>
                                                                                                         node $dashF 0.0 0.0
                               set soilThick [expr $soil
                                                                 3
                                                                                                         node $dash$ 0.0 0.0
                       i 3
                                                        }
                        # total number of elements in vei# define pore pressure boundaries for nodes ab
                                                                                                         # define fixities for dashpot nodes
                        set nElemT 0
                                                         for {set i 1} {$i < $gwt} {incr i 1} {</pre>
                                                                                                         fix $dashF 11
                        set layerBound(1) 0
                                                             fix $dryNode($i) 001
                                                                                                         fix $dashS 01
                        for {set i 1} {$i <= $numLayers} }</pre>
                            incr nElemT
                                           [expr $nElem'set slope [expr atan($grade/100.0)]
                            set sElemY($i) [expr $layer'nDMaterial PMASand 3 $Dr $G0 $hpo $rho_d 101.3# define equal DOF for dashpot and base soil node
                            set layerBound([expr $i+1]) nDMaterial PM4Sand 2 $Dr $G0 $hpo $tho_s 101.3equalDOF 1 $dashS 1
                                                        nDMaterial ElasticIsotropic 1 SE 0.3 Srho_s puts "Finished creating dashpot nodes and boundary conditions..."
                        set layerBound(1) 1
                                                         set elemInfo [open elementInfo.dat w]
                        # number of nodes in vertical diaset count 0
                                                                                                         # define dashpot material
                        set nNodeT 0
                                                                                                                            [expr $sElemX*$thick(1)]
                                                         for {set i 1} {$i <= $numLayers} {incr i 1} { set colArea</pre>
                        for {set k 1} {$k < $numLayers} +</pre>
                                                                 for {set j 1} {$j <= $nElemY($i)} {incset dashpotCoeff [expr $rockVS*$rockDen]</pre>
                             ant utiladal (Alc) Faxan (utilada)
```

Step 2: Sensitivity Study

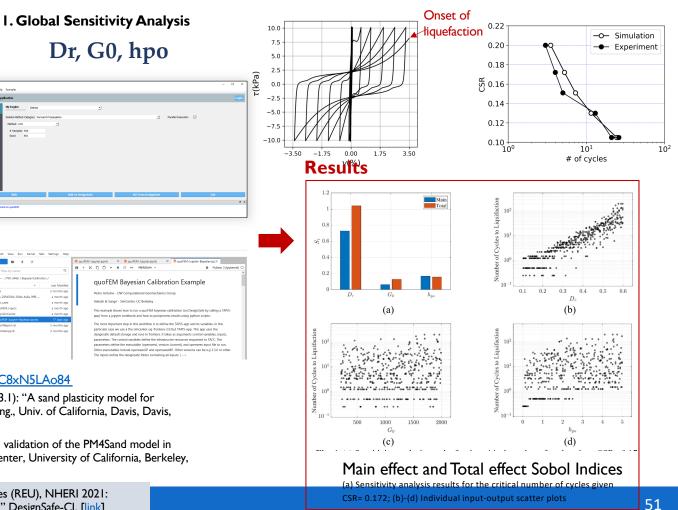
Dr, G0, hpo

Samples St

Sang-ri Yi, Aakash Bangalore Satish, Pedro Arduino

- Identify influential and redundant ٠ input parameters
- Inputs: PM4Sand material model ٠ parameters (Dr, Go, hpo)
- Outputs: Number of cycles to onset ٠ of liquefaction at given CSR values, parameters of power law model fit to cyclic strength curve

Computational model


MOpenSees γ quoFEM Bayesian Calibration Exampl PM4Sand Ă Single element simulation

Global Sensitivity Analysis with guoFEM: https://youtu.be/IC8xN5LAo84

Boulanger RW, Ziotopoulou K (2017) PM4Sand (Version 3.1): "A sand plasticity model for earthquake engineering applications", Dept. of Civil and Env. Eng., Univ. of California, Davis, Davis, CA, Rep. UCD/CGM-17/01

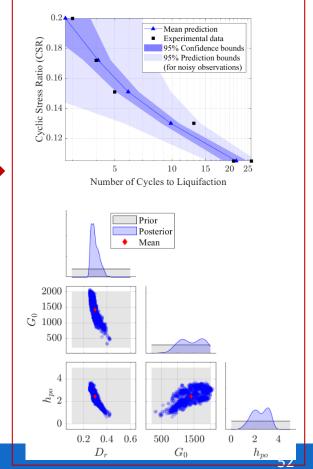
Chen L, Arduino P (2021) "Implementation, verification, and validation of the PM4Sand model in OpenSees", Pacific Earthquake Engineering Research (PEER) Center, University of California, Berkeley, Berkeley, USA, Rep. 2021/02

Nair AS et al. (2021) "Research Experience for Undergraduates (REU), NHERI 2021: Uncertainty Analysis of Seismic Soil Liquefaction using quoFEM." DesignSafe-CI. [link]

Step 3: Bayesian Calibration

Sang-ri Yi, Aakash Bangalore Satish, Pedro Arduino

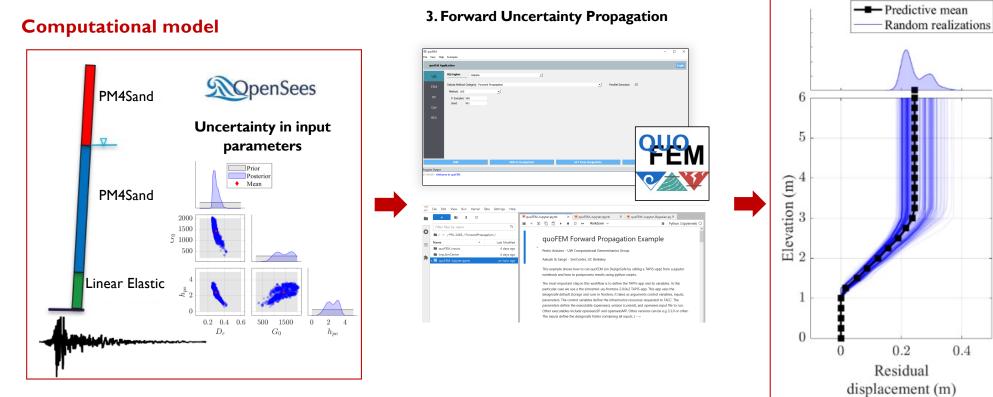
Experimental data Cyclic direct simple shear test 0.2 Mean prediction Vertical stress Stress Ratio (CSR) 91.0 (CSR) 10.14 . # Samples 50 Cyclic 0.15 **PLEM** Shear stress 51015**Computational model** Prior guoFEM Bayesian Calibration Example Posterior **MopenSees** γ Mean ٠ PM4Sand 2000 Ā 1500Single element simulation Ŀ 1000 500Bayesian Calibration with quoFEM: https://youtu.be/hLBB6nGld2M


Morales B et al. (2021) "Data from: Cyclic Direct Simple Shear Testing of Ottawa F50 and F65 Sands." Distributed by DesignSafe-CI Data Depot. doi: 10.17603/ds2-eahz-9466

Ziotopoulou K et al. (2018) "Cyclic Strength of Ottawa F-65 sand: laboratory testing and constitutive model calibration." Geotechnical Éarthquake Engineering and Soil Dynamics, vol 293, pp. 180-189

2. Bayesian Parameter Calibration

Results



Step 4: Forward Propagation

Sang-ri Yi, Aakash Bangalore Satish, Pedro Arduino

Uncertainty in response

Results

Nair AS et al. (2021) "Research Experience for Undergraduates (REU), NHERI 2021: Uncertainty Analysis of Seismic Soil Liquefaction using quoFEM." DesignSafe-Cl. [link]

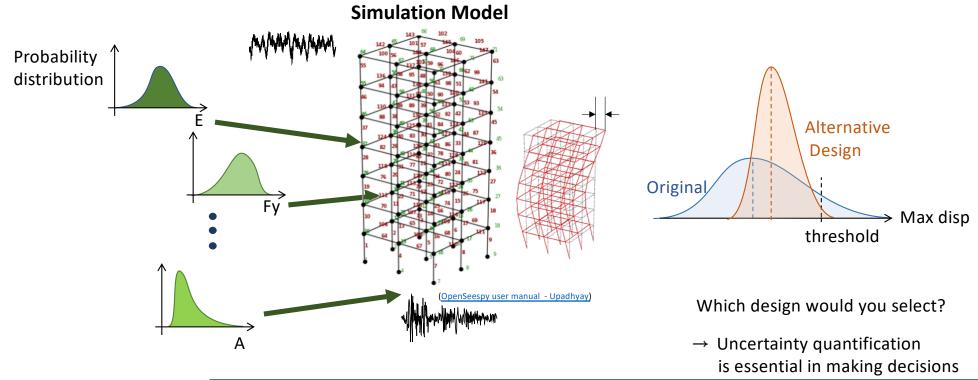
0.4

Demo Using

EXTRA SLIDES ON UQ

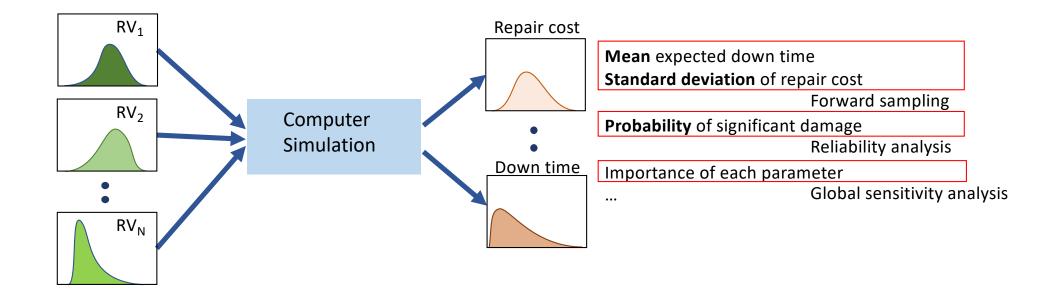
What follows are Extra slides from Aakash and Sang-ri.

Types of UQ

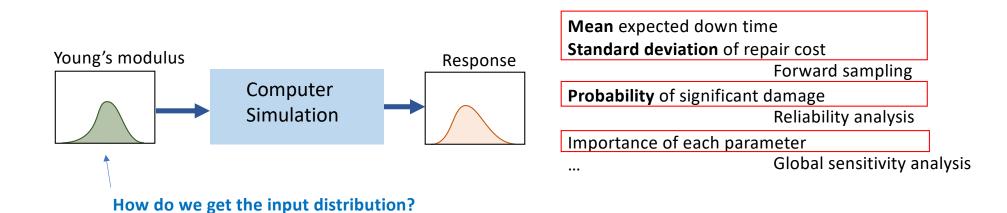

Forward Uncertainty Quantification

Inverse Uncertainty Quantification

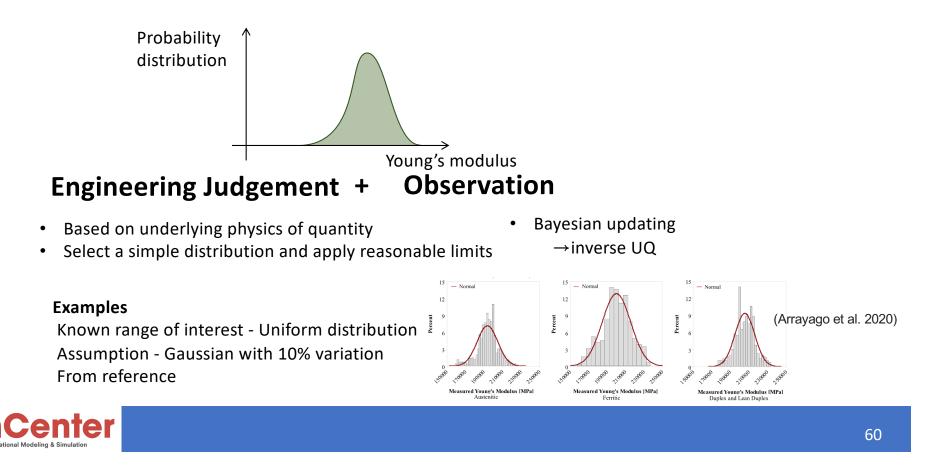
Forward UQ

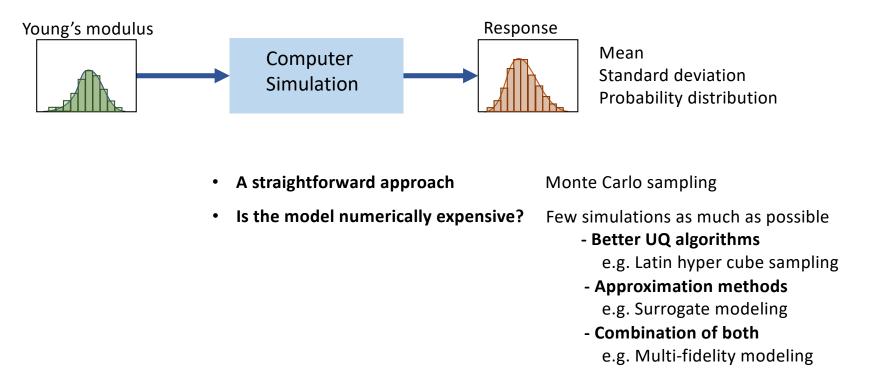

• Propagation of uncertainty from inputs to outputs

Forward UQ


• Based on assumptions on inputs, predict the uncertainty in outputs

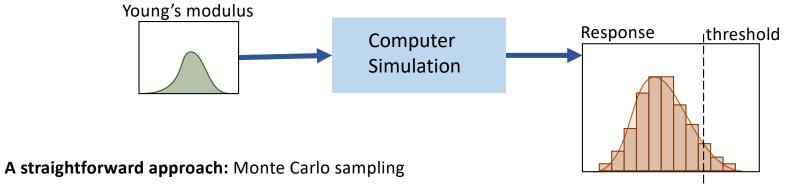
Forward UQ


• Let us first consider single RV / Response


Probability distribution of RV

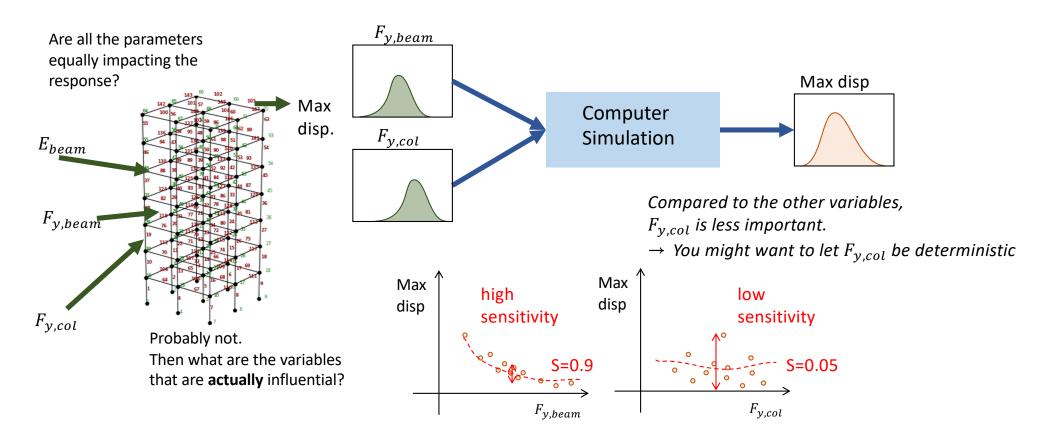
• Everything is **possible** but not everything is **probable**

Forward Propagation


• Based on assumptions on inputs, predict the uncertainty in outputs

Reliability Analysis

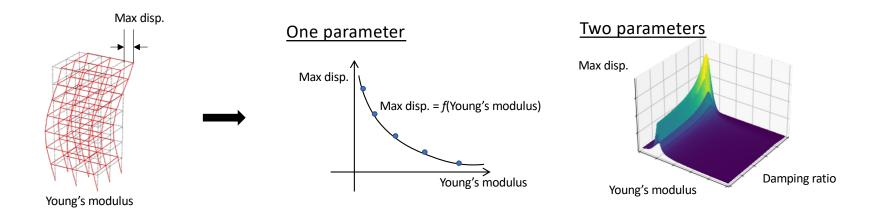
- Probability of the response exceeding a threshold level •
- Important for design decision •



- When the model is expensive & when failure probability is low ٠ It is desirable to reduce the number of simulations
 - $P_f = 10\%$ requires 1000 simulations
 - P_f = 0.001% requires 1000000 simulations

$$c.o.v = \sqrt{\frac{NP_f}{1 - P_f}} < 0.1$$

- To reduce the number of simulations
 - Better UQ algorithms
 - Importance sampling, subset simulation
 - Approximation methods
 - Surrogate modeling, First-order approximations
 - Combination of both


Global Sensitivity Analysis

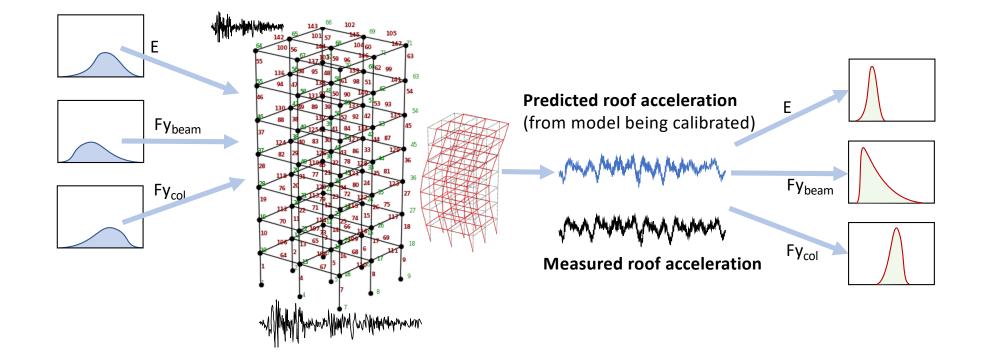
Surrogate modeling

• Response surface representation

- Usually the curve (surface) is very flexible & general Neural networks, Gaussian process model, polynomial chaos...
- Design of experiments are used to reduce the number of simulations

Types of UQ

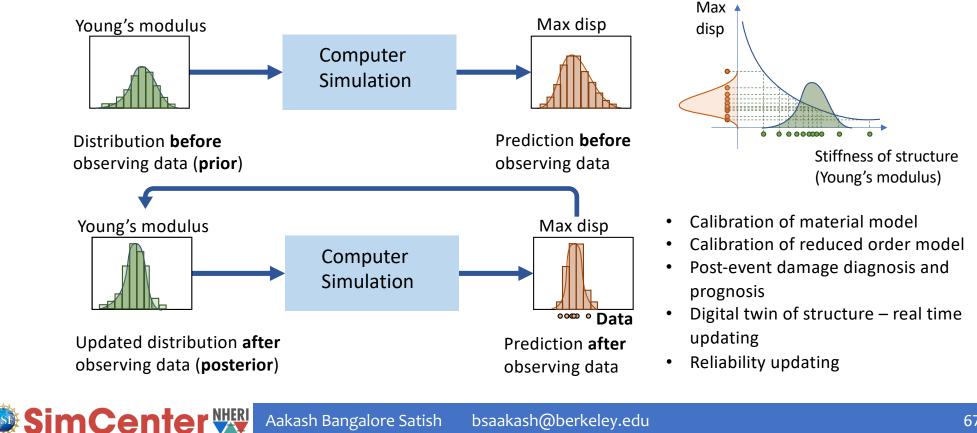
Forward Uncertainty Quantification


Inverse Uncertainty Quantification

bsaakash@berkeley.edu

Inverse UQ

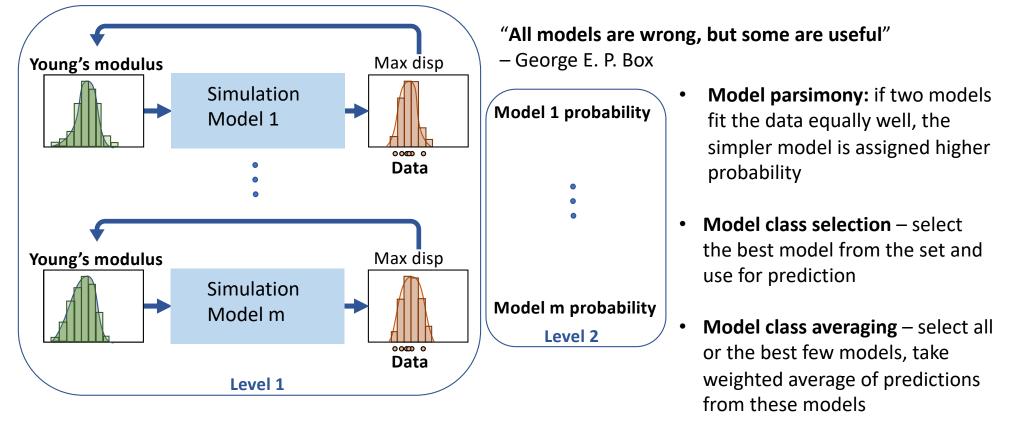
• Based on observed data, update the assumptions about the inputs and/or the model



bsaakash@berkeley.edu

Inverse UQ Methods – Bayesian calibration

Based on observed data, update the distribution of the inputs to be consistent with • the observations

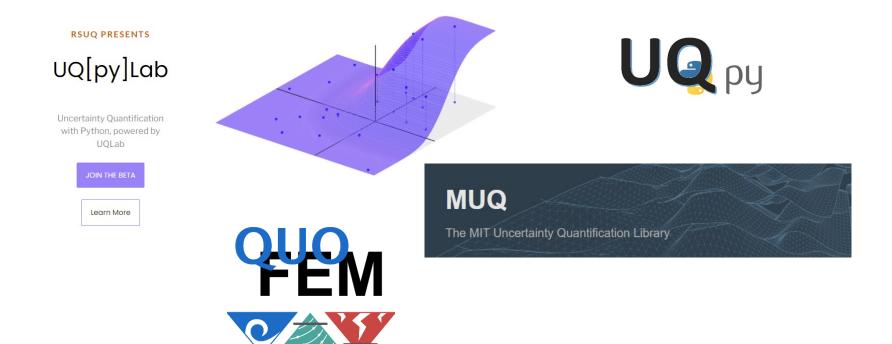

bsaakash@berkeley.edu

Aakash Bangalore Satish

67

Inverse UQ Methods – Model Class Selection / Averaging

• Based on observed data, update the probability of a set of plausible models


🕸 SimCenter 🚟

Aakash Bangalore Satish

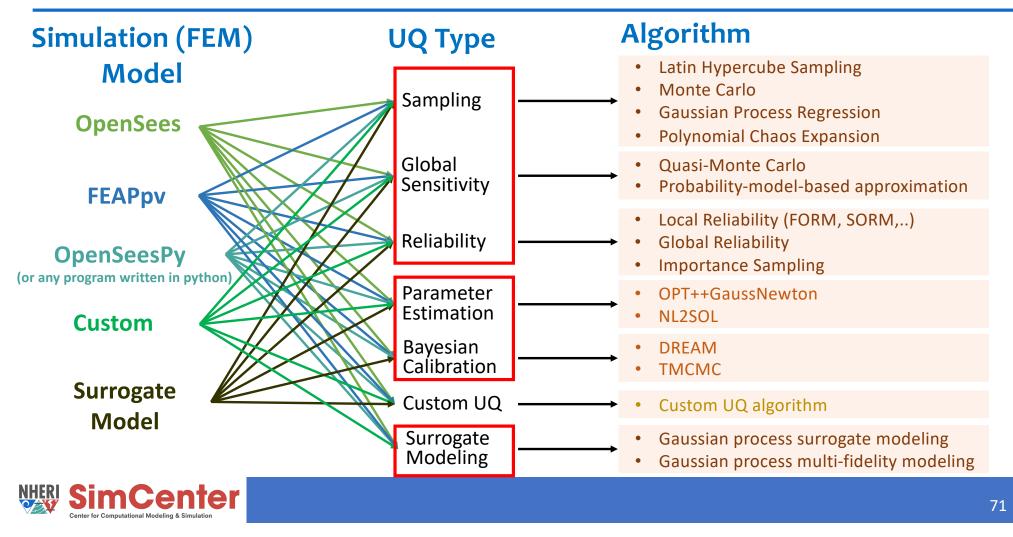
h bsaakash@berkeley.edu

Running UQ

• Toolbox/software packages for UQ analysis

quoFEM

• A software tool with a user interface developed in SimCenter



"You bring the FEM model, we do the rest"

- Need more than what we have?
 - Build your own quoFEM
 Github page: <u>https://github.com/NHERI-SimCenter/quoFEM</u>
 - Tell us what you need SimCenter Forum: http://simcenter-messageboard.designsafe-ci.org/smf/index.php

quoFEM (v.2.4)

juoFEM Appl	ication							 	I	Log
									_	
UQ	UQ Engine Dake	ota		-						
FEM	Dakota Method Category					•	Parallel Execution			
	Method LHS	Forward Propagation Parameters Estimation								
RV	# Samples 500	Inverse Problem Reliability Analysis								
	Seed 482	Sensitivity Analysis								
Qol										
DEC										
RES										
	RUN		RUN at DesignSafe		G	T from DesignSafe		Exit		
n Output										

put.json	E						-		×
View Help	Examples								
uoFEM Appl	lication							Log	ir
UQ	Finite Element Meth	nod Application	OpenSees OpenSees FEAPpv	•					
FEM	Input Script	C:/SimCenter/quoFEM/Exa	OpenSeesPy Custom	:/TrussModel.tcl		Choose			
RV	Postprocess Script	C:/SimCenter/quoFEM/Exa	SurrogateGP amples/qfem-000	L/src/TrussPost.tcl		Choose			
Qol									
RES									
	RUN		RUN at Desig	JnSafe	GET from DesignSafe		Exit		
m Output								é	5
09 - Welcom		ional Trucci Campling, Poli	ability and Consiti	it.					
	Example: Two-Dimens	ional Truss: Sampling, Relia	ability and Sensitiv	vity					

	In	put Random Var	iables		Add	Remove	Correlation Matrix	Export	lmpo	ort				_
UQ FEM		Variable Name	Distribution		Mean	Standard Dev							? X	
RV		E Variable Name P	Lognormal Distribution Normal	<u>•</u>	205 Mean 25	15 Standard Dev 3	Show PDF		te Co	orrelation E	P	Ao	? X	
Qol		r Variable Name Ao	Distribution	• •	Mean 250	Standard Dev	Show PDF			1.0 0.0	0.0 1.0	0.0 0.0	0.0	
RES	0	Variable Name Au	Distribution Normal		Mean 500	Standard Dev 25	Show PDF		Ao Au		0.0 0.0	1.0 0.2	0.2 1.0	
									OK					
		RUN			RUN at Desig	un Carla	017	from DesignSafe					Exit	

uoFEM Applic	cation				
UQ	Quantities of Interest	Add	Remove		
EM	Variable Name Node_3_Disp_2	Length 1			
RV	Variable Name Node_2_Disp_2	Length 1			
Qol					
RES					
		RUN at Desig		GET from DesignSafe	Exit

quoFEM Ap	plication							Log
	Summary Data Value	es						
UQ	Node_3_Disp_2 Sob	ol' indices:						
FEM	Random Variable	Main	Total					
	Р	0.777	0.791	1.00				Main
RV	Au	0.025	0.034	0.50				Total
	E	0.389	0.331	0.00 P	Au	E	Ao	
Qol	Ao	0.068	0.025					
	Node_2_Disp_2 Sob	ol' indices:						
RES	Random Variable	Main	Total					
	Р	0.779	0.791	1.00				 Main
	Au	0.012	0.018	0.50				Total
	E	0.394	0.330	0.00 P	Au	E	Ao	_
	Ao	0.090	0.038					
								Save Resul
							Exit	
	RUN		KUN AC I	DesignSafe	GET from DesignSafe		EXIL	
ram Output								1

