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UW-PEER Structural
Performance Database

Nearly 500 Columns
— spiral or circular hoop-reinforced columns (~180)
— rectangular reinforced columns (~300)

Column geometry, material properties,
reinforcing details, loading

Digital Force-Displacement Histories
Observations of column damage

http://nisee.berkeley.edu/spd

User’s Manual (Berry and Eberhard, 2004)




Objective of Research

Develop, calibrate, and evaluate column modeling
strategies that are capable of accurately
modeling bridge column behavior under seismic
loading.

—Global deformations
—Local deformations (strains and rotations)

—Progression of damage




Advanced Modeling Strategies
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Cross-Section Modeling




Cross-Section Modeling Components

 Concrete Material Model

» Reinforcing Steel
Material Model

» Cross-Section
Discretization Strategy




Concrete Material Model

Popovic’s Curve with Mander et. al. Constants and
Added Tension Component (Concrete04)

-1.6 : : : : ‘ :
-0.03 -0.025 -0.02 -0.015 -0.01 -0.005 0




Reinforcing Steel Material Models

|
Bilinear ! —Measured
Measured | Kunnath

Giufre-Menegotto-Pinto Mohle and Kunnath
(Steel02) (ReinforcingSteel)




Section Fiber Discretization

Objective: Use as few fibers as possible to eliminate the effects
of discretization

Longitudinal Steel
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Cross-Section Fiber Discretization

Uniform (220 Fibers)

Unconfined
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Reduced Fiber Discretization
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Nonuniform Strategies



Cross-Section Fiber Discretization

Uniform (220 Fibers) Reduced (140 Fibers)
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Modeling with Distributed-
Plasticity Element




Force-Based Fiber
Beam Column Element
(Flexure) -

Model Components

Fiber Section at each
integration point with
Aggregated Elastic
Shear

Zero Length Section
(Bond Slip)

Flexure Model (Force-Based
Beam-Column)
nonlinearBeamColumn
Fiber section
Popovics Curve (Mander constants)
Giufre-Menegotto-Pinto (b)
Number of Integration Points (Np)

Anchorage-Slip Model
zerolLengthSection
Fiber section

Reinforcement tensile stress-
deformation response from Lehman
et. al. (1998) bond model (A)

— Effective depth in compression (d,,,,)
Shear Model

— section Aggregator
— Elastic Shear (y)




Model Optimization

» Obijective: Determine model parameters such that the error between
measured and calculated global and local responses are minimized.
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Model Evaluation

116 Lehman Mo 415

Optimized Model:
Strain Hardening Ratio, b = 0.01
Number of Integration Points, N, =5
Bond-Strength Ratio, A = 0.875
Bond-Compression Depth,
d....=1/2 N.A. Depth at 0.002 comp

comp
strain

Shear Stiffness y = 0.4
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Modeling with Lumped-
Plasticity Element




Lumped-Plasticity Model

Hinge Model Formulation:
WL Cron of Beam beamwithHinges3

Force Based Beam Column Element
with Integration Scheme Proposed by
Scott and Fenves, 2006.

Fiber Section

Elastic Section Properties
— Elastic Area, A
— Effective Section Stiffness, El 4

Calculated Plastic-Hinge Length

- L,

Fiber Section assigned
to Plastic Hinge




Section Stiffness Calibration

_ Stiffness Ratio Stats
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Plastic-Hinge Length Calibration
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Cyclic Response




Cyclic Material Response

« Cyclic response of the fiber-column model depends
on the cyclic response of the material models.

Reinforcing Steel Confined and Unconfined Concrete

Giufre-Menegotto-Pinto (with Karsan and Jirsa with Added
Bauschinger Effect) Tension Component
Steel02 Concrete04

« Current Methodologies
— Do not account for cyclic degradation steel
— Do not account for imperfect crack closure




Evaluation of Response

. Distributed-
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Kunnath and Mohle
Steel Material Model

« Cyclic degradation according to Coffin and Manson Fatigue.

 Model parameters:
— Ductility Constant, C;
— Strength Reduction Constant, C,
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Force (KN)

Preliminary Study with Kunnath Steel
Model

Ductility Constant, C,=0.4

Strength Reduction Constant, C_=0.4

Giufre-Menegotto-

Kunnath and

Pinto Mohle
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Continuing Work




Imperfect Crack Closure




Prediction of Flexural Damage

Drift Ratio Equations
Distributed-Plasticity Modeling Strategy
Lumped-Plasticity Modeling Strategy
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Evaluation of Modeling-Strategies for
Complex Loading

‘Bridge Bent (Purdue, 2006)

Unidirectional and Bi-directional Shake Table
(Hachem, 2003)
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