
Experimental Software
Framework
for Hybrid Simulation

With contributions from:

Gregory Fenves, Yoshikazu Takahashi, Frank McKenna

Andreas Schellenberg & Stephen Mahin

Department of Civil and Environmental Engineering
University of California, Berkeley

2

Hybrid Simulation

() ()t⋅ + ⋅ + =rM u C u P u P&& &

physical model of
structural resistance

analytical model of
structural energy dissipation
and inertia

Dynamic Loading
� Seismic
� Wind
� Blast/Impact
� Wave
� Traffic

3

Hybrid Simulation
Model the well understood parts of a
structure in a finite element program on
one or more computers

Leave the construction and testing of the
highly nonlinear and/or numerically hard
to model parts of the structure in one or
more laboratories

Can also be seen as an advanced form of
component testing, where boundary
conditions are correctly imposed

4

Advantages
Enables dynamic
testing of full-scale
specimens

Quasi-static testing
equipment
sufficient

Fewer restrictions
on size, weight
and strength of a
specimen

5

Advantages
Geometric
nonlinearities, three-
dimensional effects,
multi-support
excitations and soil-
structure interactions
can be incorporated
into the analytical
model

P1(t)
P2(t)

P P
∆∆∆∆

Geographically
distributed testing is
made possible

6

Main Challenge
Lack of a common framework for
development and deployment

Problem specific implementations which
are site and control system dependant

Such highly customized software
implementations are difficult to adapt to
different structural problems

Need a robust, transparent, adaptable,
and easily extensible framework for
research and deployment

7

OpenFresco
Open source Framework for Experimental
Setup and Control

Enable domain researchers to carry out
Hybrid Simulations without specialized
knowledge

Allow IT and hybrid simulation specialists
to extend frontiers of methodology,
focusing only on their portions of interest
� Facilitate additions and extensions for new
equipment and procedures

Object-oriented programming approach

8

NEES-Compliant Deployment of OpenFresco

No modification of numerical simulation
framework is needed, other than the addition of
new finite elements representing physical
elements tested

Calls to obtain element stiffness, restoring force
and other parameters made just like they would
be in a numerical analysis, except they are
executed physically somewhere on a local or
wide area network

OpenFresco mediates in a modular and highly
structured manner instructions between
numerical simulation computer(s) and
laboratory equipment

9

OpenFresco Components

FE-Software

Experimental Site

Experimental Setup

Experimental Control

Control System
in Laboratory

interfaces to the
FE-Software, stores
data and facilitates
distributed testing transforms between the

experimental element
degrees of freedom and the
actuator degrees of freedom
(linear vs. non-linear
transformations)

interfaces to the different
control and data acquisition
systems in the laboratories

OpenFresco

local
deployment

10

OpenFresco Components
network

deployment

FE-Software

Exp.Setup

Exp.Control

Control System
in Laboratory

NTCP Server

Control Plugin
with

transformation

Control System
in Laboratory

TCP/IP

NTCP Server

Control System
in Laboratory

ActorExpSite

Exp.Control

Control System
in Laboratory

ActorExpSite

RemoteExpSite NTCPExpSite

Control Plugin
without

tranformation

TCP/IP NTCP NTCP

OpenFresco

OpenFresco OpenFresco

Exp.Setup

RemoteExpSite

Exp.Setup

NTCPExpSite

11

OpenFresco Class Diagram

12

OpenFresco Data Transformation

13

Finite-Element Software
Currently using OpenSees;
however, nearly any software allowing the
addition of elements and having the
appropriate communication channels can
be used

Furthermore, a Matlab client which is able
to interface with OpenFresco is under
development as well

FE-Software

Experimental Site

Experimental Setup

Experimental Control

Control System in Laboratory

FE-Software

14

ModelBuilder Domain Analysis

Recorder

holds the state
of the model at
time ti and ti+dt

constructs the objects
in the model and adds
them to the Domain

moves the model
from state at time ti
to state at time ti+dt

monitors user defined
parameters in the model

during the analysis

ModelBuilder Domain Analysis

Recorder

holds the state
of the model at
time ti and ti+dt

constructs the objects
in the model and adds
them to the Domain

moves the model
from state at time ti
to state at time ti+dt

monitors user defined
parameters in the model

during the analysis

ModelBuilder Domain Analysis

Recorder

holds the state
of the model at
time ti and ti+dt

constructs the objects
in the model and adds
them to the Domain

moves the model
from state at time ti
to state at time ti+dt

monitors user defined
parameters in the model

during the analysis

OpenSees Components
FE-Software

Experimental Site

Experimental Setup

Experimental Control

Control System in Laboratory

FE-Software

Analysis

15

Direct Integration Methods

Mass matrix M is often singular
-> second order differential equation
infinitely stiff -> fully implicit numerical
methods

Make as few function calls as possible

Use constant Jacobian in the numerical
methods since tangent stiffness is not
available

() ()
n

t⋅ + ⋅ + =n n r nM u C u P u P&& &

FE-Software

Experimental Site

Experimental Setup

Experimental Control

Control System in Laboratory

FE-Software

16

Direct Integration Methods
Explicit Integrators

� explicit Newmark Method

� Central-Difference Method

� explicit Alpha-Method

� generalized explicit Alpha-Method

Implicit Integrators

� Newmark Method

� Alpha-Method

� generalized Alpha-Method

� Collocation Method

FE-Software

Experimental Site

Experimental Setup

Experimental Control

Control System in Laboratory

FE-Software

17

Direct Integration Methods
Implicit Integrators with
sub-stepping (constant number)

� Newmark-HybridSimulation Method

� generalized Alpha-HybridSimulation Method

� Collocation-HybridSimulation Method

Predictor-Corrector Integrators

� Alpha-OS Method

� generalized Alpha-OS
Method

FE-Software

Experimental Site

Experimental Setup

Experimental Control

Control System in Laboratory

FE-Software

18

Hybrid Simulation Procedure
FE-Software

Experimental Site

Experimental Setup

Experimental Control

Control System in Laboratory

FE-Software

19

ModelBuilder Domain Analysis

Recorder

holds the state
of the model at
time ti and ti+dt

constructs the objects
in the model and adds
them to the Domain

moves the model
from state at time ti
to state at time ti+dt

monitors user defined
parameters in the model

during the analysis

ModelBuilder Domain Analysis

Recorder

holds the state
of the model at
time ti and ti+dt

constructs the objects
in the model and adds
them to the Domain

moves the model
from state at time ti
to state at time ti+dt

monitors user defined
parameters in the model

during the analysis

ModelBuilder Domain Analysis

Recorder

holds the state
of the model at
time ti and ti+dt

constructs the objects
in the model and adds
them to the Domain

moves the model
from state at time ti
to state at time ti+dt

monitors user defined
parameters in the model

during the analysis

OpenSees Components
FE-Software

Experimental Site

Experimental Setup

Experimental Control

Control System in Laboratory

FE-Software

Domain

20

OpenSees Components

Element

Domain

MP_ConstraintNode SP_Constraint

ExperimentalElement

OpenFRESCO
Control System
in Laboratory

FE-Software

Experimental Site

Experimental Setup

Experimental Control

Control System in Laboratory

FE-Software

BeamColumn

21

Experimental Elements
1) EETruss (2D,3D)

$eleTag unique element tag
$iNode,$jNode end nodes
$siteTag tag of previously

defined site object
$Kij initial stiffness matrix

element (1 x 1)
-iMod flag for I-Modification

(optional, default=false)
$rho mass per unit length

(optional, default=0.0)

element expTruss $eleTag $iNode $jNode $siteTag

-initStif $Kij <-iMod> <-rho $rho>

FE-Software

Experimental Site

Experimental Setup

Experimental Control

Control System in Laboratory

FE-Software

i

j

∆x

∆
y

d1, q1

controlled displacements
and acquired forces

22

Experimental Elements
2) EEBeamColumn (2D,3D)

$eleTag unique element tag
$iNode,$jNode end nodes
$siteTag tag of previously

defined site object

$tranTag tag of previously

defined crd-transf object
$Kij initial stiffness matrix

elements (ndf x ndf)
-iMod flag for I-Modification

(optional, default=false)
$rho mass per unit length

(optional, default=0.0)

element expBeamColumn $eleTag $iNode $jNode

$siteTag $tranTag -initStif $Kij <-iMod>

<-rho $rho>

i

j

∆x
∆

y

d1, q1
d2, q2

d3, q3

controlled displacements
and acquired forces

FE-Software

Experimental Site

Experimental Setup

Experimental Control

Control System in Laboratory

FE-Software

23

Experimental Elements
3) EEZeroLength (2D,3D)

$eleTag unique element tag
$iNode,$jNode end nodes
$siteTag tag of previously

defined site object

$dirs force directions (1-3,1-6)
$Kij initial stiffness matrix

elements (nDir x nDir)
-iMod flag for I-Modification

(optional, default=false)
$xi, $yi local x- and y-axis

(optional, default=X,Y)

element expZeroLength $eleTag $iNode $jNode $siteTag

-dir $dirs -initStif $Kij <-iMod>

<-orient $x1 $x2 $x3 $y1 $y2 $y3>

i
j

d1, q1
d2, q2

d3, q3

controlled displacements
and acquired forces

FE-Software

Experimental Site

Experimental Setup

Experimental Control

Control System in Laboratory

FE-Software

24

Experimental Elements
4) EEChevronBrace (2D,3D)

$eleTag unique element tag
$iNode,$jNode end nodes
$kNode

$siteTag tag of previously

defined site object
$Kij initial stiffness matrix

elements (ndf x ndf)
-iMod flag for I-Modification

(optional, default=false)
$rho1,$rho2 masses per unit length

(optional, default=0.0)

element expChevronBrace $eleTag $iNode $jNode

$kNode $siteTag -initStif $Kij <-iMod>

<-rho1 $rho1> <-rho2 $rho2>

FE-Software

Experimental Site

Experimental Setup

Experimental Control

Control System in Laboratory

FE-Software

i j

k

∆x1 ∆x2

∆
y

d6, q6

d7, q7

d8, q8

d5, q5

d4, q4

d3, q3d0, q0

d1, q1

d2, q2

controlled displacements

acquired forces acquired forces

25

Adding Experimental Elements
Public Member Functions

Constructor and Destructor
 ExperimentalElement(int tag, int classTag, ExperimentalSite &theSite);

 virtual ~ExperimentalElement();

Methods dealing with nodes and number of external dof
 virtual int getNumExternalNodes(void) const = 0;

 virtual const ID &getExternalNodes(void) = 0;

 virtual Node **getNodePtrs(void) = 0;

 virtual int getNumDOF(void) = 0;

Method to obtain basic dof size; equal to the max num dof that can be controlled
 virtual int getNumBasicDOF(void) = 0;

Methods dealing with committed state and update
 virtual int commitState(void);

 virtual int update(void);

 virtual bool isSubdomain(void);

Methods to set and to obtain the initial stiffness matrix
 virtual int setInitialStiff(const Matrix& stiff) = 0;

 const Matrix &getInitialStiff(void);

Methods to return the damping and mass matrices
 virtual const Matrix &getDamp(void);

 virtual const Matrix &getMass(void);

Methods for applying loads
 virtual void zeroLoad(void) = 0;

 virtual int addLoad(ElementalLoad *theLoad, double loadFactor) = 0;

 virtual int addInertiaLoadToUnbalance(const Vector &accel) = 0;

virtual int setRayleighDampingFactors(double alphaM, double betaK, double betaK0, double

betaKc);

Methods for obtaining resisting force (force includes elemental loads)
 virtual const Vector &getResistingForce(void) = 0;

 virtual const Vector &getResistingForceIncInertia(void);

Methods for obtaining information specific to an element
 virtual Response *setResponse(const char **argv, int argc, Information &eleInformation);

 virtual int getResponse(int responseID, Information &eleInformation);

int update()

int setInitialStiff()

const Vector

&getResistingForce()

FE-Software

Experimental Site

Experimental Setup

Experimental Control

Control System in Laboratory

FE-Software

26

Adding Experimental Elements
FE-Software

Experimental Site

Experimental Setup

Experimental Control

Control System in Laboratory

FE-Software

27

Experimental Setups
1) ESNoTransformation

$tag unique setup tag
$ctrlTag tag of previously

defined control object
$dirs directions (1-6)

expSetup NoTransformation $tag $ctrlTag –dir $dirs

<-dspCtrlFact $dspCF> ...

FE-Software

Experimental Site

Experimental Setup

Experimental Control

Control System in Laboratory

Experimental Setup

28

Experimental Setups
2) ESOneActuator

$tag unique setup tag
$ctrlTag tag of previously

defined control object
$dir direction (1-6)

expSetup OneActuator $tag $ctrlTag $dir

<-dspCtrlFact $dspCF> ...

FE-Software

Experimental Site

Experimental Setup

Experimental Control

Control System in Laboratory

Experimental Setup

29

Experimental Setups
3) ESTwoActuators

$tag unique setup tag
$ctrlTag tag of previously

defined control object
$nlGeomFlag nonlinear geometry flag
$La0 length of actuator 0
$La1 length of actuator 1
$L length of rigid link

expSetup TwoActuators $tag $ctrlTag $nlGeomFlag

$La0 $La1 $L <-dspCtrlFact $dspCF> ...

FE-Software

Experimental Site

Experimental Setup

Experimental Control

Control System in Laboratory

Experimental Setup

30

Experimental Setups
4) ESThreeActuators

$tag unique setup tag
$ctrlTag tag of previously

defined control object
$nlGeomFlag nonlinear geometry flag
$La0 length of actuator 0
$La1 length of actuator 1
$La2 length of actuator 2
$L0 length of rigid link 0
$L1 length of rigid link 1

expSetup ThreeActuators $tag $ctrlTag $nlGeomFlag

$La0 $La1 $La2 $L0 $L1

<-dspCtrlFact $dspCF> ...

FE-Software

Experimental Site

Experimental Setup

Experimental Control

Control System in Laboratory

Experimental Setup

31

Experimental Setups
5) ESChevronBraceJntOff

$tag unique setup tag
$ctrlTag tag of previously

defined control object
$nlGeomFlag nonlinear geometry flag
$La0 length of actuator 0
$La1 length of actuator 1
$La2 length of actuator 2
$L0 length of rigid link 0
$L1 length of rigid link 1
$L2 length of rigid link 2
$L3 length of rigid link 3
$L4 length of rigid link 4

expSetup ChevronBraceJntOff $tag $ctrlTag

$nlGeomFlag $La0 $La1 $La2 $L0 $L1 $L2 $L3

$L4 <-dspCtrlFact $dspCF> ...

L0
L1

L2
L3

L
4

Actuator 0: LA0

A
c
tu

a
to

r
1

:
L

A
1

A
c
tu

a
to

r
2
:

L
A

2

L0
L1

L2
L3

L
4

Actuator 0: LA0

A
c
tu

a
to

r
1

:
L

A
1

A
c
tu

a
to

r
2
:

L
A

2

FE-Software

Experimental Site

Experimental Setup

Experimental Control

Control System in Laboratory

Experimental Setup

32

Adding Experimental Setups

int propose()

int acquire()

Public Member Functions

Constructor and Destructor
 ExperimentalSetup(int tag, ExperimentalControl& theControl);

 ExperimentalSetup(const ExperimentalSetup& es);

 virtual ~ExperimentalSetup();

Methods dealing with data sizes
 void setElmtDataSize(int s);

 int getElmtDataSize();

 void setCtrlDataSize(int s);

 int getCtrlDataSize();

 void setDaqDataSize(int s);

 int getDaqDataSize();

Methods dealing with execution and acquisition
 virtual int setup() = 0;

 virtual int propose(const Vector& dsp, const Vector& vel, const Vector& acc) = 0;

 virtual int execute() = 0;

 virtual int commitState() = 0;

 virtual int acquire() = 0;

Methods to obtain the response
 const Vector& getDisp();

 const Vector& getVel();

 const Vector& getAccel();

 const Vector& getForce();

Methods to set the control and data acquisition factors
 void setDspCtrlFactor(const Vector& f);

 void setVelCtrlFactor(const Vector& f);

 void setAccCtrlFactor(const Vector& f);

 void setDspDaqFactor(const Vector& f);

 void setFrcDaqFactor(const Vector& f);

Method to get a copy
 virtual ExperimentalSetup *getCopy (void) = 0;

FE-Software

Experimental Site

Experimental Setup

Experimental Control

Control System in Laboratory

Experimental Setup

33

Adding Experimental Setups
FE-Software

Experimental Site

Experimental Setup

Experimental Control

Control System in Laboratory

Experimental Setup

34

Experimental Controls
1) ECdSpace

$tag unique control tag
$numSetups number of setups
“type” predictor-corrector type
“boardName” name of dSpace board

expControl dSpace $tag $numSetups “type”

“boardName”

FE-Software

Experimental Site

Experimental Setup

Experimental Control

Control System in Laboratory

Experimental Control

35

Experimental Controls
2) ECxPCtarget

$tag unique control tag
$numSetups number of setups
$type predictor-corrector type
“ipAddr” IP address of xPC Target
“ipPort” IP port of xPC Target
“appName” name of Simulink

application to be loaded
“appPath” path to Simulink

application

expControl xPCtarget $tag $numSetups $type “ipAddr”

“ipPort” “appName” “appPath”

FE-Software

Experimental Site

Experimental Setup

Experimental Control

Control System in Laboratory

Experimental Control

36

Experimental Controls
3) ECScramNet

$tag unique control tag
$numSetups number of setups

...

expControl ScramNet $tag $numSetups ...

under development

FE-Software

Experimental Site

Experimental Setup

Experimental Control

Control System in Laboratory

Experimental Control

37

Experimental Controls
4) ECNIEseries

$tag unique control tag
$numSetups number of setups
$device id of device

expControl NIEseries $tag $numCtrl $device

FE-Software

Experimental Site

Experimental Setup

Experimental Control

Control System in Laboratory

Experimental Control

38

Adding Experimental Controls

ExperimentalControl()

int execute()

int acquire()

FE-Software

Experimental Site

Experimental Setup

Experimental Control

Control System in Laboratory

Experimental Control

int setup()

Public Member Functions

Constructor and Destructor
 ExperimentalControl(int tag, int nCtrl, int nDaq);

 ExperimentalControl(const ExperimentalControl& ec);

 virtual ~ExperimentalControl();

Methods dealing with data sizes
 int getCtrlDataSize();

 int getDaqDataSize();

Methods to set and obtain the responses
 virtual int setup() = 0;

 virtual int execute(const Vector& dsp, const Vector& vel, const Vector& acc) = 0;

 virtual int commitState();

 virtual int acquire(Vector *dspDaq, Vector *frcDaq) = 0;

Method to add a data filter
 void addFilter(SignalFilter& f);

Method to get a copy
 virtual ExperimentalControl *getCopy (void) = 0;

39

Adding Experimental Controls
FE-Software

Experimental Site

Experimental Setup

Experimental Control

Control System in Laboratory

Experimental Control

40

Conclusions
Environment-independent framework for
development and deployment will boost
the use of hybrid simulation (on-site and
tele-operation)

Modularity and transparency of the
framework permits existing components
to be modified and new components to
be added without much dependence on
other objects.

� Speed development of refined hybrid
simulation procedures

41

Conclusions
Large library of hybrid simulation direct
integration methods, experimental
elements, controller models, and event-
driven solution strategies will be available
to the user to choose from or adapt.

Need:
� User-community input of parameter passage
and features

� User feedback

� NEESit assistance in streamlining network
communications

Thank you!

Development and operation of the nees@berkeley Equipment
Site is sponsored by NSF George E. Brown Jr. NEES grants.

http://nees.berkeley.edu

