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Elastic
Elastic—Plastic Continuum Models
Small Deformation Elastic—Plastic Multiaxial and Uniaxial

Elastic Mate

o Small deformation elasticity
o linear isotropic
o nonlinear isotropic
o Cross anisotropic

o Large deformation hyperelasticity

o Neo—-Hookean
Ogden
Logarithmic
Mooney-Rivlin
Simo—Pister

©

© ©0 ©



Elastic
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Elastic—Plasti
Deformations

o Yield surfaces:

o von Mises
o Drucker—Prager
o Cam—-Clay
o Rounded Mohr—Coulomb
o Parabolic Leon
o Plastic flow directions (plastic potential functions):
o von Mises
o Drucker—Prager
o Cam-Clay
o Rounded Mohr—Coulomb
o Parabolic Leon
o Dafalias Manzari
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Elastic—Plastic Continuum Models: Small
Deformations (continued)

@ Evolution Laws (hardening and/or softening laws):

o linear scalar,
o nonlinear scalar (Cam—Clay type),
o linear tensorial (kinematic hardening/softening:
translational and/or rotational)
o nonlinear tensorial (kinematic hardening/softening:
translational and/or rotational)
o Armstrong—Frederick hardening
o bounding surface hardening/softening
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Hyperelastic—Plastic Continuum Models: Large
Deformations

o Yield surfaces
o von Mises,
o Drucker—Prager...
@ Plastic flow directions (plastic potential functions):
o Drucker—Prager,
o von Mises,
o Evolution Laws:

o linear and nonlinear scalar,

o nonlinear scalar

o linear and nonlinear (AF) tensorial (kinematic
hardening/softening: translational and/or rotational)
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Elastic
Elastic—Plastic Continuum Models
Small Deformation Elastic—Plastic Multiaxial and Uniaxial

Elastic—Plasti

o Generalized foundation rocking material (M, N, T) model
o 2D frictional contact material model
o P-Y spring response material model



Single Phase
Multi Phase Finite Elements, Coupled

o Small deformation solid elements, bricks (8, 20, 21, 27,
8-20 variable node bricks)

o Large deformation (total Lagrangian) solid elements, bricks
(20 node brick)
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Multi Phase Formulations

Single Phase
Multi Phase Finite Elements, Coupled

o Fully coupled, u—p—U elements (3D) for small deformations
o Fully coupled, u—p (3D) elements for small deformations
o Fully coupled u—p (3D) elements for large deformations

Degrees of freedom (DOFs) are:

@ u — solid displacements,
@ p — pore fluid pressures,
@ U — pore fluid displacements
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Solution Control
Seismic Loading Application
High Performance Computing
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Solution Control
Seismic Loading Application
High Performance Computing

Domain Red
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Plastic Domain Decomposition

@ Graph partitioning — balance multiple phases
simultaneously, while also minimizing the inter-processor
communications costs

@ It is a multi-objective optimization problem (minimize both
the inter-processor communications, the data redistribution
costs and create balanced partitions)

o Take into the account (deterministic or probabilistic):

o heterogeneous element loads that change in each iteration

o heterogeneous processor performance (multiple
generations nodes)

o inter-processor communications (LAN or WAN)

o data redistribution costs
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Detailed 3D, FEM model

Material Models
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Summary

@ Construction process
Two types of solil: stiff soil (UT, UCD), soft soil (Bay Mud)
Deconvolution of given surface ground motions
Use of the DRM (Prof. Bielak et al.) for seismic input
Piles — beam-column elements in soil holes
Structural model developed at UCB (Prof. Fenves et al.)
Element size issues (filtering of frequencies)
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Soil Foundation Structure Interaction
Behavior of Saturated Soils
SFSI in Laterally Spreading Grounds

model size | el. size | fouo | Min. G/Gmax y
12K 1.0m | 10 Hz 1.0 <0.5 %
15K 09m | >3Hz 0.08 1.0%
150K 0.3m | 10 Hz 0.08 1.0 %
500K 0.15m | 10 Hz 0.02 5.0 %
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FEM Mesh (one of)
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Acceleration Time Series - Input Motion (NORTHRIDGE EARTHQUAKE, 1994)
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Soil Foundation Structure Interaction
Behavior of Saturated Soils
SFSlin Laterally Spreading Grounds

Displacement Time Series of Soil Block 1
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Displacement Time Series of Bent1
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Soil Foundation Structure Interaction
Behavior of Saturated Soils
SFSlin Laterally Spreading Grounds

Moment Red
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Material Level:

Toyoura Sand,
Drained Triaxial Tests:

Experimental Data (left)
(Verdugo and Ishihara 1996)

Numerical Results (right)
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Soil Foundation Structure Interaction
Behavior of Saturated Soils
SFSlin Laterally Spreading Grounds
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Soil Foundation Structure Interaction
Behavior of Saturated Soils
SFSlin Laterally Spreading Grounds

Failure Mod

o Influence of crust failure mode on piles

o Can we help the SFS system survive?

Side view
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Soil Foundation Structure Interaction
Behavior of Saturated Soils
SFSl in Laterally Spreading Grounds

Liquefied Soil Flows Around Piles

@ Influence of liquefied soll
flow on piles

o Need to understand
the mechanics

o Can we help the SFS
system survive?
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Summary

o A number of simplistic and advanced models, elements
and procedures are available for use in simulations

o Targeting both

o advanced geomechanics problems
o practical geotechanicsl problems

o Theories, formulations, implementation details, as well as
verification, validation and application examples are
available at:
http://sokocalo.engr.ucdavis.edu/ “jeremic/
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