A CYCLIC SOIL MODEL AND ITS APPLICATION IN SOIL-PIER INTERACTION UNDER AXIAL LOADING

Gang Wang and Nicholas Sitar
Dept. of Civil and Environ. Eng.
University of California at Berkeley

OpenSees Developer Symposium August 24, 2005
Dynamic Soil-Pile-Structure System

System Response

* Structure Stiffness
* Foundation Stiffness
 - Loading Type
 - Soil Properties
 - Installation
* Energy Dissipation
 - Viscous Damping
 - Hysteretic Damping
 - Radiation Damping

Shear Wave
Nonlinear Cyclic Soil Response

- Modulus Reduction
- Hysteretic Damping
- Strength
Bounding Surface Cyclic Soil Model (R. Borja) --- Hardening Rule

Constitutive Eqn.

\[\dot{o} = K \tau \dot{\varepsilon} + 2\mu \left(1 + \frac{3\mu}{H} \right)^{-1} \dot{\varepsilon}' \]

\[H' = H_0 \]

\[H' = h \kappa^m + H_0 \]

\[\kappa = \frac{\dot{o}' - o'}{o' - o'_0} \]
Bounding Surface Cyclic Soil Model
--- Loading/Unloading Criterion
Bounding Surface Cyclic Soil Model
--- Unloading
Bounding Surface Cyclic Soil Model
--- Hardening of the Bounding Surface
nDMaterial MultiaxialCyclicPlasticity
$matTag$rhovG_{max}SuHohm$beta$Ko

- $matTag$: Material ID
- rho: Soil density
- v: Poisson’s ratio
- G_{max}: Small strain shear modulus
- Su: Undrained shear strength
- Ho: Hardening modulus of bounding surface
- h: Exponential hardening parameter
- m: Exponential hardening parameter
- $beta$: Integration parameter (0.5)
Parameter Determination

- Material Density

- Elastic Parameters

 \[G_{max} = \rho V_s^2 \]

 Vs: shear wave velocity profile

 \[\nu \]

 Poisson’s ratio

- Undrained Shear Strength

 \[S_u \]

 From Unconfined Compression Test

 or SPT correlation

- Hardening Parameters

 \[h, m \]

 Fit modulus reduction curves

 \[H_0 \]

 Fit tangential shear modulus at large strain
Fit Modulus Reduction Curves

$G = 1.67 \times 10^5$ KPa

$\nu = 0.49$ $m = 0.8$

$Su = 100$ KPa

$h/G_{max} = 0.3$

$h/G_{max} = 0.7$

$h/G_{max} = 1.0$

$h/G_{max} = 2.0$

$h/G_{max} = 10$

$m = 0.8$

$G = 1.67 \times 10^5$ KPa

$\nu = 0.49$ $h/G_{max} = 0.3$

$Su = 100$ KPa

τ

γ

10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^0

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1.5×10^5

$10^{-0.01}$ $10^{-0.005}$ 0.005 0.01

-1.5 -1 -0.5 0.5 1 1.5

OPENSEES DEVELOPER SYMPOSIUM
Dynamic Pier Load Test (PLT)
PLT Test

- Force Pile head Disp.
- PLT Test
- Spring
- Pile head Disp.
- Load Cell
- Pile
- time

OPENSEES DEVELOPER SYMPOSIUM
PLT Test and Static Compression (Pier A1-19)
Comparison of Dynamic and Static Stiffness

![Graph showing comparison between dynamic and static stiffness](image)

- **Static**
- **Dynamic**

Axial Load (kips) vs. Displacement (inch)
Axially Loaded Pier in Nonlinear Soil
Shear Wave Velocity Profiles
Undrained Shear Strength Profile
Modulus Reduction Curves

- **Modulus Ratio G/Gmax**
- **Shear Strain \(\gamma \) [%]

- Static
- Dynamic

- \(P_l = 30 \)
- \(P_l = 15 \)
- \(P_l = 0 \)
Finite Element Simulation (Pier A1-19 PLT)

- System stiffness
- Dynamic capacity
- Energy dissipation
- Permanent disp.

Displacement (inch) vs. Axial Load (kips) graph with markers for Finite Element and PLT Test.
Finite Element Simulation (Pier A1-19 PLT)

Top Node Reaction

A Sample Element Reaction
Finite Element Simulation (Pier A1-20A PLT)

Displacement (inch) vs. Axial Load (kips)
Finite Element Simulation (Pier A1-19 Static Compression Test After PLT)
Vertical Displacement Field

Deformed Mesh (× 10)
Vertical Stress Field

Shear Stress Field
SUMMARY

• The nonlinear finite element and cyclic soil model we developed has successfully captured the pier-soil system stiffness, capacity and energy dissipation for the dynamic and static loadings.

• The nonlinear cyclic soil model has been implemented in OpenSees, and it is ready to be used in a three dimensional fully coupled nonlinear soil-structure analysis.

 OpenSees/…./nDMaterial/cyclicSoil/
ACKNOWLEDGEMENTS

PACIFIC EARTHQUAKE ENGINEERING RESEARCH CENTER (PEER) NSF AWARD NO. EEC-9701568

OPENSEES -- OPEN SYSTEM FOR EARTHQUAKE ENGINEERING SIMULATION
http://opensees.berkeley.edu