Stress Density Material
- Command_Manual
- Tcl Commands
- Modeling_Commands
- model
- uniaxialMaterial
- ndMaterial
- frictionModel
- section
- geometricTransf
- element
- node
- sp commands
- mp commands
- timeSeries
- pattern
- mass
- block commands
- region
- rayleigh
 
- Analysis Commands
- Output Commands
- Misc Commands
- DataBase Commands
 
This command is used to construct a multi-dimensional stress density material object for modeling sand behaviour following the work of Cubrinovski and Ishihara (1998a,b).
| nDMaterial StressDensity $matTag $mDen $eNot $A $m $nu $a1 $b1 $a2 $b2 $a3 $b3 $fd $muNot $muCyc $sc $M $patm <$ssl1 $ssl2 $ssl3 $ssl4 $ssl5 $ssl6 $ssl7 $ssl8 $ssl9 $ssl10 $hsl $p1 $p2 $p3 $p4 $p5 $p6 $p7 $p8 $p9 $p10> | 
| $matTag | integer tag identifying material | 
| $mDen | mass density | 
| $eNot | initial void ratio | 
| $A | initial bulk modulus | 
| $m | overconsolidation ratio | 
| $nu | Poisson's ratio | 
| $a1 | peak stress ratio coefficient (etaMax = a1 + b1*Is) | 
| $b1 | peak stress ratio coefficient (etaMax = a1 + b1*Is) | 
| $a2 | max shear modulus coefficient (Gn_max = a2 + b2*Is) | 
| $b2 | max shear modulus coefficient (Gn_max = a2 + b2*Is) | 
| $a3 | min shear modulus coefficient (Gn_min = a3 + b3*Is) | 
| $b3 | min shear modulus coefficient (Gn_min = a3 + b3*Is) | 
| $fd | degradation constant | 
| $muNot | dilatancy coefficient (monotonic loading) | 
| $muCyc | dilatancy coefficient (cyclic loading) | 
| $sc | dilatancy strain | 
| $M | critical state stress ratio | 
| $patm | atmospheric pressure (in appropriate units) | 
| $ssl1 | void ratio of quasi steady state (QSS-line) at pressure $p1 | 
The material formulations for the StressDensity object are "ThreeDimensional" and "PlaneStrain"
Code Developed by Saumyashuchi Das, University of Canterbury. Maintained by Chris McGann
General Information
This nDMaterial object provides the