=~
PEIPEES

e

Parallel Computing

Frank McKenna
UC Berkeley

OpenSees Parallel Workshop
Berkeley, CA

h

NEES

Overview

Introduction to Parallel Computers

Parallel Programming Models

Race Conditions and Deadlock Problems

Performance Limits with Parallel Computing

Writing Parallel Programs

What is a Parallel Computer?

* A parallel computer is a collection of processing
elements that cooperate to solve large problems fast.

Po P1 . . . PN-1

communication ~

File
System

Memory Memory File
System

Why should you care?

* They will save you time
* They will allow you to solver larger problems.

* They are here whether you like it or not!

DOE/NNSALAN! P =1 Oph e
United States 129600 1105.00 1456.70 2483.47

150152 1059.00 1381.40 6950.60
51200 487.01 60883 2090.00

212002 47820 59638 232960

163840 450.30 557.06 1260.00
2,
62976 43320 579.38 2000.00

38642 26630 35551 1150.00

30976 20500 26020 1580.71

36208 20420 28400 2506.00

10,000,000

Revolution is Happening Now

* Chip density is
continuing increase ~2x
every 1.5-2 years
(Moore’s law) 100,000

— Clock speed is not

1,000,000

— Number of 19,000
processor cores
may double instead 1,000
* There is little or no
more hidden parallelism 100
(ILP) to be found
* Parallelism must be 10
exposed to and
managed by software 1
Source: Intel, Microsoft (Sutter) and
Stanford (Olukotun, Hammond) o

1970

® I = Transistors (000) |

Tl T f Ol
| | # Clock Speed (MHz)
5 .‘ | A' 4Power (W)
|

@ Perf/Clock (ILP)

1975 1980 1985 1990 1995 2000 2005 2010

Parallel Machine Classification

* Parallel machines are grouped into a number of

types

Scalar Computers (single processor system with pipelining, eg Pentium4)
Parallel Vector Computers (pioneered by Cray)

1.

2.

3. Symmetric Multiprocessor (Shared Memory)
4. Distributed Systems (Distributed Memory)

1. Cluster

2. MPP (massively parallel processor)

3. Grid.

5. Hybrid Systems.

Shared Memory

CPU CPU

Memory
CPU CPU

* Processors operate independently but all access the same memory.
 Changes by one processor to memory can be seen by all.
* Access to this memory can be uniform (UMA) or non-uniform

(NUMA).

* Cache can be either shared or distributed. (multi-core typically
shared L2). Cache hit is better if distributed but then the cache must

be coherent.

Distributed Memory

» Processors operate independently, ’CPU

each has it’s own private memory.

Mem ‘

’ CPU | Mem ‘

» Data must be shared using the
communication network. ’ CPU

1. Specialized network - MPP
2. Commodity network - Cluster
3. Internet - Grid

Hybrid System o=

*With new multi-core systems cPU

distributed memory processors

Mem ‘ ’ CPU Mem‘
CPU CPU
Mem Mem
CPU
Mem Gt Mem
CPU CPU

combination of shared and distributed
memory.

Cluster Systems Dominate Top500

CPU CcPU CPU CPU
Mem Mem Mem Mem
CPU CPU CPU CPU
Network
Switch
CPU CPU CPU CPU
Mem Mem Mem Mem
CPU CPU CPU CPU

» Network Switch on faster machines are Gigabit
Ethernet, Myrinet or Infiniband

* 82% of current top 500 () are
designated cluster machines.

* 50% of current Top 500 use intel quad core
processors

g 500 www.Top500.0rg

SUPERCOMPUTER SITES

Architecture Share Over Time

1993-2008
500
400
MPP
g 300 Cluster
(5] W smpP
]
£ Constellations
Y 500 M Single Processor
M Others
100
0("1 T WL ON OO =~ N MO TN O
OO OO OO O OO0 OO0 O O OO
DO OO O OO O OO0 O OO0 O OO
ﬁﬁﬁﬁﬁﬁﬁ NN AN AN NN NN
N A A
W WO O W W W W W WW W WW W W WO
OO0 OO0 O 00 O 00 O OO0 O oo
TOP500 Releases

Parallel Programming Models

*A Programming Model provides an abstract conceptual view of
the structure and operation of a computing system. A computer
language and system libraries provide the programmer with this
programming model.

* For parallel programming there are currently 2 dominant models:

1. Shared Memory: The running program is viewed as a
collection of processes (threads) each sharing it’s virtual
address space with the other processes. Access to shared data
must be synchronized between processes to avoid race
conditions.

2. Message Passing:The running program is viewed as a
collection of independent communicating processes. Each

process executes in it’s own address space, has it’s own unique
identifier and is able to communicate with the other processes.

Shared Memory Programming

*Program is a collection of threads.

*Each thread has it’s own private data, e.g. local stack.

*Each thread has access to shared variables, e.g.static variables
and heap.

*Threads communicate by writing and reading shared variables.
*Threads coordinate by synchronizing using mutex’s (mutual
exclusion objects) on shared variables.

*Examples: Posix Threads (PThreads), OpenMP.

intn double sum doublea [| [[[[[] [I[[1]|} shared memory

double mySum double mySum } Private memory

Race Conditions

* A race condition is a bug which occurs when two or
more threads access the same memory location and the
final result depends on the order of execution of the
threads. Note: It only occurs when one of the threads is

writing to the memory location.

static double *a;
static int n;
static double sum = 0.0;

Thread 1

double mySum = 0.0;

fori=0; i< n/2-1; i++
mySum = mySum + a[i]

lock(lock1)

sum = sum + mySum;

release(lock1)

Thread 2

double mySum = 0.0;

fori=n/2, i< n-1; i++
mySum = mySum + a[i]

lock(lock1)

sum = sum + mySum;

release(lock1)

* The use of a mutex’s (mutual exclusion locks)

Deadlock

* The use of mutex’s can lead to a condition of
deadlock. Deadlock occurs when 2 or more
threads are blocked forever waiting for a mutex

locked by the other.
Thread 1 Thread 2
lock (lock1); lock (lock2);
lock(lock2); lock(lock1);

release(lock2);
release(lock1);

release(lock1);
release(lock2);

Message Passing

* Program is a collection of processes.

* Each process only has direct access to it’s own local memory.

* To share data processes must explicitly communicate the data.

* The processes communicate by use of send and recv pairs.

® Examples: MPI, pvm ,cmmd

double sum
int n
doublea | | [[[[1] [[][]]

double mySum
double otherSum

send mySum

recvotherSum|le—_ —

e

double sum

intn
doublea | | [[[[[[[[[]]]
double mySum

double otherSum

recv otherSum
send mySum

Watch out for Deadlock

Process 1
double sum, otherSum, mySum = 0;
for i =0; I< n/2-1; |++
mySum = mySum + a[i]
recv(2, otherSum);
send(2, mySum);
sum = mySum + otherSum;

Process 2
double sum, otherSum, mySum = 0;
for i =0; I< n/2-1; |++
mySum = mySum + a[i]
recv(1, otherSum);
send(1, mySum);
sum = mySum + otherSum;

» send and recv are typically blocking, which can lead to deadlock if
amount of data being sent/received is large relative to buffer.

Process 1
double sum, otherSum, mySum = 0;
fori=0; i< n/2-1; i++
mySum = mySum + a[i]
send(2, mySum);
recv(2, otherSum);
sum = mySum + otherSum;

Process 2
double sum, otherSum, mySum = 0;
for i =n/2; I< n-1; i++
mySum = mySum + a[i]
recv(1, mySum);
send(1, otherSum);
sum = mySum + otherSum;

Writing Parallel Programs:
Goal

1. To develop an application that will run faster on
a parallel machine than it would on a sequential
machine.

2. To develop an application that will run on a
parallel machine that due to size limitations will
not run on a sequential machine.

Speedup & Amdahl's Law

Time(1
speeduprc(p) = ime(l)
Time(p)
1
Speedup o = (1 a)T1 g as n —> o
Portion of sequent/al # of processors _; o
a /-/-

11111111111

Writing Parallel Programs:
Steps Involved

. Understand Amdahl’s Law

. Break the computation to be performed into tasks
(which can be based on function, data or both).

3. Assign the tasks to processes, identifying those tasks

which can be executed concurrently.

4. Program it.

. Compile, Test & Debug

6. Optimize

1. Measure Performance

2. Locate bottlenecks

3. Improve them - may require new approach,
i.e. back to step 1!

N =

9}

Writing Parallel Programs -
Things to Remember

. The task size is dependent on the parallel machine.

. The fastest solution on a parallel machine may not be the same

as the fastest solution on a sequential machine.

3. A solution that works good on one machine may not work well
on another.

4. Program needs sufficiently large units of work to run fast in
parallel (i.e. large granularity), but not so large that there is not
enough parallel work.

5. Cost of starting threads/processes is not insignificant.

N —

Writing parallel programs is a lot harder than writing sequential programs.

Improving Real Performance

Peak Performance grows exponentially,
a la Moore’s Law

e In 1990’s, peak performance increased 100x;
in 2000’s, it will increase 1000x 1,000

But efficiency (the performance relative to Peak Performance
the hardware peak) has declined
e was 40-50% on the vector supercomputers
of 1990s
e now as little as 5-10% on parallel
supercomputers of today

Close the gap through ...

e Mathematical methods and algorithms that 1
achieve high performance on a single §
processor and scale to thousands of r” Real Performance
processors o1 b 1o 01

e More efficient programming models and tools 1996 2000 2004

for massively parallel supercomputers Source: Jim Demmell, CS267
Course Notes

100

10

Teraflops

Performance Levels
(for example on NERSC-5)

* Peak advertised performance (PAP): 100 Tflop/s
* LINPACK (TPP): 84 Ttlop/s
* Best climate application: 14 Ttlop/s

—WREF code benchmarked in December 2007

» Average sustained applications performance: ?
Tflop/s

—Probably less than 10% peak!

Source: Jim Demmell, CS267
Course Notes

Reasons for Poor Performance in
Parallel Programs

Not enough Concurrent Tasks Can Be Identified.

Poor Single Processor Performance.
* Typically due to Memory Performance.
Too Much Parallel Overhead.

» Synchronization and Communication.

Load Imbalance
= Differing Amounts of Work Assigned to Processors
= Different Speed of Processors

Solutions for Load Imbalance

+ Better Initial Assignment of Tasks
* Dynamic Load Balancing of Tasks
1. Centralized Task Queue
2. Distributed Task Queue

Many Others

Centralized Task Queue

* A Centralized queue of tasks waiting to be done

1. The queue may be held by a shared data
structure protected by mutex’s.

2. Or the queue may be held by a process solely
responsible for doling out tasks (coordinator)

T M Task] |
=

task

— VS
task
task

— A task 4

|

* How to distribute tasks, one at a time?

How to Distribute the Tasks
1. Fixed # of Tasks (K chunk size)

* If K too large, overhead for accessing tasks is low
BUT not all tasks processes may finish at same time

* If K too small, overhead high but better chance all
processes finish at same time.

2. Guided Self Scheduling - use larger chunks at
beginning, smaller chunks at end.

3. Tapering - chunk size a function of remaining work and
task variance, large variance = smaller chunk size,
smaller variance = larger chunk size.

Distributed Task Queue

« Natural Extension when cost of accessing the queue
is high due to large # of processors.

—A
Worker

— b

Worker

— b

) A~
task task s
task task
task| & —
\ S 4

* How to distribute tasks?
* Evenly distributed between the groups.
» Lightly loaded group PULLS work.

Any Questions?

Extra Slides

Units of Measure in HPC

High Performance Computing (HPC) units are:
— Flop: floating point operation

— Flops/s: floating point operations per second
— Bytes: size of data (a double precision floating point number is 8)
Typical sizes are millions, billions, trillions...

Mega
Giga
Tera
Peta
Exa
Zetta
Yotta

Mflop/s = 10° flop/sec
Gflop/s = 10° flop/sec
Tflop/s = 10" flop/sec
Pflop/s = 1015 flop/sec
Eflop/s = 10'8 flop/sec
Zflop/s = 102! flop/sec
Yflop/s = 1024 flop/sec

Mbyte = 220 = 1048576 ~ 10°¢ bytes

Gbyte = 230 ~ 109 bytes
Tbyte = 240 ~ 1012 bytes
Pbyte = 250 ~ 10'5 bytes
Ebyte = 260 ~ 1018 bytes
Zbyte =270 ~ 102! bytes
Ybyte = 280 ~ 1024 bytes

SUPERCOMPUTER SITES

www.Top500.org

Number of Processors Share Over Time

Systems

1993-2008

128k-
I 64k-128k
W 32k-64k
W 16k-32k

TOP500 Releases

SUPERCOMPUTER SITES

www.Top500.org

Processor Family Share Over Time
1993-2008

Systems

Power
[V Intel EM64T
M Intel IA-32
W MIPS
M Sparc
M PA-RISC
M Cray
M Alpha
M AMD x86_64
M Fujitsu
Il NEC
M Intel IA-64
M Intel i860
Others

TOP500 Releases

500
SUPERCOMPUTER SITES WWW.TOp5OO » Org

Operating System Share Over Time
1993-2008

Linux
W AIX
M uUNICOS
W HP Unix (HP-UX)
M RIX
M Solaris
W CMOST
W UxpP/V
M Super-UX
W OSF/1
W Unix
M CNK/SLES 9
M EWS-UX/V
HI-UX/MPP
W Tru64 UNIX
M Others

Systems

TOP500

eleases

500
SUPERCOMPUTER SITES WWW.TOp5OO » Org

Application Area Share Over Time
1993-2008

500
Not Specified

¥ Geophysics
M Finance
W Telecomm
M Weather and Climate
Research
M Automotive
M Database
M Aerospace
M Semiconductor
M Research
M Electronics
M Information Processing
Service
M Energy
Others

Systems

30" performance Projection

1 Eflop/s

100 Pflop/s | 1 Pflopls | —

10 Pflop! L
op’s “ N
1 Pflop/s /—
100 Tflop/s
10 Tflop/s SUM 4.«""""' 2 Jack's Notebook |>

1 Tflop/s

6-8 years
100 Gflop/s {22
=1 /” —
10 Gflop/s i _—
1 Gflop/s

100 Mflop/s . ;
1993 1995 1997

500

N=

1999 2001 2003 2005 2007 2009 2011 2013 2015

Source:Jack Dongarra, Innovate
Computing Lab 2009

Grid Computing

(#) (3 hutp://boinc.berkeley.edu/

Y
QDE

77 v) = ([Gl:[windows media player mac Q

lost Visited ~ Getting Started Latest Headlines 3 Xcode/gFortran Plug... Apple~ Amazon

n

eBay Yahoo! News~ New Folder~

Open-source software for volunteer computing and grid computing.

o
=

A [tanguage - %) (search)
Volunteer Computing power
Download - Help - Documentation Top 100 volunteers - Statistics
Active: 293,446 volunteers, 522,440 computers.
Use the idle time on your computer (Windows, Mac, or Linux) to cure diseases, study global warming, discover pulsars, and do 24-hour average: 1,773.75 TeraFLOPS.
many other types of scientific research. It's safe, secure, and easy:
. shauge is contributing 1,099 GFLOPS.
1. Choose projects Country: Norway; Team: Team Norway
2. Download and run BOINC software
3. Enter an email address and password. a6t
D GPUGRID
Or, if you run several projects, try an account manager such as GridRepublic or BAM!. - O POEMEHOME
- B i Ikyau@hone
B PS3GRID

Compute with BOINC .22

Documentation - Software updates 13.4%

se BOINC to create a volunteer computing project, giving you the
* Universities: use BOINC to create a Virtual Campus Supercomputing Center.
« Companies: use BOINC for desktop Grid computing.

Related software:

« Bolt: middleware for web-based education and training XS,
« Bossa: middleware for distributed thinking projects Values are in GigaFLOPS
INo data
1- 50
The BOINC prefC) 0
101 - 500
501 - 1,000
* Help wanted! 1,001 - 5,000
© Programming 5,001 - 10,000
o Translation 10,001 - 20,000
: 20,001 - 50,000
o Testing 50,001 - 100,000
o Nacumentation

100,001+

Bell’s Law

Bell's Law of Computer Class formation
was discovered about 1972. It states that
technology advances in semiconductors, storage,
user interface and networking advance every
decade enable a new, usually lower priced
computing platform to form. Once formed, each
class is maintained as a quite independent industry
structure. This explains mainframes,
minicomputers, workstations and Personal
computers, the web, emerging web services, palm
and mobile devices, and ubiquitous interconnected
networks. We can expect home and body area
networks to follow this path.

Gordon Bell (2007), http://research.microsoft.com/~GBell/Pubs.htm

Source:Jack Dongarra, Innovate
Computing Lab 2009

What's Next?

Mixed Large L
All Large Core and [

Small Core Many Small Cores

ii‘ Ll [ttt
i i I i - All Small Core MM EEEKLL
i o s ST
o

Different Classes of Chips

e] s Home
- Games / Graphics
.- Business
Many Floating- + 3D Stacked Scientific
Point Cores Memory

Source:Jack Dongarra, Innovate
Computing Lab 2009

2YaXa)

Teraflops Research Chip

<@ @ /l‘ & http://techresearch.intel.com/articles/Tera-Scale/1449.htm

Getting Started Latest Headlines3 Xcode/gFortran Plugi.. AppleY Amazon eBay Yahoo! NewsY

United States ‘y.ﬁ Worldwide About Intel | Press Room | Contact Us

Technology & Research

Home » Research » Tera-Scale

Architecture & Silicon
Technology

Platform Technology
Eco-Technology Innovation
Research

Teraflops Research Chip

"Our researchers have achieved a wonderful and key milestone
in terms of being able to drive multi-core and parallel computing
performance forward.”

- Justin Rattner, Intel Chief Technology Officer

Standards & Initiatives

Advancing Multi-Core Technology into b
ack to top ~
the Tera-scale Era
The Teraflops Research Chip is the latest development from the
Intel® Tera-scale Computing Research Program. This chip is
Intel's first silicon tera-scale research prototype. It is the first
programmable chip to deliver more than one trillion floating
point operations per second (1 Teraflops) of performance while
consuming very little power. This research project focuses on
exploring new, energy-efficient designs for future multi-core
chips, as well as approaches to interconnect and core-to-core
communications. The research chip implements 80 simple cores,
each containing two programmable floating point engines—the
most ever to be integrated on a single chip. Floating point

Products | Technology & Research | Resource Centers = Support & Downloads

Where to Buy

80-Core Programmable
Processor First to
Deliver Teraflops
Performance

Intel Corporation
researchers have
developed the world's first
programmable processor
that delivers
supercomputer-like
performance from a single,
80-core chip not much
larger than the size of a

Cell Processor

PlayStation 3 based on “Cell” Processor

Each Cell contains a PowerPC and 8 self
contained vector processing units (SPU’s).

Power PC at 3.2 GHz
= DGEMM at 5 Gflop/s

= Altivec peak at 25.6 Gflop/s
* Achieved 10 Gflop/s SGEMM

8 SPUs

= The catch is that this is for 32 bit floating
point; (Single Precision SP)
= And 64 bit floating point runs at
total for all 8 SPEs!!

(uaryed Aegoin)

(paviod aBuis ‘g 952)
(115821 akq-91 x 8Z1)

75 X55)

(uogonasu

Source:Jack Dongarra, Innovate

Computing Lab 2009

40

Whatever happens the

computers you will be working on

now and in the future will be

PARALLEL (many processors)

Po

P1

PN-1

communication

R
N

File
System

Memory

Memory

File
System

“I think there 1s a world market for maybe five

computers.”

Tunnel Vision by Experts

* Thomas Watson, chairman of IBM, 1943.

“There is no reason for any individual to have a
computer in their home”

“640K [of memory] ought to be enough for

Equipment Corporation, 1977.

anybody.”

* Ken Olson, president and founder of Digital

* Bill Gates, chairman of Microsoft,1981.

Slide source: Warfield et al. 42

