
Parallel Computing

Frank McKenna
UC Berkeley

OpenSees Parallel Workshop
Berkeley, CA

Overview

• Introduction to Parallel Computers
• Parallel Programming Models
• Race Conditions and Deadlock Problems
• Performance Limits with Parallel Computing
• Writing Parallel Programs

Why should you care?

• It will save you time
• It will allow you to solver larger problems.
• It’s here whether you like it or not!

SuperServers

Departmental Servers

Workstations

Personal Computers

Workstations

2000

Parallel

2008

What is a Parallel Computer?
• A parallel computer is a collection of processing

elements that cooperate to solve large problems fast.

CPU CPU CPU

communication

Memory Memory

File
System

File
System

Parallel Machine Classification

• Parallel machines are grouped into a number of types
1. Scalar Computers (single processor system with pipelining, eg Pentium4)
2. Parallel Vector Computers (pioneered by Cray)

3. Shared Memory Multiprocessor
4. Distributed Memory

1. Distributed Memory MPPs (Massively Parallel System)
2. Distributed Memory SMPs - Hybrid Systems

5. Cluster Systems
6. Grid

Shared Memory Parallel Computer

CPU

CPU CPU

CPU

Memory

• Processors operate independently but all access the same memory.
• Changes by one processor to memory can be seen by all.
• Access to this memory can be uniform (UMA) or non-uniform
(NUMA).
• Cache can be either shared or distributed. (multi-core typically
shared L2). Cache hit is better if distributed but then the cache must
be coherent.

Distributed Memory
CPU Mem

CPU Mem

CPU Mem

CPU Mem

• Processors operate independently, each has it’s own private memory.
• Data must be shared using the communication network.

1. MPPs

2. SMPs CPU
Mem

CPU
CPU

Mem
CPU

CPU
Mem

CPU
CPU

Mem
CPU

•With new multi-core systems distributed memory processors now
multi-core

Cluster Systems

CPU
Mem

CPU

Network
Switch

CPU
Mem

CPU

CPU
Mem

CPU

CPU
Mem

CPU

CPU
Mem

CPU

CPU
Mem

CPU

CPU
Mem

CPU

CPU
Mem

CPU

• Network Switch on faster machines are Gigabit
Ethernet, Myrinet or Infiniband

• 80% of current top 500 (www.top500.org) are
designated cluster machines.

• 20% of current Top 500 use intel quad core
processors

www.Top500.org

Parallel Programming Models

1. Shared Memory: The running program is viewed as a
collection of processes (threads) each sharing it’s virtual
address space with the other processes. Access to shared data
must be synchronized between processes to avoid race
conditions.

2. Message Passing:The running program is viewed as a
collection of independent communicating processes. Each
process executes in it’s own address space, has it’s own unique
identifier and is able to communicate with the other processes.

•A Programming Model provides an abstract conceptual view of
the structure and operation of a computing system. A computer
language and system libraries provide the programmer with this
programming model.
• For parallel programming there are currently 2 dominant models:

Shared Memory Programming
•Program is a collection of threads.
•Each thread has it’s own private data, e.g. local stack.
•Each thread has access to shared variables, e.g.static variables
and heap.
•Threads communicate by writing and reading shared variables.
•Threads coordinate by synchronizing using mutex’s (mutual
exclusion objects) on shared variables.
•Examples: Posix Threads (PThreads), OpenMP.

t1

double sum double a int n

double mySum double mySum

t0

} Shared memory

} Private memory

Race Conditions
• A race condition is a bug which occurs when two or

more threads access the same memory location and the
final result depends on the order of execution of the
threads. Note: It only occurs when one of the threads is
writing to the memory location.

Thread 1

 double mySum = 0.0;
 for i = 0; i< n/2-1; i++
 mySum = mySum + a[i]

 sum = sum + mySum;

static double *a;
static int n;
static double sum = 0.0;

Thread 2

 double mySum = 0.0;
 for i = n/2, i< n-1; i++
 mySum = mySum + a[i]

 sum = sum + mySum;
 lock(lock1)

 release(lock1)

 lock(lock1)

 release(lock1)

• The use of a mutex’s (mutual exclusion locks)

Deadlock
• The use of mutex’s can lead to a condition of

deadlock. Deadlock occurs when 2 or more
threads are blocked forever waiting for a mutex
locked by the other.

Thread 1

 lock (lock1);
 lock(lock2);
 …
 release(lock2);
 release(lock1);

Thread 2

 lock (lock2);
 lock(lock1);
 …
 release(lock1);
 release(lock2);

Message Passing
• Program is a collection of processes.
• Each process only has direct access to it’s own local memory.
• To share data processes must explicitly communicate the data.
• The processes communicate by use of send and recv pairs.
• Examples: MPI, pvm ,cmmd

double sum

double a
int n

double mySum

double sum

double a
int n

double mySum

recv otherSumsend mySum

double otherSum double otherSum

recv otherSum send mySum

Watch out for Deadlock
Process 1
 double sum, otherSum, mySum = 0;
 for i = 0; I< n/2-1; I++
 mySum = mySum + a[i]
 recv(2, otherSum);
 send(2, mySum);
 sum = mySum + otherSum;

Process 2
 double sum, otherSum, mySum = 0;
 for i = 0; I< n/2-1; I++
 mySum = mySum + a[i]
 recv(1, otherSum);
 send(1, mySum);
 sum = mySum + otherSum;

• send and recv are typically blocking, which can lead to deadlock if
amount of data being sent/received is large relative to buffer.

Process 1
 double sum, otherSum, mySum = 0;
 for i = 0; i< n/2-1; i++
 mySum = mySum + a[i]
 send(2, mySum);
 recv(2, otherSum);
 sum = mySum + otherSum;

Process 2
 double sum, otherSum, mySum = 0;
 for i = n/2; I< n-1; i++
 mySum = mySum + a[i]
 recv(1, mySum);
 send(1, otherSum);
 sum = mySum + otherSum;

Speedup & Amdahl’s Law

)(

)1(
)(

pTime

Time
pspeedupPC =

!""
#

+

= nas

n

T
T

T
SpeedupPC

$$
$

1

)1(1
1

1

Portion of sequential # of processors

Writing Parallel Programs:
 Goal

1. To develop an application that will run faster on
a parallel machine than it would on a sequential
machine.

2. To develop an application that will run on a
parallel machine that due to size limitations will
not run on a sequential machine.

Writing Parallel Programs:
Steps Involved

1. Break the computation to be performed into tasks
(which can be based on function, data or both).

2. Assign the tasks to processes, identifying those tasks
which can be executed concurrently.

3. Program it.
4. Compile, Test & Debug
5. Optimize

1. Measure Performance
2. Locate bottlenecks
3. Improve them - may require new approach,

i.e. back to step 1!

1. The task size is dependent on the parallel machine.
2. The fastest solution on a parallel machine may not be the same

as the fastest solution on a sequential machine.
3. A solution that works good on one machine may not work well

on another.

Writing Parallel Programs -
Things to Remember

Writing parallel programs is a lot harder than writing sequential programs.

Reasons for Poor Performance in
Parallel Programs

• Poor Single Processor Performance.
 Typically due to Memory Performance.

• Too Much Parallel Overhead.
 Synchronization and Communication.

• Load Imbalance
 Differing Amounts of Work Assigned to Processors
 Different Speed of Processors

Solutions for Load Imbalance

• Better Initial Assignment of Tasks
• Dynamic Load Balancing of Tasks

1. Centralized Task Queue
2. Distributed Task Queue
 ….
 Many Others

Centralized Task Queue
• A Centralized queue of tasks waiting to be done

1. The queue may be held by a shared data
structure protected by mutex’s.

2. Or the queue may be held by a process solely
responsible for doling out tasks (coordinator)

Worker

Worker
task
task
task

task
task
task

Worker

Worker

Worker

Worker

• How to distribute tasks, one at a time?

How to Distribute the Tasks
1. Fixed # of Tasks (K chunk size)

• If K too large, overhead for accessing tasks is low
BUT not all tasks processes may finish at same time

• If K too small, overhead high but better chance all
processes finish at same time.

2. Guided Self Scheduling - use larger chunks at
beginning, smaller chunks at end.

3. Tapering - chunk size a function of remaining work and
task variance, large variance = smaller chunk size,
smaller variance = larger chunk size.

Distributed Task Queue

• Natural Extension when cost of accessing the queue
is high due to large # of processors.

Worker

Worker task
task
task

task

• How to distribute tasks?
• Evenly distributed between the groups.
• Lightly loaded group PULLS work.

Worker

Worker

Workertask
task
task

task
Worker

Any Questions?

Extra Slides

Units of Measure in HPC
• High Performance Computing (HPC) units are:

– Flop: floating point operation
– Flops/s: floating point operations per second
– Bytes: size of data (a double precision floating point number is 8)

• Typical sizes are millions, billions, trillions…
Mega Mflop/s = 106 flop/sec Mbyte = 220 = 1048576 ~ 106 bytes
Giga Gflop/s = 109 flop/sec Gbyte = 230 ~ 109 bytes
Tera Tflop/s = 1012 flop/sec Tbyte = 240 ~ 1012 bytes
Peta Pflop/s = 1015 flop/sec Pbyte = 250 ~ 1015 bytes
Exa Eflop/s = 1018 flop/sec Ebyte = 260 ~ 1018 bytes
Zetta Zflop/s = 1021 flop/sec Zbyte = 270 ~ 1021 bytes
Yotta Yflop/s = 1024 flop/sec Ybyte = 280 ~ 1024 bytes

www.Top500.org

www.Top500.org

www.Top500.org

www.Top500.org

