N

L

I/ ’ q

W

Parallel Computing

Frank McKenna
UC Berkeley

OpenSees Parallel Workshop
Berkeley, CA

A NEESit o

NEES

Overview

Introduction to Parallel Computers

Parallel Programming Models

Race Conditions and Deadlock Problems
Performance Limits with Parallel Computing
Writing Parallel Programs

Why should you care?

It will save you time
It will allow you to solver larger problems.

It’s here whether you like 1t or not!

arallel

S uperServer|s

o

)epartmental Servers

Workstations

Personal Computers

2000

What is a Parallel Computer?

* A parallel computer 1s a collection of processing

clements that cooperate to solve large problems fast.

CPU CPU

Memory

CPU

Y
—

File
System

Memory

| | communication |

File
System

Parallel Machine Classification

Parallel machines are grouped into a number of types

Scalar Computers (single processor system with pipelining, eg Pentium4)
Parallel Vector Computers (pioneered by Cray)

I.

2.

3. Shared Memory Multiprocessor
4,

Distributed Memory
1. Distributed Memory MPPs (Massively Parallel System)
2. Distributed Memory SMPs - Hybrid Systems

5. Cluster Systems
6. Grid

Shared Memory Parallel Computer

CPU CPU

Memory
CPU CPU

* Processors operate independently but all access the same memory.
« Changes by one processor to memory can be seen by all.

» Access to this memory can be uniform (UMA) or non-uniform
(NUMA).

 Cache can be either shared or distributed. (multi-core typically
shared L2). Cache hit 1s better if distributed but then the cache must
be coherent.

Distributed Memory

1. MPPs

 Processors operate independently, each has it’s own private memory.
e Data must be shared using the communication network.

2. SMPs

*With new multi-core systems distributed memory processors now

multi-core

CPU

Mem

CPU

Mem

CPU

Mem

CPU

Mem

CPU CPU

Mem Mem
CPU CPU
CPU CPU

Mem Mem
CPU CPU

Cluster Systems

CPU CPU CPU CPU

Mem Mem Mem Mem

CPU CPU CPU CPU
Network
Switch

CPU CPU CPU CPU

Mem Mem Mem Mem
CPU CPU CPU CPU

« Network Switch on faster machines are Gigabit
Ethernet, Myrinet or Infiniband

* 80% of current top 500 () are
designated cluster machines.

e 20% of current Top 500 use intel quad core
processors

SUPERCOMPUTER SITEF

®
S00

Systems

500

400

300

200

100

www. Top500.org

Architecture Share Over Time
1993-2007

MPP
W Cluster
B smpP
M Constellations
M Single Processor
B siMD
M Others

OMﬂ'lﬂ\Dl\mO\OHva'lﬂ\Dl\
A OO OO OO O O O O O O O O
OO0 O OO OO O O O O O O O O
™ v o o - - SN NN NN N NN
S TS S TS TSSO OSSO OSSO OSSOSO OSSO
O O O O O O O OV O O O O O O O
O O O O O O O O O O O O O O O

Parallel Programming Models

*A Programming Model provides an abstract conceptual view of
the structure and operation of a computing system. A computer
language and system libraries provide the programmer with this
programming model.

 For parallel programming there are currently 2 dominant models:

1. Shared Memory: The running program 1s viewed as a
collection of processes (threads) each sharing 1t’s virtual
address space with the other processes. Access to shared data
must be synchronized between processes to avoid race
conditions.

2. Message Passing:The running program is viewed as a
collection of independent communicating processes. Each
process executes 1n it’s own address space, has 1t’s own unique
1dentifier and 1s able to communicate with the other processes.

Shared Memory Programming

*Program 1s a collection of threads.
*Each thread has i1t’s own private data, e.g. local stack.

*Each thread has access to shared variables, e.g.static variables
and heap.

*Threads communicate by writing and reading shared variables.

*Threads coordinate by synchronizing using mutex’s (mutual
exclusion objects) on shared variables.

eExamples: Posix Threads (PThreads), OpenMP.

int n double sum double a
- } Shared memory

double mySum AN) double mySum } Private memory

INEnYa

to t1

Race Conditions

* A race condition 1s a bug which occurs when two or
more threads access the same memory location and the
final result depends on the order of execution of the
threads. Note: It only occurs when one of the threads 1s

writing to the memory location. | static double *a;
static int n;
static double sum = 0.0;

Thread 1 Thread 2
double mySum = 0.0; double mySum = 0.0;
fori=0; i< n/2-1; i++ fori=n/2, i< n-1; i++
mySum = mySum + a[i] mySum = mySum + a[i]
lock(lock1) lock(lock1)
sum = sum + mySum; sum = sum + mySum;
release(lock1) release(lock1)

* The use of a mutex’s (mutual exclusion locks)

Deadlock

* The use of mutex’s can lead to a condition of
deadlock. Deadlock occurs when 2 or more
threads are blocked forever waiting for a mutex
locked by the other.

Thread 1 Thread 2
lock (lock1); lock (lock2);
lock(lock2); lock(lock1);
release(lock2); release(lock1);
release(lock1); release(lock2);

Message Passing

» Program 1is a collection of processes.

* Each process only has direct access to 1t’s own local memory.
* To share data processes must explicitly communicate the data.
 The processes communicate by use of send and recv pairs.

« Examples: MPI, pvm .cmmd

double sum double sum
int n int n
double a double a

double mySum double mySum

double otherSum double otherSum

- send mySum

//\
send mySum > recv otherSum
recv otherSum

Watch out for Deadlock

Process 1
double sum, otherSum, mySum = 0;
fori=0; I< n/2-1; |++
mySum = mySum + a[i]
recv(2, otherSum);
send(2, mySum);
sum = mySum + otherSum;

Process 2
double sum, otherSum, mySum = 0;
fori=0; I< n/2-1; |++
mySum = mySum + a[i]
recv(1, otherSum);
send(1, mySum);
sum = mySum + otherSum;

« send and recv are typically blocking, which can lead to deadlock 1f
amount of data being sent/received 1s large relative to buffer.

Process 1
double sum, otherSum, mySum = 0;
fori=0; i< n/2-1; i++
mySum = mySum + a[i]
send(2, mySum);
recv(2, otherSum);
sum = mySum + otherSum;

Process 2
double sum, otherSum, mySum = 0;
fori=n/2; 1< n-1; i++
mySum = mySum + a[i]
recv(1, mySum);
send(1, otherSum);
sum = mySum + otherSum;

Speedup & Amdahl’'s Law

Time(1)
speeduprec(p) = Time(p)
v
T 1
Speedup p = —as n—> o

}‘ET (1- a)Tl a

Portion of sequent/al # of processors

e

w2

Writing Parallel Programs:
Goal

1. To develop an application that will run faster on
a parallel machine than 1t would on a sequential
machine.

2. To develop an application that will run on a
parallel machine that due to size limitations will
not run on a sequential machine.

.-lkUJ

Writing Parallel Programs:
Steps Involved

. Break the computation to be performed into tasks

(which can be based on function, data or both).
Assign the tasks to processes, 1dentifying those tasks
which can be executed concurrently.

. Program 1it.

Compile, Test & Debug

. Optimize

1. Measure Performance

2. Locate bottlenecks

3. Improve them - may require new approach,
1.e. back to step 1!

Writing Parallel Programs -
Things to Remember

1. The task size 1s dependent on the parallel machine.

2. The fastest solution on a parallel machine may not be the same
as the fastest solution on a sequential machine.

3. A solution that works good on one machine may not work well
on another.

Writing parallel programs is a lot harder than writing sequential programs.

Reasons for Poor Performance in
Parallel Programs

* Poor Single Processor Performance.
= Typically due to Memory Performance.
* Too Much Parallel Overhead.
* Synchronization and Communication.
* Load Imbalance
* Differing Amounts of Work Assigned to Processors
» Different Speed of Processors

Solutions for Load Imbalance

» Better Initial Assignment of Tasks
* Dynamic Load Balancing of Tasks
1. Centralized Task Queue
2. Distributed Task Queue

Many Others

Centralized Task Queue

« A Centralized queue of tasks waiting to be done

1. The queue may be held by a shared data
structure protected by mutex’s.

2. Or the queue may be held by a process solely
responsible for doling out tasks (coordinator)

r —a 4)
Worker i
) ’ task
r N~ task
Worker
) ’ task
— task
[Worker] task
_ .

4

Worker

Worker

4
[Worker

 How to distribute tasks, one at a time?

How to Distribute the Tasks
1. Fixed # of Tasks (K chunk size)

* If K too large, overhead for accessing tasks is low
BUT not all tasks processes may finish at same time

* If K too small, overhead high but better chance all
processes finish at same time.

2. Guided Self Scheduling - use larger chunks at
beginning, smaller chunks at end.

3. Tapering - chunk size a function of remaining work and
task variance, large variance = smaller chunk size,
smaller variance = larger chunk size.

Distributed Task Queue

« Natural Extension when cost of accessing the queue

1s high due to large # of processors.

Worker

Worker

[Worker

« How to distribute tasks?

* Evenly distributed between the groups.
* Lightly loaded group PULLS work.

~

Worker

Worker

~ N\
task task
task task
task task
task task
. J X
. _v

: Worker]

Any Questions?

Extra Slides

Units of Measure in HPC

 High Performance Computing (HPC) units are:
— Flop: floating point operation
— Flops/s: floating point operations per second
— Bytes: size of data (a double precision floating point number is 8)

e Typical sizes are millions, billions, trillions...

Mega Mflop/s = 10° flop/sec Mbyte = 220 = 1048576 ~ 10° bytes
Giga Gflop/s = 10° flop/sec Gbyte = 239 ~ 10° bytes
Tera Tflop/s = 1012 flop/sec Thyte = 240 ~ 1012 bytes
Peta Pflop/s = 1015 flop/sec Pbyte = 250 ~ 1015 bytes
Exa Eflop/s = 108 flop/sec Ebyte = 260 ~ 1018 bytes
Zetta Zflop/s = 10?! flop/sec Zbyte =270 ~ 10?1 bytes

Yotta Yflop/s = 1024 flop/sec Ybyte = 280 ~ 1024 bytes

500 www.Top500.org

SUPERCOMPUTER SITES

Interconnect Share Over Time
1993-2007

500

400 - N/A
" Crossbar
B Gigabit Ethernet
. 300 M SP Switch
= B Myrinet
: B Cray Interconnect
U>'; 200 . Infiniband
B Fat Tree
M Proprietary
B Quadrics
100 B Others
om T N O ™NOO OO - N - n O M~
A OO OO OO O O O O O O O
OO O OO OO O O O O O O O
ol v o o o o= NN NN NN NN
Py rmy mmy memey mes Ty e nomy T o) nns o) lam e
O O O O O OV O OV O OV OV WO O O
=) (=) (=) (=] (=) (=) (=] (=] (=) (=] (=] (=) (=] (=) (=)

o LUV T
EEEL 5w
NS
@) 22598
— EEEEE
@)
O
O
O
Q ¢
O =t
T .v.7
. OM
= &9
< M
S 58
93
s &

,,

o o o o
o o o o
@ b n < ™ ~N
° - SITEYL -
N

i SUPERCOMPUTER

100

£002/90
9002/90
S002/90
£002/90
£002/90
€00zZ/90
1002/90
0002/90
6661/90
8661/90
L661/90
9661/90
S661/90
661/90

n%mma\wo

500 www. Top500.org

SUPERCOMPUTER SITES

Vendors Share Over Time

1993-2007
500
IBM
400 W HP
B Cray Inc.
B sGI
» 300 M Sun
£ M Fujitsu
2 B NEC
>~
Intel
“ 200 -
B ™C
B Hitachi
W Dell
100 B Self-made
B Others
om T 1N O N OO O O -~ (N MO < 1IN O M~
A O O O O O O O ©O ©O ©O O O O O
o OO O O O O O O ©O ©O ©O ©O O O O
v vl o e - - - NN NN NN NN
e i N S
O OV OV OV OV O O O O OV OV OV OV OV O
O O O O O O O O O O O O O O O

www. Top500.org

100PFlops
-@- #1
10 PFlops - 6905.82 Ty @ #500
: 88" | 5 sum
1 PFlops - ._l" 47820 TF
Y == =
-) ¢
100 TFlops =" o
g oo o ooooo
| ._._ - ’
S 10TFopsq{ & _aa® pod 5029 SF"’
g - Boo go8
= 1 TFops® « - P
& /\(} .‘ m] -
g0 08 i
100 GFlops 50 g8
po®
o0 "
10 GFlops oo
& g o "
S| o o
1 GFops 4> o
:PD
100 MFlops LI [N Bt [S B B B B B B B e e e LT L LT
o« <t u (L] I~ w0 (a3] o — o o« - uw (L] -
(23] (2] [a] (23] o (2] o) o o o o o o o o
2 8 8 8 2 2 2 s s s

OO0 BOINC

@ cduf

Cetting Started Latest Headlines 3

Y http:/ /boinc.berkeley.edu/
Xcode/gFortran Plugi.. AppleY Amazon eBay Yahoo! NewsY

% BOINC Statistics for the WORLD @ |) BOINC X

v v Google Q

Open-source software for volunteer computing and grid computing

| -- language - | |

ByGnc

N——

Volunteer
Download - Help - Web - Add-ons - Survey

Use the idle time on your computer (Windows, Mac, or Linux) to cure diseases, study global
warming, discover pulsars, and do many other types of scientific research. It's safe, secure, and
easy:

1. Choose projects
2. Download and run BOINC software
3. Enter an email address and password.

Or, if you run several projects, try an account manager such as GridRepublic or BAM!.

Compute with BOINC

Documentation - Updates - Conferences

Scientists: if your group has moderate programming, web, sysadmin, and hardware resources, you
can use BOINC to create a volunteer computing project. With a single Linux server you can get
the computing power of thousands of CPUs. Organizations such as IBM World Community Grid may
be able to host your project (please contact us for information).

Universities: use BOINC to create a Virtual Campus Supercomputing Center.

Companies: use BOINC for desktop Grid computing.

The BOINC project

Overview

Software development
Translation of web and GUI text
Personnel and contributors
BOINC email lists

BOINC message boards

Papers and talks on BOINC
Logos and graphics

Done

Search |

Computing power
Top 100 - Single-computer « Other lists

Active: 319,058 volunteers, 570,168 computers.
24-hour average: 1,002.46 TeraFLOPS.

paul is contributing 373 GFLOPS.
Country: United States; Team: Team Starfire World BOINC

6.1%

6.2%
2.3% | M SETIRhome

5.4 OEinstein@Home

4 EnalariaControl

[QMC@HOME

O Spinhenge@home
ORieselSieve

| O Cosmology@Home

@ Mi lkyWay@home

M SHA-1 Collision Search Graz
E MindModel ing@Home

25.5%

4

Pl

35.2%

News

Apr 7, 2008

Congratulations to NEZ, whose contribution to
BOINC-based projects recently exceeded 10 TeraFLOPS.
This would (and should) rank 136th on the Top 500
Supercomputer list.

Mar 31, 2008
The BOINC client software is now available for Fedora 7
and higher from official repositories. To install it, just

IV V_ NS DUy, I T Ry DU, [RN WL Sy " ¥

faYaYa)

Teraflops Research Chip

@ /J} “ http:/ /techresearch.intel.com/articles/Tera-Scale/1449.htm

ﬂ]v

Cetting Started Latest Headlines® Xcode/gFortran Plugi.. AppleY Amazon eBay Yahoo!

News v

About Intel

United States ";ﬁ Worldwide Press Room | Contact Us

Technology & Research Home » Research » Tera-Scale

Architecture & Silicon
Technology

Platform Technology
Eco-Technology Innovation
Research

Standards & Initiatives

Teraflops Research Chip

"Our researchers have achieved a wonderful and key milestone
in terms of being able to drive multi-core and parallel computing
performance forward.”

- Justin Rattner, Intel Chief Technology Officer

Advancing Multi-Core Technology into

the Tera-scale Era back to top *

Products = Technology & Research | Resource Centers = Support & Downloads

The Teraflops Research Chip is the latest development from the
Intel® Tera-scale Computing Research Program. This chip is
Intel's first silicon tera-scale research prototype. It is the first
programmable chip to deliver more than one trillion floating
point operations per second (1 Teraflops) of performance while
consuming very little power. This research project focuses on
exploring new, energy-efficient designs for future multi-core
chips, as well as approaches to interconnect and core-to-core
communications. The research chip implements 80 simple cores,
each containing two programmable floating point engines—the
most ever to be integrated on a single chip. Floating point

Where to Buy

80-Core Programmable
Processor First to
Deliver Teraflops
Performance

Intel Corporation
researchers have
developed the world's first
programmable processor
that delivers
supercomputer-like
performance from a single,
80-core chip not much
larger than the size of a

