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Elements and materials

* Elements:
— Force-based elements (FBE)
— Displacement-based elements (DBE)
— Beam with hinges elements (BWH)
e Matenals:
— Reinforced Concrete
— Steel



Nonlinear Beam Column Modeling

Structural Beam-Column Models
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F. Filippou



Concentrated Plasticity Models

Advantages:
Q g * Simple
* Good for Interface Effects (bar pullout, shear
sliding)

Disadvantages:
) * Requires moment-rotation relationship
QPM  Moment-rotation relationship of element 1s

related to Plastic Hinge Length
ﬁ e Can only be used 1f axial load 1s constant




Distributed Plasticity Models

« Contrary to concentrated plasticity models, force-
based element (FBE) and displacement-based
element (DBE) permit spread of plasticity along
the element (distributed plasticity models).
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 Distributed plasticity models allow yielding to
occur at any location along the element, which is
especially important in the presence of distributed
element loads (girders with high gravity loads).

« If yielding is confined to element ends, beam with
hinges element (BWH) that permits spread of
plasticity within plastic hinge region is a good
alternative to FBE and DBE (especially if strain-
softening response 1s expected)
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Introduction

In presence of axial loads in the members,
fiber section 1s recommended to be used as

1t accounts for PMM interaction.

*It 1s suggested not to use more than 5
Integration points.



Creating a fiber section in OpenSees

Each Fiber Section 1s composed of Fibers, with each fiber
containing:

1. Uniaxial Material,

2. Area assigned to a fiber

3. Location of the fiber in local (y,z) system

Command: Arguments:

section Fiber $secTag {

fiber... SsectTag  unique tag among FiberSections

patch... fiber... command to generate a single fiber.

layer... patch... command to generate a number of fibers over a geometric cross-section
layer... command to generate a row of fibers along a geometric-arc

}



Fiber command

Creates the single fiber and adds it to the enclosing Fiber Section

fiber SyLoc $zLoc $A SmatTag

SyLoc y coordinate of the fiber in the section (local coordinate system)
SzlLoc z coordinate of the fiber in the section (local coordinate system)
SA area of the fiber.

SmatTag material tag associated with this fiber.




Patch command

Generates a number of fibers over a cross-sectional area
Quadrilateral shaped patch:

patch quad $matTag SnumSubdivlJ $SnumSubdivJK Syl $zl SyJ $zJ SyK $zK SyL SzL

K {($yK, $zK)
: Vertices | J K L
& need to be defined in
-k 0 < COUNTER CLOCKWISE
” sequence

&

J ($yd, §zJ)
zZ
‘ | ($yl, $z1)
Y




Patch command

Generates a number of fibers over a cross-sectional area

Rectangular patch:
patch rect SmatTag SnumSubdivY SnumSubdivZ Syl $zl SyJ $zJ

J (Py. $z)
L ]

Vertex | is the bottom-left point and
the vertex J is the top-right point
relative to local coordinates

[
TZ | ($y. $2)
y



Patch command

Generates a number of fibers over a cross-sectional area

Circular patch:
patch circ SmatTag $SnumSubdivCirc SnumSubdivRad SyCenter SzCenter SintRad $extRad <S$startAng SendAng>

§numSubdivGire=4




Layer command

Generates a number of fibers along a line or a circular arc

Straight layer:
layer straight $matTag SnumFiber SareaFiber SyStart $zStart SyEnd $zEnd

.
fhumBars=5 L-=7($¥End, $zEnd)




Layer command

Generates a number of fibers along a line or a circular arc

Circular layer:
layer circ $SmatTag SnumFiber $areaFiber SyCenter SzCenter Sradius <SstartAng SendAng>




Example: Steel cross-section —
unidirectional loading

Steel section

[

Column: W14x257

Section discretization
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Example: Steel cross-section —
unidirectional loading

# input variables
setd 16.4; # nominal depth
settw 1.18; # web thickness
set bf 16.0; # flange width
set tf 1.89; # flange thickness

# derived variables -
set y1 [expr $d/2.0]
set z1 [expr $bf/2.0]

z1




Example: Steel cross-section —
unidirectional loading

(z$*A$) 1
L

11— | | | | X




Example: Steel cross-section —
unidirectional loading

section Fiber 1 {
# Create the flange fibers (left & right)
patch rect $matID 2 1 [expr $y1-$tf] [expr -$z1] $y1 $z1
patch rect $matID 2 1 [expr -$y1] [expr -$z1] [expr $tf-$y1] $z1

# Create the web fibers
$patch rect $matID 10 1 [expr $tf-$y1] [expr -$tw/2.] [expr $yl1-$tf] [expr




Example: RC rectangular cross-section —
unidirectional loading

Column cross-section

15"

24"

/
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+— Unconfined Region

Confined Region

cover =1.5"

Section discretization
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Example: RC rectangular cross-section —
unidirectional loading

# 1nput variables
set b 15.

set h 24. _4 * k

cover 1.5

set As 0.6 v
set $nfCore y 10

set $nfCoverS y 10 z1 _’
set $nfCoverTB y 2

set $nf z 1 y1
set SnumBarsTB 3 N
set $numBarsM 2

# derived variables
set y1 [expr $h/2.0]
set z1 [expr $b/2.0]



Example: RC rectangular cross-section —

unidirectional loading

# input variables

setb 15. —J ‘

set h 24.
cover 1.5 Y. ®
set As 0.6

set $nfCore y 10 "

set $nfCoverS y 10
set $nfCoverTB y 2
set $nf z 1 Z
(z$ ;K$) |

# derived variables
set y1 [expr $h/2.0]
set z1 [expr $b/2.0] X




Example: RC rectangular cross-section —
unidirectional loading

section Fiber 1 {
# Create the concrete core fibers

Ea{cg rect $coreID $nfCore y $nf z [expr Scover-$y1] [expr $cover-$z1] [expr $y1-$cover] [expr
z1-$cover]

# Create the concrete cover fibers (top, bottom, left, right)

patch rect $coverID $nfCoverS y $nf z [expr-$yl] [expr $z1-$cover] Syl $z1
Eaﬁh rect $coverID $nfCoverS y $nf z  [expr -$yl] [expr -$z1] Syl [expr $cover-
z
Ea{cg rect $]coverID $nfCoverTB y $nf z [expr-$yl] [expr $cover-$z1] [expr $cover-$y1] [expr
z1-$cover
Ea{cg rect $coverID $nfCoverTB_y $nf z [expr $yl-$cover] [expr $cover-$z1] Syl [expr
cover|




Example: RC rectangular cross-section —
unidirectional loading

# Create the reinforcing fibers (left, right, middle)

layer straight $steellD $numBarsTB §$As [expr $yl-$cover] [expr $z1-$cover] [expr $yl-$cover]
[expr $Scover-$z1]

layer straight $steellD $numBarsTB $As [expr Scover-$y1] [expr $z1-$cover] [expr $Scover-$y1]
[expr $Scover-$z1]

layer straight $steellD $numBarsM $As 0. [expr $z1-$cover] 0. [expr $cover-$z1]




Nonlinear Elements — FBE & DBE

e OpenSees commands for defining FBE and DBE have the same
arguments:

element forceBeamColumn $eleTag $iNode $jNode $numintgrPts $secTag $transfTag

element displacementBeamColumn $eleTag $iNode $jNode $numintgrPts $secTag $transfTag

 However, to achieve a comparable level of accuracy a beam-
column element needs to be modeled differently using these two
clements.

* In order to enhance understanding of these two elements and to
assure their correct application I will present the theory of these
two elements and demonstrate their application on two
examples.



Displacement-based element

» The displacement-based approach follows standard finite element
procedures where we interpolate section deformations from an
approximate displacement field (constant axial deformation and linear
curvature distribution are enforced along the element length, exact
only for prismatic linear elastic elements) then use the PVD to form
the element equilibrium relationship.

* Use the PVD to form the element equilibrium relationship (“weak
equilibrium™)

* Mesh refinement of the element is needed to represent higher order
distributions of deformations.

K(X)

exact curvature _




Force-based element

The force-based approach relies on the availability of an exact
equilibrium solution within the basic system of a beam-column
element. Equilibrium between element and section forces is exact,
which holds in the range of constitutive nonlinearity.

Section forces are determined from the basic forces by interpolation
within the basic system.

- Interpolation comes from static equilibrium and provides constant
axial force and linear distribution of bending moment in the
absence of distributed element loads.

PVF is used to formulate compatibility between section and element
deformations:

K(X)
VvV = j;L bTedx

Real curvature



Example 1 — Steel Beam

Neuenhofer, A., and F. C. Filippou, (1997). “Evaluation of Nonlinear
Frame Finite Element Models.” Journal of Structural Engineering,
123(7): 958-966.
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Rotation error (node B)

Example 1 — Results
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Example 1 — FBE

Rotation error (node B) Curvature error (node A)
Global response Local response
NIRRT N L o]® (s s W~
. Integration Points Integration Points
30 60
FBE FBE
20 - 40~
10 20
LR 5 e Lm0
1 2 4 8 16 1 2 4 8 16

Number of Elements Number of Elements

» Accuracy of the solution can be improved by either increasing the NIP
(preferable from a computational standpoint) or the number of
elements. This is due to the fact that FBE uses the exact force
interpolation functions.

« An error less than 2% is obtained for both global and local response
quantities with only one element and 7 IPs.



Example 1 — DBE

Rotation error (node B) Curvature error (node A)
Global response Local response
o5 Do ms M- ol - @l M-
Integration Points Integration Points
30 DBE 60 DBE

20 40 —

20

(b)

1 2 4 8 16 0
Number of Elements

Number of Elements

Accuracy of the solution can only be improved by increasing the
number of elements (not by increasing the NIPs). This is due to the fact
that DBE uses displacement interpolation functions that approximate
the exact solution.

8 elements are required to reduce the rotation error to ~0, and 16
elements are required to reduce the curvature error to 3%.



Example 1 - Summary

« Accuracy of the solution can be improved:

— for FBE, by either increasing the NIPs (preferable from
a computational standpoint) or the number of elements,

— for DBE, only by increasing the number of elements.

* In case of FBE, both local and global quantities converge
fast with increasing NIPs.

* In case of DBE, higher derivatives converge slower to the
exact solution and thus, accurate determination of local
response quantities (e.g., curvature) requires a finer finite-
clement mesh than the accurate determination of global
response quantities (e.g., rotations).



Example 2 — Bridge Column

* Bridge column (Lehman & Moehle, PEER 1998/01 (Column 415))

T

IT" |

-
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N

Diameter 24 in.
Height 96 in.
Longitudinal 22#5 Gre0
Reinforcement (p=1.5%)
fy=70ksi
Transverse #2@1.25 in.
Reinforcement (p=0.7%)
fy=96.6 ksi
Concrete fc'=4.4 ksi




Example 2 - Loading protocol
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Example 2 — Model calibration

Displacement [in] Displacement [in]

The column model is calibrated using force-based element with 5
integration points. To provide better accuracy of local strains NIPs is
chosen such that integration weight of the end node is close to the
plastic hinge length.
Displacement [cm] Displacement [cm]
20 -15 -10 -5 0 5 10 15 20 -15 -10 -5 0 5 10 15
‘ r I I ‘ ‘ ‘ ‘ ‘ r : I ‘ ‘ 71300
Experimental 1300 ] 60 Experimental A P
i Analytical - FB S Analytical - FB, 1 Ele 1
%\I P 4200
200 1 40
k k
1100 [ [ 20 1100
¢ e
0o ¢ c 0 0
r r
100 P / -100
200 40 /
. +1-200
300 60 i//‘~
- | 1-300
8 -6 -4 -2 0 2 4 6 8 -6 -4 -2 0 2 4 6




—_ RS v —

Mo = 0 o

The response will change significantly by replacing the force-

Example 2 — FBE vs. DBE

based beam-column element with the displacement-based beam-
column element.

FBE vs. Experiment (NIP = 5)
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DBE vs. Experiment (NIP = 3)
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Example 2 - DBE

« With the increase of number of DBE the analytical prediction
better matches the measured response of the column.

DBE vs. Experiment

Column modeled with 1 element

Displacement [cm]

Displacement [in]
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DBE vs. Experiment

Column modeled with 2 elements
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DBE vs. Experiment
Column modeled with 4 elements

Displacement [cm]
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Example 2 - Summary

To match the measured column response, the column had to be modeled with
either 1 FBE or 4 DBE.

Local response quantities could not be compared due to the lack of
experimental data. However, it 1s advisable to use more then 4 DBE when
predicting local response quantities.

FBE vs. Experiment DBE vs. Experiment
Column modeled with 1 element Column modeled with 4 elements
Displacement [cm] Displacement [cm]
-15 -10 -5 0 5 10 15 -15 -10 5 0 5 10 15
‘ r : ‘ ‘ 1300 : r : : ‘ : 7300
60 Experimental o | ] 60 Experimental i
Analytical - FB, 1 Ele 1 S Analytical - DB, 4 Ele 1
40 120N ? 40 1?0 N
k Kk k
20 4100 [ [ 20 4100 [
e e e
0 o ¢ c 0 0o ¢
r r r
20 > 0 o
- -100F F -20 -100F
/
-0 12200 40 r 1-200
-60 -60 e et 2 5
-300 1-300
-6 -4 2 0 2 4 6 6 4 2 0 2 4 6

Displacement [in] Displacement [in]



Beam with Hinges element (BWH)

user-defined sections

node i node j

, Linear Elastic +

':—Lpi—r 4—ij—:'
L

» Itis a force-based element with plastic hinges localized at element ends;
middle portion stays elastic

» Integration points are localized in the hinge regions (two integration points per
hinge)

» Integration method is Modified Gauss-Radau

For 2D:

element beamWithHinges SeleTag SiNode SjNode $secTagl SLpi SsecTagJ $Lpj SE SA Slz StransfTag <-mass SmassDens> <-iter
Smaxiters Stol>

For 3D:

element beamWithHinges SeleTag SiNode SjNode $secTagl SLpi $SsecTagJ $Lpj SE SA Slz Sly $G S$J StransfTag <-mass $massDens>
<-iter Smaxlters Stol>



Characteristics of the BWH

Nonlinear behavior 1s confined to the integration
points at the element ends.

The user only needs to specify the length of each
hinge.

Captures largest bending moment at the ends.
Represents linear curvature distributions exactly.

Objective 1n capturing strain-softening response
— FBE localizes deformation at an IP

— DBE localizes deformation within a single element



Example ( from M.H.Scott)

550mm x H550mm square

P=03f.A, 12 bars, d, = 20 mm

40 mm clear cover
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T

- Tanaka and Park (1990)

V' = Base Shear Specimen 7



Comparison of response using
different type of elements

FBE

Displacement (mm) 0 20 40 60 80
Displacement (mm)

0 20 40 60 80
Displacement (mm)



Questions?




