Cyclic Inelastic Analysis of RC Shear Walls and Plates

Leopoldo Tesser and Filip C. Filippou

OpenSees Days 2012, August 15-16

Framework

Performance based design methodology

Seismic Hazard Analysis → Response Analysis → Damage Analysis → Loss Analysis
Framework

Performance based design methodology

Seismic Hazard Analysis

Response Analysis

Damage Analysis

Loss Analysis

Background
Experimental Investigations

<table>
<thead>
<tr>
<th>Models</th>
<th>Implementation</th>
<th>Analyses</th>
<th>Conclusions</th>
</tr>
</thead>
</table>

Recent Tests by NEES

<table>
<thead>
<tr>
<th>Models</th>
<th>Implementation</th>
<th>Analyses</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ. of Michigan</td>
<td>Univ. of Illinois</td>
<td>Univ. of Minnesota</td>
<td>Univ. of CA Berkeley</td>
</tr>
</tbody>
</table>
Existing Models

- They can be subdivided in two categories:
 - Plane stress models for all types of RC elements
 - Fiber beam models for particular RC members
 - Some incorporated in commercial software

- Plane stress FE models seem to have issues of accuracy for general RC stress states, computational efficiency for large scale, or robustness

- Fiber beam models with shear appear to be limited to cases of moderate shear demand

Objectives of the Current Work

- The current work aims at developing an efficient membrane and plate model for the simulation of RC structural elements under cyclic loads with the following features:
 - general and suitable for several types of RC elements under high shear with normal force and bending moment
 - accurate and computationally efficient to be suitable for the earthquake analysis of large structures
 - plastic and damage evolution laws describe plastic strain and stiffness degradation at the material level

- The membrane and plate model is implemented in a general purpose platform so that it can be combined with other finite elements, such as beam or column elements, for modeling an entire structure
Experimental Evidences in Uniaxial Conditions

Introduction

Models Implementation Analyses Conclusions 7/36

Tension

Compression

Envelope

Introduction Models Implementation Analyses Conclusions 8/36
Envelope

\[\sigma = (1-d)E \varepsilon \]

Damage
Residual Strength

Cyclic Loading

\[\sigma = (l-d)E(\varepsilon - \varepsilon^p) \]

Residual Strain
Features of the Presented Model

- The features of the presented concrete constitutive law are:
 - it is a general three-dimensional law that can be used with all types of finite elements
 - both tensile and compressive damage modes are taken into account by means of two scalar damage parameters
 - a simplified plasticity evolution law represents the residual strains for all stress states
 - it uses a straightforward algorithm for material state determination
- The material parameters are calibrated once from experimental data and used consistently in applications (no parameter “tuning”)
- The 3D concrete law is constrained to a plane stress state for the RC membrane element
- The out-of-plane stress of the 3D concrete law is condensed out for use with the RC plate element

Plastic-Damage Concrete Model

Separate scalar damage parameters for tension and compression; these are coupled under multi-axial stress states

Tension
Gopalaratnam and Shah 1985

Compression
Sinha et al. 1964
Crack Width

- The correlation between average concrete tensile strains, tensile damage parameter and crack width can be derived from experimental measurements.
- The correlation holds only for micro-cracks; this may be suitable for structural durability studies.
- For the estimation of large crack widths under seismic excitations the reinforcing steel strains should be used.

Multi-Axial Conditions

The concrete constitutive law is developed in three-dimensions and can be used with all types of finite elements. For the analysis of RC shear walls the most significant biaxial stress state is tension-compression.

Kupfer et al. 1969

- The ratio of minimum to maximum principal stress is shown.
- Numerical and experimental results are compared.
The 3d concrete law is constrained to a plane stress state.

RC Membrane Model

Concrete

Uniaxial Steel layer

RC Membrane Model

The 3d concrete law is constrained to a **plane stress state**.

Reinforced Concrete

Uniaxial steel constitutive relations

Filippou et al. (1983)
RC Plate Model

The out-of-plane stress of the 3d concrete law is condensed

Numerical integration over the thickness:
- e.g. 7 mid-points

Insertion of reinforcing layer at actual locations:
- e.g. 2 reinforcement nets

Correlation with experiments

The material parameters are calibrated once from experimental data on the concrete material and used consistently in the correlation studies (no parameter “tuning”).
RC Panels

Mansour and Hsu (2005)

Test CA2: $\alpha = 45^\circ$

- Shear Stress (MPa) vs. Shear Strain [-]
- Experimental vs. Numerical

- Vertical vs. horizontal strain and vertical normal stress vs. strain

- Experimental vs. Numerical
RC Panels

Mansour and Hsu (2005)

Test CE3: $\alpha = 90^\circ$

vertical vs. horizontal strain and **vertical normal stress vs. strain**
RC Beams w/o Shear Reinforcement

Leonhardt and Walter 1962

Shear Failure
Flexural Failure

RC Planar Shear Walls

RC Panel with boundary elements (Maier and Thürlimann 1985)

Height: 1200 mm ≈ 47 in
Aspect ratio: 1
Thickness: 100 mm ≈ 4 in
Vertical reinforcement ratio: 1.16%
Horizontal reinforcement ratio: 1.03%
Axial load: 416 kN ≈ 94 kips
RC Plates

RC Plates under combined in-plane and lateral loads (Ghoneim and MacGregor 1994)

Size: 72 in = 1829 mm
Thickness: 2.65 in = 67.4 mm
Isotropic reinforcement ratio: 0.77% in two grids
In-plane biaxial compression: 1400 psi = 9.8 MPa
Transverse load carrying capacity: 1440 psf = 69 kPa

RC U-shaped Shear Wall (1)

U-shaped shear wall
(Pégon et al., JRC Ispra, 2000)

Height: 3.6 m = 11 ft 10 in
Axial load: 2MN = 450 kips

Dimension in mm
RC U-shaped Shear Wall (2)

- Graph showing behavior under different loadings.

4.45 kN ≈ 1 kips

RC Box Shear Wall (1)

Box-shaped shear wall
(Japan Nuclear Energy Safety Organization 2006)

Height: 1.0 m ≈ 3 ft 3 in
Axial load: 670 kN ≈ 150 kips

Dimension in mm
RC Box Shear Wall (2)
Conclusions (1)

- **Excellent agreement** with correlation studies was observed for different specimens
 - concrete cylinders and prisms under cyclic loads (uniaxial stress states)
 - concrete prisms under combined tension and compression
 - RC panels under cyclic shear loads (uniform stress state)
 - beams without shear reinforcement (complex stress states)
 - planar, U- and box-shaped RC shear walls under axial force and cyclic lateral loads (complex stress states)

- The **tensile and compressive damage parameters** of the concrete constitutive law permit the interpretation of observed experimental behavior in regard to
 - accumulated structural damage
 - failure mechanisms
 - tensile cracks location and orientation
 - micro-cracks width
 - concrete compression strut location and orientation

Conclusions (2)

- Neglecting the **dowel action** and **bond-slip** of reinforcing bars does not seem to affect the agreement of the model with the experimental data regarding strength. However,
 - some discrepancy in unloading and reloading is evident
 - the dowel action of the reinforcement is statistically significant in affecting the unloading stiffness the more the orientation of the reinforcing bars deviates from the principal stress directions

- The **robustness** and **consistency** of the proposed RC membrane and plate model over a range of structural elements under different stress states holds significant promise for its use as reliable tool for the simulation of structural systems under earthquake excitations
Current Work (1)

Influence of bond-slip and Bond degradation

T10

Current Work (2)

Shear Deficient Columns