
Acknowledgment: This work was supported by the George E. Brown, Jr. Network for Earthquake Engineering Simulation (NEES)
Program of the National Science Foundation under Award Number CMS-0402490. Visit http://it.nees.org/ for more information.

TN-2007-16

Using the OpenSees Interpreter on
Parallel Computers

Frank McKenna 1

Gregory L. Fenves 1

1University of California, Berkeley

Last Modified: 2008-04-17 Version: 1.0

Using the OpenSees Interpreter on Parallel Computers 2 of 16

TN-2007-16 NEESit
Updated: 2008-04-17

Web it.nees.org
Email it-support@nees.org

1 Introduction
Parallel compuation is becoming increasingly important for conducting realistic earthquake simulations of
structural and geotecnical systems [1]. With the advent of multi-core processors it will shortly become
the only means available for users to harness the full performance of even their personal computers. The
objective of this document is to provide users with a an overall description of the parallel capabilities of
the OpenSees interpreters, examples on how to run them on parallel machines, and an outline of how to
build the executables of OpenSees for parallel machines. It assumes the user has a working knowledge of
both OpenSees and the parallel computer platform on which they intend to run OpenSees.

2 The OpenSees Interpreter
OpenSees [2] is an object-oriented software framework for creating nonlinear finite element applications.
The framework provides classes for modelling structural and geotechnical systems, classes to perform
nonlinear analysis on the model, and classes to monitor the response of the model during the analysis.
The framework is primarily written in C++ and provides classes for building finite element applications
that can be run on both sequential and parallel computers.

The source code for OpenSees is open-source and is available from the OpenSees website
(http://opensees.berkeley.edu) or from the OpenSees CVS repository using anonymous access:
(:pserver:anonymous@opensees.berkeley.edu:/usr/local/cvs).

The OpenSees interpreter, an example of one type of application that can be built using the framework,
is an extension of the Tcl scripting language [3]. The OpenSees interpreter adds commands to the basic
Tcl interpreter for creating OpenSees objects (domain, analysis and recorder) and for invoking methods
on those objects. Manuals and examples on using the OpenSees interpreter can be obtained from the
OpeSees website user page (http://opensees.berkeley.edu/user/index.php)

3 Parallel Computers
A parallel computer is a computing machine which is composed of more than one processor and which
allows processes to communicate with each other, either in the form of shared memory or message
passing. There are many different forms of machines that can be classified as parallel computers. These
include parallel supercomputer with many thousands of processors, local networks of workstations with
tens to hundreds of processors, and even single multi-core processor personal computers with a few
processors. To build an application that will run on many processors simultaneaously, the software
makes calls to communication libraries, e.g. threads for shared memory and MPI for message passing. We
limit our discussion here to message based parallel processing.

Using the OpenSees Interpreter on Parallel Computers 3 of 16

TN-2007-16 NEESit
Updated: 2008-04-17

Web it.nees.org
Email it-support@nees.org

Figure 1: Parallel Computation

In a messaage passing system composed of 'n' processes, the processes are typically labelled P0 through
PN-1, as shown in Figure 1. Each process can be viewed as running on its own machine, i.e. process P0
runs on machine M0. The processes communicate with each other by calling communication library
routines that exist on the machines, these libraries providing a high level interface to the machines
underlying communication bus, whose complexity varies greatly depending on the parallel machine.
When running on parallel computers it is not the processor speed that generally governs cost of the
machine, but the communication mechanism between the processors; the faster the communication the
costlier the machine. When using parallel machines the user needs to have some understanding of the
performance of each processor, speed and memory size, and the performance of the communication
between machines. Sometimes, for example, for small jobs it is quicker to do the computation on a single
machine, as communication costs will outweigh the benifit of multiple processors.

The OpenSees framework provides classes for interfacing with the most widely used message passing
interface, MPI. For parallel machines with this library, two interpreters can be built from the OpenSees
source code distribution:

1. OpenSeesSP: The first interpreter is for the analysis of very large models by users who have
little understanding of parallel computing and who have an input file that is too large or takes too
long to run on a sequential machine (single processor). This interpreter will process the same
script that the OpenSees interpreter running on a sequential machine will process. There are no
special commands for parallel processing, though there are additional options when it comes to
choosing solvers. It will be referred to as the 'Single Parallel Interpreter' application.

2. OpenSeesMP: The second interpreter is for running many analyses with small to moderate

sized models, i.e. parameter type studies, or for running more complicated scripts in which the

Using the OpenSees Interpreter on Parallel Computers 4 of 16

TN-2007-16 NEESit
Updated: 2008-04-17

Web it.nees.org
Email it-support@nees.org

user specifies the subdomains, parallel numberer and parallel equation solver. When running on a
parallel machine, each processor is running the same interpreter with the same main input script.
The user has control at both the command line level and scripting level to specify the different
work that each processor performs. It will be referred to as the 'Multiple Parallel Interpreter's'
application.

4 OpenSeesSP: The Single OpenSees Parallel Interpreter
The simple parallel interpreter is intended for the single analysis of very large models. When running on a
parallel machine, a single processor, p0, is running the main interpreter and processng commands from
the main input script. The other processors are running ActorSubdomain objects [4]. As the model is
built as model commands, e.g. element, node, loadPattern, are issued the domain is constructed on P0.
This is as shown in Figure 2. On the first issuance of the analyze() command in the script the model is
partitioned, that is the elements are split and distributed among all n-1 machines. After this the state and
solving of the system of equations can be done in parallel, as shown in Figure 3. Whether or not the
solution of the linear system of equations is done in parallel, depends on the choice of equation solver.
Additional solvers may be present on the paralell machine the job is to be run on and if present, the
appropriate solver needs to be set at the system command in the script. Also if recorders are specified in
the scripts that use the –file option and are recording the information for more than one element or node,
the column order of results stored in files from the Element and Node recorders will NOT be ordered as
they are in single processor runs. The user’s should use the –xml option when defining recorders to
document each column‘s meta data.

Figure 2: Single Parallel Interpreter before analyze()

Using the OpenSees Interpreter on Parallel Computers 5 of 16

TN-2007-16 NEESit
Updated: 2008-04-17

Web it.nees.org
Email it-support@nees.org

Figure 3: Single Parallel Interpreter after analyze()

4.1 Additional Solvers for Parallel Processing
A number of additional solvers may be available for parallel processing on the local parallel
machine. These include Mumps, Petsc, and SuperLU. Of these, SuperLU will always be
available, Petsc will probably be available for your system, and Mumps you will have to install
because of copyright restrictions. Of the three, Mumps typically will perform the best and
should be the one that is tried first. If you specify SparseGEN in the script, when running on a
parallel machine you will automatically be switched to the parallel version of SuperLU. To use
the additional solvers, the system command is altered to include the parallel solvers.

system Mumps
system Petsc

4.2 Domain Decomposition Example
In this example we perform domain decomposition analysis. The script is exactly the same as a
regular OpenSees script that runs on a single processor machine.

 # source in the model and analysis procedures
 source model.tcl

record the forces for all elements
recorder Element -xml eleForces.out –ele all forces

 # perform gravity analysis

Using the OpenSees Interpreter on Parallel Computers 6 of 16

TN-2007-16 NEESit
Updated: 2008-04-17

Web it.nees.org
Email it-support@nees.org

 system ProfileSPD
 constraints Transformation
 numberer RCM
 test NormDispIncr 1.0e-12 10 3
 algorithm Newton
 integrator LoadControl 0.1

 analysis Static

 set ok [analyze 10]

To run this example the user would start the OpenSees interpreter from the command line with a
command such as:

mpirun -np 4 OpenSeesSingleParallelInterpreter main1.tcl

5 OpenSeesMP: The Multiple Parallel OpenSees Interpreter Application
When running as a job on a parallel computer with this interpreter, each process is running a slightly
modified version of the basic OpenSees interpreter. This interpreter allows each process to determine the
number of other processes running as part of the parallel job, numP, and the unique process id number
for that process, np. This is as shown in Figure 4. In addition, if the command line option -par has been
specified by the user to perform a parametric study, the processes execute using a modulo approach so
that the parameter study is performed in parallel with each set of parameters being processed only once.

Figure 4: Multiple Parallel Interpreters

Using the OpenSees Interpreter on Parallel Computers 7 of 16

TN-2007-16 NEESit
Updated: 2008-04-17

Web it.nees.org
Email it-support@nees.org

5.1 Additional Commands
This new OpenSees interpreter can handle all existing OpenSees commands. Additional commands and
command line arguments, not found in the basic interpreter, are provided.

A new -par option is provided in the command line when starting the interpreter. The syntax is:

OpenSees mainFile? -par parName1 parFile1 -par parName2 parFile2 ..

When this option is used, the script will be executed the combination of all the parameters found in the
parameter files. The processor that each script runs on with a particular parameter set is determined
using a modulo approach, by assigning a unique number to each parameter set, dividing by the total
number of processors and using the modulo to assign it to a process.

A number of additional commands are provided to allow each running process to determine the processor
it is running on and the number of processors that the user started on the parallel machine and to allow
the interprocess communication at the scripting level. These are:

getNP: returns the total number of processors assigned to the user for this job.
getPID: return a unique processor number in range 0 through value returned in

[expr [getNP] - 1]
send –pid $pid $data: to send the data from local process to process whose process id is

given by the variable pid. Pid must be in range [0 through [expr [getNP] -1]
recv –pid $pid variableName: to receive data from a remote process and set the variable

named variableName to be equal to that data. Pid must be in set {0,..[expr [getNP] -1,
ANY}. If the value of $pid is ANY, the process can receive data from any process.

barrier: causes all processes to wait until all process reach this point in the code.

Using these commands it is possible for the user to perform their own domain decomposition analysis
(see Figure 3). The getNP and getPID allow the user to specify which nodes and elements are created on
which processor. The user however, must specify a parallel solver and numberer if this is their intent
using a modified system and numberer command described next.

5.2 Modified Commands
system: A number of parallel system-of-equations can be used. Of these only Petsc, Mumps and
DistributedSuperLU will actually perform the solving of the equations in parallel. The rest of the solvers
will gather the system of equation on P0 and solve it there sequentially. When doing domain-
decomposition using this interpreter a paralell system MUST be specified.

system ParallelProfileSPD

Using the OpenSees Interpreter on Parallel Computers 8 of 16

TN-2007-16 NEESit
Updated: 2008-04-17

Web it.nees.org
Email it-support@nees.org

system Mumps
system Petsc

numberer: When doing domain-decomposition using this interpreter the user MUST specify a parallel
numberer.

numberer ParallelPlain
numberer ParallelRCM

5.3 Parameter Study Examples
In the next two sections we will provide an example of a parameter study of subjecting a model to
multiple earthquake exciatations. The study will be done in the first case using the command line –par
option, and in the second example using the additional comands found in th interpreter.

To demonstrate the new interpreter consider the example of determing the drift ratios in a building model
subject to a list of earthquakes from the PEER ground motion database. The list of records to run are
assumed to be found in a file peerRecords.txt, which for this example holds 7200 lines, of which the first
10 are shown here:

CHICHI/TAP036-N.AT2
ABRUZZO/ATI-WE.AT2
ABRUZZO/GCN-NS.AT2
ABRUZZO/GCN-WE.AT2
ABRUZZO/ISE-NS.AT2
ABRUZZO/ISE-WE.AT2
ABRUZZO/PON-NS.AT2
ABRUZZO/PON-WE.AT2
ABRUZZO/ROC-NS.AT2
ABRUZZO/ROC-WE.AT2

The modeling and analysis details are unimportant for this example, so will be left out. Their details are
assumed to be contained in the files model.tcl, gravity.tcl, and analysis.tcl. The gravity.tcl and
analysis.tcl files contain the procedures doGravity and doDynamic.

i. Example using Command Line Arguments

In this example, the ability of the OpenSees interpreter to automatically perform the parallelization of
the parameter study based on the usage of the -par option in the command line will be demonstrated.
The program will be run on a user specified number of processors. Each processor will see the same
input file, main.tcl, and will be started with the additional command line arguments -par gMotion

Using the OpenSees Interpreter on Parallel Computers 9 of 16

TN-2007-16 NEESit
Updated: 2008-04-17

Web it.nees.org
Email it-support@nees.org

records.txt, where each time a process executes main.ctl, the variable gMotion will be one of the lines of
the records.txt file. The main script, main1.tcl, is as follows:

source in the model and analysis procedures
source model.tcl

do gravity analysis
source analysis.tcl

set ok [doGravity]

source model.tcl
source analysis.tcl

set ok [doGravity]

loadConst -time 0.0;

if {$ok == 0} {
 set gMotionList [split $gMotion "/"]
 set gMotionDir [lindex $gMotionList end-1]
 set gMotionNameInclAT2 [lindex $gMotionList end]
 set gMotionName [string range $gMotionNameInclAT2 0 end-4]

 set Gaccel "PeerDatabase $gMotionDir $gMotionName -accel $G -dT dT -nPts nPts"
 pattern UniformExcitation 2 1 -accel $Gaccel

 recorder EnvelopeNode -file $gMotionDir$gMotionName.out -node 3 4 -dof 1 2 3 disp

 doDynamic [expr $dT*$nPts] $dT

 if {$ok == 0} {
 puts "$gMotionDir $gMotionName OK"
 } else {
 puts "$gMotionDir $gMotionName FAILED"
 }
}
wipe

Using the OpenSees Interpreter on Parallel Computers 10 of 16

TN-2007-16 NEESit
Updated: 2008-04-17

Web it.nees.org
Email it-support@nees.org

To run this example, the user would start the OpenSees interpreter from the command line using the -par
option with a command such as:

mpirun -np 1024 OpenSeesManyParallelInterpreters main1.tcl -par gMotion records.txt

ii. Example using Additional Commands
This example demonstrates the ability of the OpenSees interpreter to perform parallelization based on
the processor id on which it runs and the number of processors involved in the parallel simulation. The
program will be run on a user specified number of processes. Each processor will see the same input file,
main.tcl. Each proceses when it starts will determine its unique id and the number of processes involved
in the computation. They will each open the records.txt file and run through the list of records, only
proceessing a record if the line number modulo the processor id is equal to 0. This guarantees that each
record is handled only once and that each process handles roughly the same number of records. The main
script, main2.tcl, for this example is as follows:

set pid [getPID]
set np [getNP]
set recordsFileID [open "peerRecords.txt" r]
set count 0;

foreach gMotion [split [read $recordsFileID] \n] {
 if {[expr $count % $np] == $pid} {

 source model.tcl
 source analysis.tcl

 set ok [doGravity]

 loadConst -time 0.0

 set gMotionList [split $gMotion "/"]
 set gMotionDir [lindex $gMotionList end-1]
 set gMotionNameInclAT2 [lindex $gMotionList end]
 set gMotionName [string range $gMotionNameInclAT2 0 end-4]

 set Gaccel "PeerDatabase $gMotionDir $gMotionName -accel 384.4 -dT dT -nPts nPts"
 pattern UniformExcitation 2 1 -accel $Gaccel

Using the OpenSees Interpreter on Parallel Computers 11 of 16

TN-2007-16 NEESit
Updated: 2008-04-17

Web it.nees.org
Email it-support@nees.org

 recorder EnvelopeNode -file $gMotionDir$gMotionName.out -node 3 4 -dof 1 2 3 disp

 doDynamic [expr $dT*$nPts] $dT

 if {$ok == 0} {
 puts "$gMotionDir $gMotionName OK"
 } else {
 puts "$gMotionDir $gMotionName FAILED"
 }
 wipe
 }

 incr count 1;
}

To run this example the user would start the OpenSees interpreter running on the parallel machine with a
command such as:

mpirun -np 1024 OpenSeesManyParallelInterpreters main2.tcl

iii. Differences between the Examples and Performance Issues
Internally there is very little difference between the two examples. The C++ code that is built into the
interpreter is handling the foreach statement that must be programmed explicitly in the second example
once the process id and number of processors are known. The scripting code for the first is simpler, but
while the second example is harder to program, it allows the user more control.

For parallel computers where the file system can be a bottleneck when it comes to performance, this
control is crucial to achieving optimum performance. If many small jobs all access the file system at
once, the performance of the running job can be severely affected by the file system. There are a number
of things the user can do in the script to reduce the demand on the file system. For example, files that are
going to be read multiple times by the same process should be copied to the local disk of a processor
(/scratch typically on Unix machines) before opening and reading the files. Another example would be to
use 'reset' instead of ‘wipe’; source model.tcl', if the same example is going to be run over and over again
in a parameter study. We can rewrite the second example to use less file resources. The new example,
main3.tcl, makes use of a fast /scratch directory that each local process has access to and uses the reset
and remove commands so that the model only has to be created once.

set pid [getPID]
set np [getNP]

Using the OpenSees Interpreter on Parallel Computers 12 of 16

TN-2007-16 NEESit
Updated: 2008-04-17

Web it.nees.org
Email it-support@nees.org

source model.tcl
source analysis.tcl

file copy peerRecords.txt /scratch/peerRecords.txt.$pid

set recordsFileID [open "/scratch/peerRecords.txt.$pid" r]

set count 0;

foreach gMotion [split [read $recordsFileID] \n] {
 if {[expr $count % $np] == $pid} {

 set ok [doGravity]

 loadConst -time 0.0

 set gMotionList [split $gMotion "/"]
 set gMotionDir [lindex $gMotionList end-1]
 set gMotionNameInclAT2 [lindex $gMotionList end]
 set gMotionName [string range $gMotionNameInclAT2 0 end-4]

 set Gaccel "PeerDatabase $gMotionDir $gMotionName -accel 384.4 -dT dT -nPts nPts"
 pattern UniformExcitation 2 1 -accel $Gaccel

 recorder EnvelopeNode -file $gMotionDir$gMotionName.out -node 3 4 -dof 1 2 3 disp

 doDynamic [expr $dT*$nPts] $dT

 if {$ok == 0} {
 puts "$gMotionDir $gMotionName OK"
 } else {
 puts "$gMotionDir $gMotionName FAILED"
 }

 # revert to start by removing load patterns, recorders & resetting
 remove loadPattern 1
 remove loadPattern 2
 remove recorders
 reset
 }
 incr count 1;
}

Using the OpenSees Interpreter on Parallel Computers 13 of 16

TN-2007-16 NEESit
Updated: 2008-04-17

Web it.nees.org
Email it-support@nees.org

5.4 Domain Decomposition Example
In this example, we perform domain decomposition analysis for a large model. The nodes, elements and
loads created on each processor depend on the process id, pid. For the analysis, a parallel solver and dof-
numberer are used.

source in the model and analysis procedures
 set pid [getPID]
 set np [getNP]

 # source in model and build model based on np and pid
 source modelP.tcl
 doModel {$pid $np}

 # perform gravity analysis
 system ParallelBandGeneral
 constraints Transformation
 numberer ParallelRCM
 test NormDispIncr 1.0e-12 10 3
 algorithm Newton
 integrator LoadControl 0.1

 analysis Static

 set ok [analyze 10]
 return $ok

6 Running the Interpreters on Windows Machines
Prebuilt binaries of the two interpreters can be found on the OpenSees website
http://OpenSees.berkeley.edu/OpenSees/parallel/parallel.php . These binaries require that the MPICH2
windows packages is installed on your machine. The MPICH2 distribution includes mpiexec, a binary to
run the applications, and smpd, a service that runs under windows to create processes for mpiexec.
When instaling under Windows Vista User Acess Control (UAC) needs to be turned off, this will require
a restart. This is required so that smpd service is set to run at startup in the install. You can turn it on
again after installing the package. If you do not do this, before running mpiexec yoi will need to open a

Using the OpenSees Interpreter on Parallel Computers 14 of 16

TN-2007-16 NEESit
Updated: 2008-04-17

Web it.nees.org
Email it-support@nees.org

terminal and run smpd using ‚smpd –d 0‘ option. The first time you run mpiexec in a terminal you will
be prompted for the passphrase. You should set the Path enviroment variable to pint to the MPICH2
install directory, which by default is c:\Program Files\MPICH2\bin.

To run an application with n processes on a tcl script you simply type

mpiexec –np n applicationName scriptName

For running the code on a network of parallel windows machines MPICH2 needs to be installed on all
machines. In addition the user runing the application must have an account on all machines and must be
registered to run on all machines. Also the OpenSees applications needs to be installed on all machines
and in the same directory locations on all machines. If running OpenSeesMP the input scripts must be
on all machines.

7 Running the Interpreters on Intel Mac Machines
Prebuilt binaries of the two interpreters can be found on the OpenSees website
http://OpenSees.berkeley.edu/OpenSees/parallel/parallel.php . These binaries require that the OpenMPI
Macintosh distribution is installed on your machine. The OpenMPI distribution includes mpiexec, a
binary to run the applications. The default installtion locataion of OpenMPI is /usr/local. You should
include the directory /usr/local/bin in your PATH envionment variable.

To run an application with n processes on a tcl script you simply type

mpiexec –np n applicationName scritName

8 Obtaining and Building the Interpreters
There are a number of steps to be performed to obtain and build this parallel version of the OpenSees
interpreter. These steps will be outlined assuming the user is building the interpreter on a Unix-based
machine.

1) Obtain the Source Code for Tcl/Tk

Tcl/Tk may already be installed on the parallel computer you wish to run on. On unix

machines issue the command which tclsh'. If tclsh is there, run it and check which version
is there using the tcl_version variable, e.g. start the interpreter and type the following 'set a
$tcl_version'.

If you do not have Tcl/Tk you will need to obtain the source code and build it, as when

building OpenSees you will need to link to the tcl libraries. Ths source code and
installation instructions can be found at http://www.tcl.tk/software/tcltk/

2) Obtain the Source Code for OpenSees

Using the OpenSees Interpreter on Parallel Computers 15 of 16

TN-2007-16 NEESit
Updated: 2008-04-17

Web it.nees.org
Email it-support@nees.org

The latest and most up-to-date version of the source code can be obtained from the the

OpenSees CVS repository using the following two commands:

cvs -d :pserver:anonymous@opensees.berkeley.edu:/usr/local/cvs
at prompt type: anonymous

cvs -d :pserver:anonymous@opensees.berkeley.edu:/usr/local/cvs co OpenSees

The latest stable version of the code can be obtained from the OpenSees web-site:

http://opensees.berkeley.edu/OpenSees/developer/download.php

3) Create the Makefile.def

The next and most complicated part of the process involves creating a Makefile.def file.

Example Makefile.def files can be found in the OpenSees/MAKES directory. Currently
there are examples in this directory for parallel computers: one is for the Datastar machine
at SDSC (Makefile.def.DATASTAR), another is for a linux IA-64 cluster
(Makefile.def.TERAGRID) at SDSC, and a third for a linux cluster at
Makefile.def.LINUX_CLUSTER for a cluster at UC Davis. Copy the file closest to your
parallel machine set-up to OpenSees/Makefile.def. Now you need to open this file and
edit certain lines. These will be edited assuming that OpenSees is to be found at
/home/fmckenna/OpenSees and tcl/tk in /home/fmckenna/tcl, and that the compiler to use
is gcc. Additional flags may be required to use mpi depending on your system.

 HOME = /home/fmckenna
 TCL_LIBRARY = /home/fmckenna/tcl/lib/libtcl.X
 TCL_INCLUDES = /home/fmckenna/tcl/include
 CC++ = gcc
 CC = gcc
 FC = g77
 C++FLAGS = -02
 CFLAGS = -02
 FFLAGS = -02

One other variable that needs to be set is PROGRAMMING_MODE. The value depends on

which interpreter you plan on building.

4) For OpenSeesSP.

Using the OpenSees Interpreter on Parallel Computers 16 of 16

TN-2007-16 NEESit
Updated: 2008-04-17

Web it.nees.org
Email it-support@nees.org

 PROGRAMMING_MODE = PARALLEL

5) For OpenSeesMP.

 PROGRAMMING_MODE = PARALLEL_INTERPRETERS

6) Create Directories for the OpenSees .exe and libraries

In the HOME directory given above create directories lib and bin.

7) Build the .exe

In the HOME/OpenSees directory type 'make'.

Datastar users should note that this Makefile.def has been set up for 64 bit compilation. As such,

as so as not to be stopped by a bunch of errors, you need to set the OBJECT_MODE
enviroment variable to 64, e.g. type

setenv OBJECT_MODE 64.

9 Acknowledgments
The development of OpenSees has been supported by the Pacific Earthquake Engineering Research
Center under grant no. EEC-9701568 from the National Science Foundation. Integration of OpenSees
with the NEES information technology program (NEESit) has been supported by NSF under grant no.
CMS-0402490 from the NEES Consortium to the University of California, San Diego Supercomputer
Center. The support of Dr. Ahmed Elgamal and Dr. Lelli Van Den Einde from NEESit is greatly
appreciated. Significant contributors to OpenSees include, among many others, Dr. Michael H. Scott, Dr.
Filip C. Filippou, and Dr. Boris Jeremic.

10 References
[1] Fenves, G.L., "A Vision for Computational Simulation in Earthquake Engineering", Community

Workshop on Computational Simulation and Visualization Environment for the Network for
Earthquake Engineering Simulation (NEES), Sponsored by NSF, Roddis, K., editor, Lawrence, KS,
2003.

[2] Open System for Earthquake Engineering Simulation, http://opensees.berkeley.edu/
[3] Ousterhout. J., Tcl and the Tk Toolkit, Addison-Wesley, 1994.
[4] McKenna, F., Object-oriented Finite Element Programming: Frameworks for Analysis, Algorithms

and Parallel computing, Ph.D. Thesis, University of California, Berkeley, CA, 1997.

