Previous Topic

Next Topic

Book Contents

nDMaterial MultiaxialCyclicPlasticity Soil Model

Contact Author: Gang Wang gwang [at] geomatrix [dot] com

nDMaterial MultiaxialCyclicPlasticity $tag $rho $K $Gmax $Su $Ho $h $m $beta $Kcoeff

$tag unique material object integer tag
$rho Mass density
$K Bulk modulus
$Gmax Maximum (small strain) Shear modulus
$Su Undrained shear strength
$Ho Linear kinematic hardening parameter of bounding surface
$h Exponential hardening parameter
$m Exponential hardening parameter
$beta Integration parameter (use $beta=0.5 for midpoint rule)
$Kcoeff Coefficient of horizontal earth pressure (not used at this moment)

The command constructs a MultiaxialCyclicPlasticity material object, which can be used in 3D, 2D plane strain, and 2D axisymmetric analysis. The model is based on concept of bounding surface plasticity. For the volumetric response, the stress-strain relationship is pressure-independent (linearly elastic), as specified by a constant bulk modulus $K. For the deviatoric response, the stress-strain relationship is fully nonlinear --- the shear modulus degradates smoothly from initial value, $Gmax, to its residual value when the stress state reaches the bounding surface. Two hardening parameters $h and $m are used to describe the evolution of nonlinearity. The bounding surface is of the Von Mises type, and it can exhibit linear kinematic hardening according to hardening parameter $Ho. This material can be used to simulate undrained cyclic behavior of saturated clays.

NOTE:
1. The undrained shear strength $Su defines the radius R of bounding surface (R=sqrt(8/3)*Su);
2. The coefficient of earth pressure $Kcoeff is designed to prescribe correct lateral pressure for consolidation under self weight. It is activated by calling a command for updating material stage. By default, this parameter is not used. So right now, just give it any number.

References:
Borja, RI and A.P. Amies (1994), "Multiaxial cyclic plasticity model for clays," Journal of Geotechnical Engineering, ASCE, 120(6), pp.1051-1070

Wang, G. and N. Sitar (2006). "Nonlinear Analysis of a Soil-Drilled Pier System under Static and Dynamic Axial Loading", PEER Report, 2006/06, University of California, Berkeley http://peer.berkeley.edu/publications/peer_reports/reports_2006/reports_2006.html

Example:

#*****************************************
# #
# Cyclic Simple Shear Test for Clays #
# #
# MultiAxialCyclicPlasticity Model #
# #
# Gang Wang and Nicholas Siter #
# #
# CEE, University of California, Berkeley #
# #
# June 4, 2004 #
# #
#*****************************************#

# ################################
# create the modelbuilder
# #################################

wipe

model BasicBuilder -ndm 2 -ndf 2

set displayMode "displayON"

set totalDisp 0.3; # shear to totalDisp in percentage
set Steps1 100; # virgin loading
set Steps2 [expr 2*$Steps1]; # unloading steps
set Steps3 [expr 2*$Steps1]; # reloading steps


# ################################
# build the model
# #################################


# build a element of length L and height H
#
# y /\
# |
# |
# 3 O-------O 4
# | |
# | (1) | H
# | |
# 1 O-------O 2 ----> x
# L


################################
## ##
## SPECIMEN ##
## ##
################################

## length and height of specimen
set L 100;
set H 100;

node 1 0 0
node 2 $L 0
node 3 0 [expr $H]
node 4 $L [expr $H]


fix 1 1 1
fix 2 1 1
fix 3 0 1
fix 4 0 1
equalDOF 3 4 1

###############################
## ##
## MATERIAL ##
## ##
###############################
set E [expr 5.0e8]; # Young's Modulus (in Pa)
set v 0.49; # Poisson's Ratio
set K [expr $E/(3*(1-2*$v))]; # bulk modulus
set Gmax [expr $E/(2*(1+$v))]; # maximum shear modulus
set rho_soil 2000.0; # density
set Ho [expr $Gmax/300.0] ; # hardening modulus of bounding surface
set h [expr 0.8*$Gmax]; # hardening parameter
set m 0.8; # hardening parameter
set Su 1.0e5; # undrained shear strength
set beta 0.5; # integration parameter, 0.5 for midpoint rule
set K0 0.5; # coefficient of earthpressure, just give a number
nDMaterial MultiaxialCyclicPlasticity 1 $rho_soil $K $Gmax $Su $Ho $h $m $beta $K0
################################
## ##
## ELEMENT ##
## ##
################################

set matNum 1
element quad 1 1 2 4 3 1 PlaneStrain $matNum

################################
## ##
## LOAD ##
## ##
################################

# Constant point load
pattern Plain 1 Linear {
load 3 1 0
load 4 1 0
}


################################
## ##
## ANALYSIS ##
## ##
################################

# create the analysis

###### virgin Loading ###############
set SingleStep [expr $totalDisp/$Steps1]
integrator DisplacementControl 3 1 $SingleStep
numberer RCM
#constraints Penalty 1e19 1e19
constraints Plain
set Threshhold 1.0e-16
test NormDispIncr $Threshhold 50 1
#test EnergyIncr $Threshhold 50 1

algorithm Newton
numberer RCM
system ProfileSPD
analysis Static

recorder Node -file nodedisp.out -time -node 3 -dof 1 disp
recorder plot nodedisp.out TopNodeDisp 10 10 500 450 -columns 1 2

# ################################
# perform the analysis
# #################################

analyze $Steps1
print node 3 4

##### 2nd Loading ###################
loadConst
setTime 0.0
pattern Plain 2 Linear {
load 3 -1 0
load 4 -1 0
}

integrator DisplacementControl 3 1 [expr -1.0*$SingleStep];
analyze $Steps2
print node 3 4

##### 3rd Loading #################
loadConst
setTime 0.0
pattern Plain 3 Linear {
load 3 1 0
load 4 1 0
}
integrator DisplacementControl 3 1 [expr 1.0*$SingleStep];
analyze $Steps3
print node 3 4

Previous Topic

Next Topic