Twenty_Eight_Node_BrickUP is a 20-node hexahedral isoparametric element. The eight corner nodes have 4 degrees-of-freedom (DOF) each: DOFs 1 to 3 for solid displacement (u) and DOF 4 for fluid pressure (p). The other nodes have 3 DOFs each for solid displacement. This element is implemented for simulating dynamic response of solid-fluid fully coupled material, based on Biot's theory of porous medium. Please visit http://cyclic.ucsd.edu/opensees for examples.
OUTPUT INTERFACE:
Pore pressure can be recorded at an element node using OpenSees Node Recorder:
recorder Node <-file $fileName> <-time> <-node ($nod1 $nod2 …)> -dof 3 vel
See OpenSees command manual (McKenna and Fenves 2001) for nodal displacement, velocity, or acceleration recorders.
The valid queries to a Twenty_Eight_Node_BrickUP element when creating an ElementRecorder are 'force', 'stiffness', or 'material matNum matArg1 matArg2 ...', where matNum represents the material object at the corresponding integration point.
element 20_8_BrickUP $eleTag $Node1 … $Node20 $matTag $bulk $fmass $PermX $PermY $PermZ <$bX=0 $bY=0 $bZ=0>
$eleTag |
A positive integer uniquely identifying the element among all elements |
$Node1,… $Node20 |
20 element node (previously defined) numbers (see figure above for order of numbering). |
$matTag |
Tag of an NDMaterial object (previously defined) of which the element is composed |
$bulk |
Combined undrained bulk modulus Bc relating changes in pore pressure and volumetric strain, may be approximated by: where Bf is the bulk modulus of fluid phase (2.2x106 kPa for water), and n the initial porosity. |
$fmass |
Fluid mass density |
$permX, $permY, $permZ |
Permeability coefficients in x, y, and z directions respectively. |
$bX, $bY, $bZ |
Optional gravity acceleration components in x, y, and z directions directions respectively (defaults are 0.0) |
References
Elgamal, A., Lai, T., Yang, Z. and He, L. (2001). "Dynamic Soil Properties, Seismic Downhole Arrays and Applications in Practice," State-of-the-art paper, Proc., 4th Intl. Conf. on Recent Advances in Geote. E.Q. Engrg. Soil Dyn. March 26-31, San Diego, CA, S. Prakash (Ed.).
Elgamal, A., Yang, Z. and Parra, E. (2002). "Computational Modeling of Cyclic Mobility and Post-Liquefaction Site Response," Soil Dyn. Earthquake Engrg., 22(4), 259-271.
Elgamal, A., Yang, Z., Parra, E. and Ragheb, A. (2003). "Modeling of Cyclic Mobility in Saturated Cohesionless Soils," Int. J. Plasticity, 19(6), 883-905.
McKenna, F. and Fenves, G. (2001). "The OpenSees Command Language Manual: version 1.2," Pacific Earthquake Engineering Center, Univ. of Calif., Berkeley. (http://opensees.berkeley.edu).
Parra, E. (1996). "Numerical Modeling of Liquefaction and Lateral Ground Deformation Including Cyclic Mobility and Dilation Response in Soil Systems," Ph.D. Thesis, Dept. of Civil Engineering, Rensselaer Polytechnic Institute, Troy, NY.
Yang, Z. (2000). "Numerical Modeling of Earthquake Site Response Including Dilation and Liquefaction," Ph.D. Thesis, Dept. of Civil Engineering and Engineering Mechanics, Columbia University, NY, New York.
Yang, Z. and Elgamal, A. (2002). "Influence of Permeability on Liquefaction-Induced Shear Deformation," J. Engrg. Mech., ASCE, 128(7), 720-729.
Yang, Z., Elgamal, A. and Parra, E. (2003). "A Computational Model for Liquefaction and Associated Shear Deformation," J. Geotechnical and Geoenvironmental Engineering, ASCE, 129(12), 1119-1127.