Nine_Four_Node_QuadUP is a 9-node quadrilateral plane-strain element. The four corner nodes have 3 degrees-of-freedom (DOF) each: DOF 1 and 2 for solid displacement (u) and DOF 3 for fluid pressure (p). The other five nodes have 2 DOFs each for solid displacement. This element is implemented for simulating dynamic response of solid-fluid fully coupled material, based on Biot's theory of porous medium. Please visit http://cyclic.ucsd.edu/opensees for examples.
OUTPUT INTERFACE:
Pore pressure can be recorded at an element node using OpenSees Node Recorder:
recorder Node <-file $fileName> <-time> <-node ($nod1 $nod2 …)> -dof 3 vel
See OpenSees command manual (McKenna and Fenves 2001) for nodal displacement, velocity, or acceleration recorders.
The valid queries to a Nine_Four_Node_QuadUP element when creating an ElementRecorder are 'force', 'stiffness', or 'material matNum matArg1 matArg2 ...', where matNum represents the material object at the corresponding integration point.
element 9_4_QuadUP $eleTag $Node1 $Node2 $Node3 $Node4 $Node5 $Node6 $Node7 $Node8 $Node9 $thick $matTag $bulk $fmass $hPerm $vPerm <$b1=0 $b2=0>
$eleTag |
A positive integer uniquely identifying the element among all elements |
$Node1,… $Node9 |
Nine element node (previously defined) numbers (see figure above for order of numbering). |
$thick |
Element thickness |
$matTag |
Tag of an NDMaterial object (previously defined) of which the element is composed |
$bulk |
Combined undrained bulk modulus Bc relating changes in pore pressure and volumetric strain, may be approximated by: where Bf is the bulk modulus of fluid phase (2.2x106 kPa for water), and n the initial porosity. |
$fmass |
Fluid mass density |
$hPerm, $vPerm |
Permeability coefficient in horizontal and vertical directions respectively. |
$b1, $b2 |
Optional gravity acceleration components in horizontal and vertical directions respectively (defaults are 0.0) |