Previous Topic

Next Topic

Book Contents

EXAMPLE 5 - Three-Dimensional Rigid Frame

This example is of a three-dimensional reinforced concrete rigid frame, as shown in the figure, subjected to bi-directional earthquake ground motion.

Files Required

Model

A model of the rigid frame shown in the figure is created. The model consists of three stories and one bay in each direction. Rigid diaphragm multi-point constraints are used to enforce the rigid in-plane stiffness assumption for the floors. Gravity loads are applied to the structure and the 1978 Tabas acceleration records are the uniform earthquake excitations.

Nonlinear beam column elements are used for all members in the structure. The beam sections are elastic while the column sections are discretized by fibers of concrete and steel. Elastic beam column elements may have been used for the beam members; but, it is useful to see that section models other than fiber sections may be used in the nonlinear beam column element.

Example 5.1 Three-Dimensional Rigid Frame

Analysis

A solution Algorithm of type Newton is used for the nonlinear problem. The solution algorithm uses a ConvergenceTest which tests convergence on the norm of the energy increment vector. The integrator for this analysis will be of type Newmark with a $\gamma$ of 0.25 and a $\beta$ of 0.5. Due to the presence of the multi-point constraints, a Transformation constraint handler is used. The equations are formed using a sparse storage scheme which will perform pivoting during the equation solving, so the System is SparseGeneral. As SparseGeneral will perform it's own internal numbering of the equations, a Plain numberer is used which simply assigns equation numbers to the degrees-of-freedom.

Once all the components of an analysis are defined, the Analysis object itself is created. For this problem a Transient Analysis object is used. 2000 steps are performed with a time step of 0.01.

Output Specification

The nodal displacements at nodes 9, 14, and 19 (the master nodes for the rigid diaphragms) will be stored in the file node51.out for post-processing.

OpenSees Script

# OpenSees Example 5.1

# OpenSees Primer

#

# Units: kips, in, sec

# ----------------------------

# Start of model generation

# ----------------------------

# Create ModelBuilder with 3 dimensions and 6 DOF/node

model BasicBuilder -ndm 3 -ndf 6

# Define geometry

# ---------------

# Set parameters for model geometry

set h 144.0; # Story height

set by 240.0; # Bay width in Y-direction

set bx 240.0; # Bay width in X-direction

# Create nodes

# tag X Y Z

node 1 [expr -$bx/2] [expr $by/2] 0

node 2 [expr $bx/2] [expr $by/2] 0

node 3 [expr $bx/2] [expr -$by/2] 0

node 4 [expr -$bx/2] [expr -$by/2] 0

node 5 [expr -$bx/2] [expr $by/2] $h

node 6 [expr $bx/2] [expr $by/2] $h

node 7 [expr $bx/2] [expr -$by/2] $h

node 8 [expr -$bx/2] [expr -$by/2] $h

node 10 [expr -$bx/2] [expr $by/2] [expr 2*$h]

node 11 [expr $bx/2] [expr $by/2] [expr 2*$h]

node 12 [expr $bx/2] [expr -$by/2] [expr 2*$h]

node 13 [expr -$bx/2] [expr -$by/2] [expr 2*$h]

node 15 [expr -$bx/2] [expr $by/2] [expr 3*$h]

node 16 [expr $bx/2] [expr $by/2] [expr 3*$h]

node 17 [expr $bx/2] [expr -$by/2] [expr 3*$h]

node 18 [expr -$bx/2] [expr -$by/2] [expr 3*$h]

# Master nodes for rigid diaphragm

# tag X Y Z

node 9 0 0 $h

node 14 0 0 [expr 2*$h]

node 19 0 0 [expr 3*$h]

# Set base constraints

# tag DX DY DZ RX RY RZ

fix 1 1 1 1 1 1 1

fix 2 1 1 1 1 1 1

fix 3 1 1 1 1 1 1

fix 4 1 1 1 1 1 1

# Define rigid diaphragm multi-point constraints

# normalDir master slaves

rigidDiaphragm 3 9 5 6 7 8

rigidDiaphragm 3 14 10 11 12 13

rigidDiaphragm 3 19 15 16 17 18

# Constraints for rigid diaphragm master nodes

# tag DX DY DZ RX RY RZ

fix 9 0 0 1 1 1 0

fix 14 0 0 1 1 1 0

fix 19 0 0 1 1 1 0

# Define materials for nonlinear columns

# --------------------------------------

# CONCRETE

# Core concrete (confined)

# tag f'c epsc0 f'cu epscu

uniaxialMaterial Concrete01 1 -5.0 -0.005 -3.5 -0.02

# Cover concrete (unconfined)

set fc 4.0

uniaxialMaterial Concrete01 2 -$fc -0.002 0.0 -0.006

# STEEL

# Reinforcing steel

# tag fy E b

uniaxialMaterial Steel01 3 60 30000 0.02

# Column width

set d 18.0

# Source in a procedure for generating an RC fiber section

source RCsection.tcl

# Call the procedure to generate the column section

# id h b cover core cover steel nBars area nfCoreY nfCoreZ nfCoverY nfCoverZ

RCsection 1 $d $d 2.5 1 2 3 3 0.79 8 8 10 10

# Concrete elastic stiffness

set E [expr 57000.0*sqrt($fc*1000)/1000];

# Column torsional stiffness

set GJ 1.0e10;

# Linear elastic torsion for the column

uniaxialMaterial Elastic 10 $GJ

# Attach torsion to the RC column section

# tag uniTag uniCode secTag

section Aggregator 2 10 T -section 1

set colSec 2

# Define column elements

# ----------------------

#set PDelta "ON"

set PDelta "OFF"

# Geometric transformation for columns

if {$PDelta == "ON"} {

# tag vecxz

geomTransf LinearWithPDelta 1 1 0 0

} else {

geomTransf Linear 1 1 0 0

}

# Number of column integration points (sections)

set np 4

# Create the nonlinear column elements

# tag ndI ndJ nPts secID transf

element nonlinearBeamColumn 1 1 5 $np $colSec 1

element nonlinearBeamColumn 2 2 6 $np $colSec 1

element nonlinearBeamColumn 3 3 7 $np $colSec 1

element nonlinearBeamColumn 4 4 8 $np $colSec 1

element nonlinearBeamColumn 5 5 10 $np $colSec 1

element nonlinearBeamColumn 6 6 11 $np $colSec 1

element nonlinearBeamColumn 7 7 12 $np $colSec 1

element nonlinearBeamColumn 8 8 13 $np $colSec 1

element nonlinearBeamColumn 9 10 15 $np $colSec 1

element nonlinearBeamColumn 10 11 16 $np $colSec 1

element nonlinearBeamColumn 11 12 17 $np $colSec 1

element nonlinearBeamColumn 12 13 18 $np $colSec 1

# Define beam elements

# --------------------

# Define material properties for elastic beams

# Using beam depth of 24 and width of 18

# --------------------------------------------

set Abeam [expr 18*24];

# "Cracked" second moments of area

set Ibeamzz [expr 0.5*1.0/12*18*pow(24,3)];

set Ibeamyy [expr 0.5*1.0/12*24*pow(18,3)];

# Define elastic section for beams

# tag E A Iz Iy G J

section Elastic 3 $E $Abeam $Ibeamzz $Ibeamyy $GJ 1.0

set beamSec 3

# Geometric transformation for beams

# tag vecxz

geomTransf Linear 2 1 1 0

# Number of beam integration points (sections)

set np 3

# Create the beam elements

# tag ndI ndJ nPts secID transf

element nonlinearBeamColumn 13 5 6 $np $beamSec 2

element nonlinearBeamColumn 14 6 7 $np $beamSec 2

element nonlinearBeamColumn 15 7 8 $np $beamSec 2

element nonlinearBeamColumn 16 8 5 $np $beamSec 2

element nonlinearBeamColumn 17 10 11 $np $beamSec 2

element nonlinearBeamColumn 18 11 12 $np $beamSec 2

element nonlinearBeamColumn 19 12 13 $np $beamSec 2

element nonlinearBeamColumn 20 13 10 $np $beamSec 2

element nonlinearBeamColumn 21 15 16 $np $beamSec 2

element nonlinearBeamColumn 22 16 17 $np $beamSec 2

element nonlinearBeamColumn 23 17 18 $np $beamSec 2

element nonlinearBeamColumn 24 18 15 $np $beamSec 2

# Define gravity loads

# --------------------

# Gravity load applied at each corner node

# 10% of column capacity

set p [expr 0.1*$fc*$h*$h]

# Mass lumped at master nodes

set g 386.4; # Gravitational constant

set m [expr (4*$p)/$g]

# Rotary inertia of floor about master node

set i [expr $m*($bx*$bx+$by*$by)/12.0]

# Set mass at the master nodes

# tag MX MY MZ RX RY RZ

mass 9 $m $m 0 0 0 $i

mass 14 $m $m 0 0 0 $i

mass 19 $m $m 0 0 0 $i

# Define gravity loads

pattern Plain 1 Constant {

foreach node {5 6 7 8 10 11 12 13 15 16 17 18} {

load $node 0.0 0.0 -$p 0.0 0.0 0.0

}

}

# Define earthquake excitation

# ----------------------------

# Set up the acceleration records for Tabas fault normal and fault parallel

set tabasFN "Path -filePath tabasFN.txt -dt 0.02 -factor $g"

set tabasFP "Path -filePath tabasFP.txt -dt 0.02 -factor $g"

# Define the excitation using the Tabas ground motion records

# tag dir accel series args

pattern UniformExcitation 2 1 -accel $tabasFN

pattern UniformExcitation 3 2 -accel $tabasFP

# -----------------------

# End of model generation

# -----------------------

# ----------------------------

# Start of analysis generation

# ----------------------------

# Create the convergence test

# tol maxIter printFlag

test EnergyIncr 1.0e-8 20 3

# Create the solution algorithm

algorithm Newton

# Create the system of equation storage and solver

system SparseGeneral -piv

# Create the constraint handler

constraints Transformation

# Create the time integration scheme

# gamma beta

integrator Newmark 0.5 0.25

# Create the DOF numberer

numberer RCM

# Create the transient analysis

analysis Transient

# --------------------------

# End of analysis generation

# --------------------------

# ----------------------------

# Start of recorder generation

# ----------------------------

# Record DOF 1 and 2 displacements at nodes 9, 14, and 19

recorder Node -file node51.out -time -node 9 14 19 -dof 1 2 disp

# --------------------------

# End of recorder generation

# --------------------------

# --------------------

# Perform the analysis

# --------------------

# Analysis duration of 20 seconds

# numSteps dt

analyze 2000 0.01

Results

The results consist of the file node.out, which contains a line for every time step. Each line contains the time and the horizontal and vertical displacements at the diaphragm master nodes (9, 14 and 19) i.e. time Dx9 Dy9 Dx14 Dy14 Dx19 Dy19. The horizontal displacement time history of the first floor diaphragm node 9 is shown in figure~\ref{example4disp}. Notice the increase in period after about 10 seconds of earthquake excitation, when the large pulse in the ground motion propogates through the structure. The displacement profile over the three stories shows a soft-story mechanism has formed in the first floor columns. The numerical solution converges even though the drift is $\approx 20 \%$. The inclusion of P-Delta effects shows structural collapse under such large drifts.

FIGURE HERE

Previous Topic

Next Topic