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Abstract 

Performance based earthquake Engineering requires robust analytical tools for obtaining 

the structural response, damage assessment, as well as for performing reliability analysis. 

This research effort advances the numerical modeling of reinforced concrete structures by 

enabling simulation of inelastic beam-column joint behavior and reduced load carrying 

capacity of structural frames resulting from joint damage. The behavior of beam-column 

joints has been researched extensively over the past forty years through experimental 

studies on isolated joints in reinforced concrete subassemblies. This study focuses on the 

influence of joints on the overall frame behavior and the effect of modeling uncertainties 

on the response prediction. The analytical models proposed in this research are 

implemented in the OpenSees environment. Joint elements are formulated to simulate the 

nonlinear response of joints in two and three-dimensional models under cyclic loading. 

Proposed joint elements capture both geometric and material nonlinearities. A collection 

of nonlinear constitutive rules with cyclic deterioration are implemented to facilitate 

modeling the inelastic behavior associated with shear panel deformations and the slip of 

longitudinal reinforcement anchored in the joint. A generic damage model is proposed 

and implemented following the object-oriented architecture of OpenSees. The damage 

model incorporates existing damage formulations for representing deteriorating 

parameters in component force-deformation relationships and for component 

performance assessment. Calibrated modeling parameters are provided for seismically 

detailed code-conforming joints, and with minor calibration the same methods are used 

for modeling older (non-conforming) designs. The generic damage model allows one to 

present the damage indices as the engineering demand parameters and define limit-state 

boundaries for reliability analysis based on component damage. The sensitivity of the 

joint response and the nonlinear materials to modeling parameters are formulated for 

application through the reliability analysis toolbox of OpenSees. Applications of the 

proposed performance modeling tools are demonstrated through reliability simulations to 

compute the probabilistic distribution of damage in the joints, considering variability in 

both modeling and material parameters. 
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1 Introduction 

1.1 Motivation for study 

The ultimate goal of earthquake engineering is design and construction of economical 

earthquake resistant structures. In practice, an optional economic design solution can be 

difficult to find, given the numerous sources of uncertainty that may obstruct the path 

toward a unique, earthquake-resistant design that satisfies all the serviceability and safety 

expectations. One of the key attributes of new performance-based approaches to 

earthquake engineering is dealing with the inherent uncertainties in a systematic 

approach. 

Earthquakes are probabilistic phenomena, with uncertainties in the location of the source, 

the ground motion characteristics, and the occurrence rate.  Geotechnical conditions of 

the building site and soil-structure interaction add to the variability of the earthquake 

hazard. Uncertainties in proportions and behavior of the structure itself further complicate 

the problem. Uncertainties due to the lack of knowledge or modeling capabilities are 

sometimes referred to as epistemic uncertainties. Other sources of uncertainty which are 

unavoidable due to the underlying physics or lack of information to the design phase, 

such as the inherent material characteristics or construction tolerances, are referred to as 

aleatory variability. Distinctions between the epistemic uncertainties in engineering 

models and the aleatory variability is useful in formulation an engineering approach for 

earthquake resistant design.  

The engineering approach for dealing with a complex problem with numerous unknowns, 

constraints, and input variability can be described as breaking the main problem to 

smaller problems to deal with a limited number of variables for each piece of problem. 

Each subsection of the main problem is then solved more conveniently and the partial 

solutions are integrated to form the global solution. 

This study incorporates such as approach to investigate the design and behavior of 

Reinforced Concrete (RC) frames. The RC frame is divided to individual structural 
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components, including beam-column elements, wall elements, floor diaphragms and 

connections between these elements. This research focuses on beam-column joints, which 

comprise the volume of the structure defined by beam and column intersection. Figure 

 1-1 shows damage in an exterior and an interior RC beam-column joint subjected to 

cyclic loading which resulted in severe loss in load bearing capacity. Damage of this sort 

has been observed in post-earthquake evaluations of reinforced concrete buildings 

subjected to large earthquakes. 

Behavior of the reinforced concrete beam-column joints has been extensively studied 

over the past 40 years, but there are still many unresolved issues regarding the joint 

performance. Both experimental and analytical investigations of the beam-column joint 

behavior have been a challenge since beam-column joints are relatively small and 

geometrically complex regions of the structure with high force gradients, resulting in 

local nonlinearities and damage. The nonlinear behavior of beam-column joints increases 

the variability and complexity of the overall structural behavior. In recent years, the use 

of high strength concrete has resulted in smaller sections and proportionally larger 

reinforcement bars which will place more demands on the joints, particularly as they 

undergo cyclic deformations into the inelastic range.  

1.2 Impression of performance-based earthquake engineering 

Modern methodologies and improved knowledge about earthquake phenomena and the 

structural response have accelerated the development of earthquake engineering. 

Performance based earthquake engineering (PBEE) is a recent focus of research and 

development to permit more informed decision making on structural design, to meet 

desired performance expectations for possible earthquake hazards (Krawinkler and 

Miranda, 2004). 

Since the seismic demands and capacities cannot be predicted with complete certainty, 

PBEE allows a more comprehensive approach by achieving a more predictable 

performance, considering multiple hazard levels and performance objectives in the design 
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process. Each performance objective is associated with an earthquake hazard level based 

on the owner’s expectations and budget.  

The performance objectives are chosen based on the owner’s expectations such as 

immediate occupation and limited downtime along with a performance limitation for 

collapse prevention and life safety. The approach used by Pacific Earthquake Engineering 

Research (PEER) Center for PBEE divides the performance assessment to four 

intermediate processes to relate the earthquake intensity to the structural performance 

(Cornell and Krawinkler, 2001; Deierlein, 2003; Moehle, 2003). As shown in Figure  1-2, 

the intermediate variables used in PBEE are listed as, the Engineering Demand 

Parameters (EDP), the Damage Measures (DM), and the Decision Variable (DV). 

The earthquake occurrence and its characteristics are probabilistic in nature, and 

definition of the earthquake hazard is one of the primary sources of uncertainty in 

estimating structural performance. The earthquake hazard is subdivided to specific hazard 

levels, where each hazard level is defined by the occurrence rate of earthquakes smaller 

than the specified intensity. The intensity measure (IM) describes the severity of the 

ground motion hazard in a probabilistic manner. IMs are typically identified by single 

parameter variables, such as spectral acceleration or spectral displacement. Calculating 

IMs is involved with the geological characteristics of the region including the building 

site characteristics and nearby active faults.  

In addition to the earthquake intensity, there are design and construction factors involved 

with the uncertainties of evaluating the performance of the structure. These factors 

depend on the technical knowledge, construction techniques and quality, and 

uncertainties in the building materials. 

Referring to Figure  1-2, the first process in the PEER methodology relates the earthquake 

intensity measure (IM) to the engineering demand parameters. The parameters that 

quantitatively express the structural response are the so-called Engineering Demand 

Parameters (EDP), which are computed by structural analysis procedures such as 

nonlinear time-history analysis. The EDPs are selected based on the type of structural 
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system, the performance expectations, and how the EDPs relate to the damage measures. 

Typical EDPs include inter-story drifts, component inelastic deformations, or floor 

accelerations; although, cumulative damage indices are also possible. 

The Damage Measures (DM) are qualitative states that describe the extent of structural 

and non-structural damage to the structure and its components. The damage indices 

introduced in this research are used to facilitate the process of relating the EDPs to DMs. 

The damage measures are defined based on the consequences of the damage on safety, 

continued functionality, and the required repair procedures.  

Information from the damage measures are used to determine the Decision Variables 

(DV) to evaluate potential economical and life loss, as well as repair time. The decision 

variables, usually defined in a probabilistic manner, are used for performance assessment 

and risk management decisions. 

The performance assessment process deals with variability in the IM, EDP, DM, DV, and 

their inter-relationships. The total probability theorem is used in the PEER methodology 

to integrate the generalized variables to describe the outcome of possible earthquake 

occurrence (Deierlein et al. 2003). The mean annual frequency of the decision variable 

exceeding a pre-specified value, ( )dv DVυ > , is calculated by the following equation: 

 
( )

( ) ( ) ( ) ( )
dm edp im

dv DV

d IM
P dv DV dm DM dP dm DM edp EDP dP edp EDP im IM dIM

dIM

υ

υ

> =

> = ⋅ > = ⋅ > = ⋅∫ ∫ ∫
 (1.1) 

where ( )P dv DV dm DM> = , ( )P dm DM edp EDP> = , and ( )P edp EDP im IM> =  

are conditional probabilities and ( )d IM
dIM
υ

 is the derivative of the seismic hazard curve, 

relating the intensity measure to its mean annual frequency of exceedence. The 

underlying assumptions behind Equation (1.1) are that these conditional probabilities are 

independent of each other.  
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The DM-EDP relationship is dependent on the uncertainties in modeling knowledge, 

component properties (e.g. material quality of construction etc.), and loading history. 

Comparisons between the predicted damage, based on the theoretical damage models, 

and the actual damage observed form laboratory tests or detailed models provide data to 

establish the DM-EDP relationship at the component level. The damage models proposed 

in this research will facilitate establishment of the DM-EDP relationship.  

1.2.1 Structural analysis for PBEE 

To achieve the full vision of the Performance Based Earthquake Engineering, all of the 

significant details that may contribute to the structural response should be represented by 

the analysis model. The analysis must accurately characterize the engineering demand 

parameters and consequently the structural performance for various seismic hazard levels 

up to the collapse point. The analytical tools developed in this research will contribute to 

this vision of PBEE by enhancing the structural modeling technologies through:  

• Development and implementation of new beam-column joint elements to more 

accurately simulate nonlinear frame response, which include cyclic strength and 

stiffness degradation and large displacement (geometric) nonlinear effects. 

• Implementation of hysteretic nonlinear material models with strength and 

stiffness deterioration. 

• Development and implementation of models and tools for post processing and 

tracking structural component damage 

• Implementation and application of reliability models to assess the influence of 

modeling uncertainties. 

1.2.2 Reinforced concrete frame behavior under dynamic loading  

Behavior of RC frames is governed by many factors, including the initial characteristics 

of the structure, the time dependent effects such as creep and shrinkage, the environments 

and the loading history. RC components are usually expected to crack under service 

loadings. The dynamic behavior of RC frames is even more complex since load reversals 
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may accelerate the strength and stiffness degradation and change the load bearing 

mechanisms. The inelastic deformations in reinforced concrete are associated with rebar 

yielding, bond-slip, rebar pullout, crack opening and possible concrete crushing or cover 

spalling (Figure  1-3). The amount and details of longitudinal and transverse 

reinforcement both in beams and columns, the detailing of the beam-column joints, slab 

connections, laps and splices, rebar discontinuities can influence the structural 

performance under seismic loading. 

The behavior is also highly dependent on the design and detailing requirements which 

have changed considerably over past decades. Prior to early 1970’s, buildings were 

designed mainly for gravity loads, with limited capacity to sustain inelastic lateral load 

reversals. Design details of the pre-70’s structures do not provide adequate confinement 

in the joint zone, which can result in severe beam-column joint damage, where the 

structure is subjected to inelastic cyclic loading. Discontinuities in beam longitudinal 

reinforcements increase the tendency of rebar pullout at joint zones. In more recent years 

(1980, and later), the components are designed with somewhat reduced strength capacity 

compared to the older designs, but with ductile reinforcement detailing. Ductile detailing 

for the RC components allows larger plastic deformation capacity, which sustains the 

structural resistance out to large deformation and results in increased energy dissipation 

capacity.  Current design standards (ACI318-02 and ACI352-02 for joints) are highly 

dependent on ductile detailing to provide confinement, anchorage and plastic deformation 

capacity.  

Issues associated with older design methodologies have been addresses and studied in 

detail (e.g. Townsend and Hanson, 1977; Bracci et al., 1995; Beres et al., 1996; Elmorsi 

et al., 1998; Pantelides et al., 2002; Lehman et al., 2004; Walker et al., 2004). Bracci et 

al. (1995) considered the following deficiencies in an experimental study in the 

performance of RC structures designed based on older codes: 

• Columns with flexural capacity smaller than that of the joining beam(s), which 

may result in a soft-story collapse due to the formation of plastic hinges in the 

columns instead of in the beams. 
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• Minimal transverse reinforcement for shear and confinement in the beams and 

columns, especially in the hinge zones. 

• Lap splices located at the potential hinge zones, directly above the floor slab. 

• Minimal or no transverse reinforcement in beam-column joints. 

• Positive (bottom) flexural reinforcement of the beams that is typically very small 

and often discontinued in the joint zone. 

Rigorous analysis of reinforced concrete structures should take into account of all these 

details and possible mechanisms. Computer analysis programs must be able to model the 

behavior of beams and columns, consider the interaction of different loading modes at the 

component level, smaller plastic deformations and account for change of component 

characteristics due to the plastic deformations. To the extend that slabs contribute to the 

lateral capacity of the system, the effects of slabs must also be considered. Finite-element 

modeling, fiber models, and generalized hinge approaches are among the general 

approaches for modeling RC beam-columns. The two-dimensional and three-dimensional 

joint models developed in this research permit improved modeling of the beam-column 

joint deformation and the cyclic deterioration of joint shear capacity, both of which effect 

overall frame behavior.  

1.3 Reinforced concrete beam-column joint behavior 

The behavior of beam-column joints and the influence they may have on the overall 

structure is actively under investigation, but there are still gaps in the research literature 

for comprehensive experimental data that can explain different aspects of joint behavior. 

In particular, there is a need for developing a robust formulation to describe the joints 

monotonic and cyclic nonlinear response and to predict its damage states.  

The models and formulations proposed in this research cover the behavior of joints 

designed based on both the older and the current reinforced concrete provisions according 

to American Concrete Institute guidelines and recommendations. In the older (prior to 

1976) design provisions, there was little, if any thought given to the joint behavior. The 

ACI 352-76 report was the beginning of the effort that led to the current standards. The 
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1976 report began to articulate the role of the joints in providing development length for 

the beam rebar. The 1976 provisions did not anticipate significant inelastic deformations, 

and the deformation demand was not assessed quantitatively. The 1976 provisions 

established the joint strength to enforce strong-column weak-beam design concept. The 

design guidelines required the joint strength to be evaluated based on the nominal 

strength of the frame elements connected to it. For this purpose, the beam reinforcement 

stress is increased to account for possible over strength resulting from strain hardening, 

and the joint must be strong enough to sustain the forces associated with the development 

of the beam flexural strength. Ratio of the column height  to the beam bar diameter  

must be adequate to limit the bond stress demand. The joints designed to meet ACI352-

76 recommendations are assumed to remain essentially elastic. Therefore they can 

experience rapid strength and stiffness deteriorates due to high levels of cyclic joint 

shears and bond stresses imposed by seismic loads within the structural life span. The 

cyclic damage of the joints will be a matter of concern for the performance evaluation of 

the older structures.  

ch bd

The latest ACI joint design recommendations (ACI352-R02) anticipate inelastic 

deformation in the joint zone. The current joint design and detailing provisions provide 

resistance for gravity loads, the seismic effects, and for the interaction of the 

multidirectional forces transferred to the joint by adjacent frame members. Use of high 

strength materials, which result in smaller sections and larger reinforcement bars is 

anticipated, and attention is focused on the joints to provide proper ductility under 

deformation reversals into the inelastic range. Adequate development length and 

confinement in the panel zone are provided to guarantee a minimum plastic deformation 

capacity and enhanced cyclic behavior. The shear forces considered for the joint design 

are not limited to the forces determined by the nominal strengths of the adjacent members 

and the analysis results must also be taken into account.  

Accurate seismic assessment and design of RC frames requires an analytical tool for 

representing the nonlinear behavior of the beam-column joints. A rational, but easy to use 

beam-column joint model for frame structures does not exist in most of the existing 

structural analysis programs. Most of the knowledge on the joints has been acquired 
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through experimental studies on reinforced concrete beam-column subassemblies, and 

less attention has been paid to the influences of the joints on the frame behavior and the 

effects of uncertainties on performance. In this research, new joint elements are 

developed to fill this gap in structural analysis and enable engineers to asses the effects of 

the joint strength, stiffness, inelastic deformations and softening on the structural 

response. 

Four variations to the joint element are introduced in this research. The joint elements 

consist of a finite size shear panel, which can undergo shear deformations. The 

connection between the shear-panel to adjacent members allows for either a rigid or 

flexible (inelastic) connection. The joint elements represent the finite-size and axial and 

flexural rigidity of the joint panel. Any type of frame element can be attached to the joint, 

and the joint element can be calibrated to simulate RC, steel, or composite frame systems, 

since they all share similar kinematics of the panel zone and frame-joint connections.   

1.4 Damage models and applications in cyclic joint behavior 

The older joint design concepts used forces (or stresses) as the main design parameter and 

the ratio of the maximum applied force to the nominal capacity as a damage predictor. 

New seismic provisions focus more explicitly on ductility demand, where deformation 

(or distortion) capacities for inelastic deformations under seismic loading are considered. 

Current performance based assessment methodologies focus on displacements as the 

primary parameter to evaluate structural performance, where the deformations are loosely 

translated to performance targets related to life-safety, serviceability, repair cost and 

down-time.  As a more detailed approach, the component deformation and the inter-story 

drifts are related to the overall damage of the structure.  

Pervious research on damage in RC frames (Park et al, 1985b; Kratzig et al., 1989; Florez 

and Lopez, 1995; Fajfar and Gaspersic, 1996) investigated a variety of approaches to 

numerically estimate the overall structural damage by focusing on damages at component 

level. The experimental outcome of the beam-column joint behavior under various types 
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of loading is used to study the relation of engineering demand parameters and the damage 

states of the reinforced concrete joints.  

The peak deformation demand is not general enough to fully describe the cyclic damage 

process. Therefore a variety of cyclic damage models are suggested for predicting 

structural damage (Park and Ang, 1985a; Kratzig et al., 1989; Williams and Sexsmith, 

1995; Williams et al., 1997; Dube et al., 1996; Hindi et al. 2001; Mehanny and Deierlein 

2000).  

A generic damage model is developed and introduced for computing the damage indices 

to relate to the damaged state of structural components. The damage indices will facilitate 

the process of integrating the structural component damages, to determine the overall 

structural performance. 

1.5 Overview of OpenSees 

OpenSees, Open System for Earthquake Engineering Simulation, is a structural analysis 

program developed by Pacific Earthquake Engineering Research Center (McKenna, 

1997; McKenna and Fenves, 2002; OpenSees, 2004). The OpenSees platform is designed 

to enable the earthquake engineering research community to implement their analysis 

models while utilizing general solution procedures of the framework. OpenSees is written 

in C++ with an object-oriented architecture, where the analysis components are defined 

as separate objects. The analysis model is introduced as the domain object, which 

contains analysis components such as nodes, material models, elements, constraints, 

loading patterns, solver algorithms, integrators, constraint handlers, and recorders. The 

domain is created by the user for each application through an interface script using Tcl. 

Tcl is a simple programming language which is used as the command interpreter for 

OpenSees to read the input files. Figure  1-4 shows the hierarchy of the main objects, 

which comprise a structural analysis model. The OpenSees terminology used in this 

research is reviewed and explained in Appendix A. 
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1.6 Objectives 

The contributions of this research to performance based earthquake engineering and 

structural analysis are summarized by the following objectives: 

• Develop analytical tools for modeling beam-column joints in two and three 

dimensional structures, and implement them in the object oriented OpenSees 

platform. 

• Develop hierarchical models for processing engineering demand parameters and 

local damage measures, with emphasis on applications to beam-column joint 

models. 

• Calibrate the joint models based on analytical and experimental studies, and 

verify the results by comparison with laboratory data. 

• Quantify the variability in the proposed joint analysis models for use in reliability 

analysis. 

• Provide capabilities for reliability simulation of RC joints by incorporating the 

new joint element into the OpenSees reliability toolbox, which was previously 

developed by Haukaas and Der Kiureghian (2000).  

• Formulate the structural response sensitivity to modeling (beam-column joint) 

parameters, i.e. the gradient of structural response with respect to the joint 

characteristics. 

• Demonstrate the simulation models, damage models, and reliability tools through 

application to the performance assessment of a RC frame, i.e. obtain the 

probability of joint damage, considering the effects of model variability, 

,   P EDP edp IM im ground motion⎡ < =⎣ ⎤⎦  and the failure probability, 

[ ]P EDP edp<  

• Present recommendations for analysis and joint behavior assessment.  

1.7 Scope 

Results of a comprehensive literature review on the cyclic behavior, design and analysis 

of reinforced concrete beam-column joints are summarized in Chapter 2 (Paulay et al., 

11 



 

1978; Soleimani et al., 1979; Filippou and Popov, 1984; Durrani and Wight, 1985; 

Ehsani and Wight, 1985; Alameddine et al., 1991; Gentry and Wight, 1994; Mazzoni, 

1997; Naito et al., 2001; Walker et al., 2004). The mechanisms and parameters that 

influence the joint behavior are identified and categorized, and the modeling parameters 

are calibrated for a joint with pre-defined properties. The previously published models 

and techniques for modeling RC joint are reviewed (El-Metwally and Chen, 1988; Alath 

and Kunnath, 1995; Modeling inelastic shear deformation Fleury et. al., 1996; Uma and 

Prasad, 1996; Kunnath, S. K., 1998; Deng et al., 1999; Fleury et al., 2000; Lowes, 2001; 

Lowes and Altoontash, 2003a), and the force transfer mechanisms are summarized. The 

physical behavior of the joint is simplified to an idealized mechanism which provided the 

basis for a versatile numerical joint element model for a versatile joint element. 

Implementation of the resulting joint models in OpenSees is described. 

The performance based methodology requires tools for damage assessment and study on 

the states of structural damage. This research leads to the application of damage indices 

(with focus on beam-column joints) to relate the analysis results to damage measures. In 

Chapter 3, a generic damage object class for OpenSees is introduced. This damage class 

is then used to implement several damage indices that have been published in the 

literature (Park and Ang, 1985a; Kratzig et al., 1989; Rahnama and Krawinkler, 1993; 

Mehanny and Deierlein 2000). The damage indices are used for recording beam-column 

joint damage and modeling response deterioration. 

Previously proposed hysteretic material models with parameter deterioration were 

reviewed (Rahnama and Krawinkler, 1993; Kunnath et al., 1996; Mostaghel, 1999; 

Sivaselvan and Reinhorn, 2000; Ibarra, 2003; Ibarra et al, 2004) to provide deteriorating 

hysteretic models to simulate different mechanisms of the RC joint behavior. The models 

are also used to test out and evaluate use of the damage models as a deterioration 

parameter. Three hysteretic material models with strength and stiffness degradation 

(Ibarra et al, 2004) are studied and implemented in OpenSees. 

In Chapter 4, the mechanical behavior of RC beam-column joints is reviewed based on 

previous experimental and analytical researches to identify and characterize the 
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parameters that determine the force-deformation joint response (Higashi and Ohwada, 

1969; Ehsani and Wight, 1985; Leon and Jirsa, 1986; Paulay, 1989; Bonacci and 

Pantazopoulou, 1993; Pantazopoulou and Bonacci, 1994; Scott, 1996). The main 

mechanisms that govern the joint response are identified as the shear response of the 

panel zone, and the member-end-rotations due to bond-slip. Analytical methods for 

modeling the shear panel behavior (Vecchio and Collins, 1986; Stevens et al., 1991; 

Shiohara, 2001) and bond-slip (Eligenhausen et al., 1983; Leon, 1989) are discussed. The 

Modified Compression Field Theory (Vecchio and Collins, 1986) is reviewed and 

modified to model the RC joint response. A new approach is proposed for modeling the 

joint interface rotations based on a fiber section analysis for a modified section that 

incorporates the bond-slip behavior. Calibration information is provided for older beam-

column joint designs with inadequate transverse reinforcement in the joint zone. The 

modeling and calibration information are used to create computer models to simulate a 

series of RC subassembly tests, which provide the basis for validating the proposed 

models. The verification problems include a test on a series of beam-column 

subassemblies (Walker et. al, 2004) and a two-third scale 2-story RC frame (Tsai et al., 

2000). The recorded damage indices and reported observed damages are used to evaluate 

the new damage models in OpenSees and to provide the probabilistic distributions that 

relate the damage indices to the damage state. 

The probabilistic aspects of the joint behavior and its response sensitivity are studied in 

Chapter 5. To study the influence of the joints on the structural reliability, the variability 

of modeling parameters are studied and probability distributions are suggested for the 

joint behavior. The comparison of the analytical models and the experimental results are 

used to estimate the variability in the proposed model and to provide probabilistic 

distribution for model variability. An approach for defining the limit-state functions in 

terms of the damage indices is discussed, i.e. the target engineering demand parameters 

are presented in the form of damage indices; and the structural performance is related to 

limit-state functions described using the damage indices. 

The general concept and formulation of response sensitivity is reviewed (Zhang and Der 

Kiureghian, 1991; Conte et al., 1999; Conte 2001), and a sensitivity formulation for the 
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joint element and the hysteretic material models are derived and implemented. The 

sensitivity of the limit-state functions to the modeling random variables are formulated as 

response gradient vectors. The OpenSees reliability toolbox (Haukaas and Der 

Kiureghian, 2000; Haukaas, 2003a) is used to perform a variety of reliability simulations. 

FORM, MVFOSM, and Monte Carlo simulations are performed to estimate the failure 

(exceeding the limit-state function) probability, and derive fragility curves for individual 

joint damage. 

The contributions, recommendations and suggestions for further research are summarized 

in Chapter 6. 
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Figure  1-1: Damage in RC exterior (Pantelides et al., 2002) and interior (Walker, 2001) joints 

 

 
 

Figure  1-2: PEER PBEE methodology (Porter et al., 2002) 
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Figure  1-3: Inelastic failure modes in a laterally deformed RC frame 
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Figure  1-4: The OpenSees hierarchical structure (OpenSees, 2004) 
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2 Beam-column joint model formulation and implementation 

Previous research confirms the importance of beam-column joints response on the overall 

structural performance, including the influence of beam-column joints on the frame 

elastic stiffness, and nonlinear dynamic response (ACI-352 2002; Pantazopoulou and 

Bonacci, 1994). Figure  2-1 illustrates the comparison between the laboratory reading 

(Tsai et al. 2000), and two sets of analytical results, one for a center-line model without 

considering the effects of joint and one for a model with beam-column joint elements (the 

model details will be discussed later in chapter 4). In this chapter, the detailed mechanical 

behavior of the beam-column joints in reinforced concrete moment-resisting frames is 

discussed and characterized through idealized force-transfer mechanisms. These 

mechanisms are then used as the basis for a numerical model to simulate beam-column 

joint response. 

2.1 Introduction and definitions 

Joints in framed structures are defined as the volume of the structure formed by 

intersection of beams the columns. The American Concrete Institute committee 352 was 

organized in 1966 to develop and report information on the design and detailing of joints 

and connections in monolithic concrete structures. The latest edition of design 

recommendations by ACI-352 (2002) has a more exact definition for cases where the 

beam width is smaller than the column width, where the joint is defined as the portion of 

the column within the depth of the beam(s), which frame into the column. The role of the 

joint is to maintain the equilibrium and compatibility by transferring member-end forces 

between the beam(s) and column(s).  

For convenience in understanding the beam-column joints behavior, the joint can be 

visualized as combination of two separate zones, the panel zone and connection 

interfaces. The connection interfaces refer to region connecting the beams and columns to 

the panel zone, and the panel zone is the common (core) region that transfer shear forces 

between adjacent frame members. In steel frames, the panel zone and the connection 

interfaces are easily distinguished by their visible mechanical components, while in the 
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reinforced concrete joints, these zones are not as apparent and must be defined by some 

conceptual interpretations. These idealized mechanisms are discussed at length later in 

this chapter. 

Joints exist in different types and forms in frame structures. The joint type is determined 

by the number and the configuration of the frame elements connected to it. ACI-352 

(2002) distinguishes joints as having interior or exterior categorizations for the purpose of 

specifying design strengths. Figure  2-2 shows the configuration of interior joint, exterior, 

corner and roof interior-joints in a simple two dimensional frame. The figure also shows 

a schematic diagram of how the joints would be represented in an analysis model using 

the four-node beam-column element developed in this thesis. The interior joints connect 

two beams and two columns. Exterior joints connect one beam to two columns, while 

roof-interior (tee) joints connect two beams to a column. Corner (knee) joints are located 

at the corners, connecting only one beam to one column. As shown in Figure  2-3, this 

categorization is more complex for three dimensional space frames, where the out-of-

plane framing conditions must be considered. 

The details of the mechanical behavior of the interior, exterior, corner and roof joints are 

slightly different, and the similarities and differences of various joint types must be 

carefully observed to provide evidence that their behavior can be accurately modeled by a 

single type of joint element. The basic joint element proposed in this research is one 

model that is configured for internal joints (with for external nodes, see Figure  2-2), but it 

can also represent cases with fewer connecting members. The differences in behavior of 

joints with different configuration will be handled by using separate modeling parameters 

for different joint types.  

2.2 Physical behavior of RC beam-column joints 

The ACI-352 (2002) report for the design of reinforced concrete joints offer simplified 

provisions based on limitations to average shear stress applied to the joint. The nominal 

average joint shear stress for joints effectively confined on three vertical faces, or two 

opposite vertical faces is limited to 20 ( )cf psi′  for interior joints and 15 ( )cf psi′  for 
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exterior joints. For joints with effective confinement on all four vertical faces, these 

amounts are increased to 24 ( )cf psi′  and 15 ( )cf psi′  for interior and exterior joints, 

respectively. The critical section for the shear forces within the joint is a horizontal plane 

at the mid height of the joint. The analytical model is configured accordingly to use shear 

equivalent loading and deformation as the primary analytical characteristics. The details 

of calculating the average joint stress and effective joint area are specified in ACI-352 

(2002). 

The kinematics of the panel zone shows similarities for reinforced concrete, steel, or 

composite steel-concrete joints, while the member-end rotations have different 

mechanisms.  Figure  2-4, Figure  2-5, and Figure  2-6 show the deformed shape of three 

joints in RC, steel and RCS moment resisting frames, respectively. 

The panel zone usually has higher stiffness and strength compared to the connected frame 

elements. The finite joint size also affects the frame response, primarily by reducing the 

column and beam lengths. These two influences collectively, result in more accurate, and 

usually higher calculated initial stiffness for the frame, which affects both static and 

dynamic analysis results. In frames where the joints are not properly designed, the 

stiffness and strength of the joint may degrade rapidly due to high force and moment 

gradient within the panel zone. 

The beam-column joints are subjected to various loading modes. A convenient way to 

study the joint physical behavior is to observe each mode separately and then focus on 

their combinations. Loads are transferred to the joint by adjacent beam-column elements, 

whose local forces include axial force, shear force, and bending on the joint. In theory the 

beam-column joint would, therefore, have axial, bending, and shear modes along with the 

member-end rotations (see Figure  2-7). However, the joint proportions and properties are 

such that the axial and bending deformation of the joint are usually assumed to be 

negligible.  

The design and detailing recommendations for the joints are associated with joint shear 

deformation which results from applied shear forces and anti-symmetric bending 
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moments. Compared to axial and bending deformations, the shear stresses impose the 

most significant deformations to the joint core that can influence the overall frame 

behavior. The joint size is usually significantly small, compared to the attached beam and 

column members, such that the axial and bending deformations in the joint can be 

ignored. Thus the shear deformation contributes the most to the joint behavior. 

Additionally, depending on the connection details, the connected rotation at the 

connection point of the beams and columns (usually referred to herein as the interface 

rotations) may also affect in the behavior and should be considered in the model.  

2.2.1 The joint equilibrium and force transfer paths 

Joints are loaded with a force and moment vector at each face. For a two dimensional 

frame model, the standard frame nodes have three degrees of freedom (two displacements 

and one rotation) with corresponding force components. Thus, two dimensional joints are 

loaded by two force components and a moment component at each face. The applied 

forces to a two-dimensional beam-column joint can be decomposed to the axial, shear, 

and the symmetric and anti-symmetric flexural modes. Since the number of independent 

loading modes must be equal to the number of undetermined nodal forces, these four 

basic modes can be reduced to three independent modes. The anti symmetric bending and 

the shear modes are the only ones that cause shear deformation in the shear panel. As 

shown in Figure  2-8, the basic deformation modes from Figure  2-7 manifest themselves 

under the idealized symmetric gravity and anti-symmetric lateral loading. In three 

dimensional joints, the torsional mode must be considered along with the other modes. 

The external forces applied to a two-dimensional joint are illustrated in Figure  2-9. The 

external forces can be decomposed as leading to following deformation modes: 

Axial mode: In this case the beam or column axial forces (in either the vertical or 

horizontal directions) are directly transferred through the joint panel. Unbalanced axial 

forces are transferred as symmetric shear forces to the adjacent frame members. There 

will not be any shear or flexural deformation involved in this mode (Figure  2-10).  
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Flexural mode: Once a moment is applied to any face of the joint, the joint is loaded in 

the Flexural mode. The flexural loading in each direction can be decomposed to two 

separate symmetric and anti-symmetric bending modes. In the symmetric bending, the 

flexural moment applied to opposite faces are equal and they balance each other, such 

that there is not any shear deformation (Figure  2-11). On the other hand, the anti-

symmetric bending moments and shears (Figure  2-12) lead to large shear force transfer 

through the panel zone.  

Pure shear mode: In this case, the joint is loaded with shear forces on every side as 

shown in Figure  2-13. The shear forces in this case are balanced and do not impose any 

unbalance moment on the joint. Nevertheless, the pure shear mode can lead to large shear 

deformation. Note, however, that the  pure shear mode in not likely to happen alone and 

it is usually accompanied by flexural loading to balance the shear forces (Figure  2-13).  

Figure  2-14 summarizes the superposition of forces in the different load/deformation 

modes and the nodal force equilibrium. 

2.2.2 Elastic and inelastic force transfer mechanisms in RC joints 

Previous research on beam-column connections has identified different mechanisms 

contributing to joint deformations. The primary components of joint deformations are 

mostly observed as the joint-panel shear distortion and rotations at the joint interfaces 

(Park and Ruitong 1988; Paulay, 1989; ACI-352, 2002; Pantazopoulou et al., 1994; 

Shiohara, 2001). As noted previously, axial elongation is also possible but can usually be 

ignored. Thus the shear panel and interface rotations are the only deformation modes 

considered in the proposed model (Paulay 1989; Uma et al., 1996; Fleury et al. 1996). 

Length and dimensions of a joint-panel are normally smaller compared to the attached 

beam and column members. Shorter flexural and axial length and higher stiffness limit 

flexural and axial deformations of the joint to a negligible level. In the event that axial 

joint deformations are deemed to be significant, they can be included by modifying the 

axial rigidity of the frame elements connected to the joint, rather than modeling the axial 

deformations inside the joint core itself. 
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The major sources of joint damage are related to the damage in the load transfer path to 

the shear panel and the shear panel damage itself. Bond loss is one of the major causes of 

damage in the load transfer path (as evident in the interface deformations, see Figure 

 2-4), while concrete crushing, transverse rebar yielding and slip along the shear cracks 

are the possible causes of shear panel damage (Pantazopoulou, 1994). These damage 

sources are represented by the shear panel and member-end rotational springs, which lose 

their stiffness and strength after large loading reversals, causing softening behavior in the 

joint. 

2.2.3 The joint kinematics idealization and simplification 

For analysis purposes, the beam-column joint behavior is idealized here by a joint panel 

and member-end interface zones (Figure  2-15). The axial and shear deformation of the 

member-end interface zones are presumed insignificant, while the rotation of these 

interfaces due to extension of flexural loading is accounted for. 

In a planar frame, the shear panel is defined as a parallelogram with axially rigid sides, 

where an angel change between the sides allows let the shear panel to deform in the shear 

mode. The adjacent frames are connected to the mid points of every side. The shear panel 

can move as a rigid body in the two-dimensional space, while the shear deformation adds 

an additional degree of freedom. Thus, the shear panel has four kinematic degrees of 

freedom. Three degrees of freedom are associated with the rigid body motion of the shear 

panel and the fourth degree of freedom is related to the shear distortion angle. A 

rotational spring is used to represent the shear force-deformation based on the calculated 

shear resistance of the shear panel. 

In space frames, the panel zone takes the form of a block subjected to tri-directional shear 

deformations. The block is represented as a parallelepiped with rigid faces, in which the 

angle between sides may vary to let the joint block deform in the shear modes. The 

adjacent beam-column elements are connected to the centroid of each side. The 3Djoint 

block has nine kinematic degrees of freedom. Six degrees of freedom are associated with 

the rigid body motion of the joint and the remaining three degrees of freedom define the 
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shear deformation. Three rotational springs, representing the force-deformation rules, 

provide the shear resistance in each orthogonal direction of the 3D joint. 

2.3 Previously proposed analytical models for joints 

Previous research provides several approaches to modeling the inelastic response of 

beam-column joints. Early work to simulate the response of reinforced-concrete frames 

relied on calibration of the “plastic hinges” introduced at the ends of beam-column line 

elements to represent inelastic joint action as well as frame member flexural response 

(e.g., Otani 1974; Anderson and Townsend 1977). The next generation of models 

decoupled the inelastic response of the beams, columns, and joints by introducing zero-

length rotational spring elements to connect the rotational degrees of freedom of beam 

and column elements (e.g., El-Metwally and Chen 1988). Calibration of these models 

was accomplished using experimental data characterizing the response of joint 

subassemblages. Refinements to this concept include the addition of rigid zones at the 

end of the beams and columns (Alath and Kunnath 1995) or the addition of very stiff 

beam-column elements between the central node and the external nodes (Deng et al, 

2000). These models are illustrated in Figure  2-16. This approach does not completely 

satisfy the joint kinematics, while the addition of rigid end-offsets resulted in more 

realistic models.  

While these approaches provide a computationally efficient means of simulating joint 

response, the development of objective, transparent models is challenging because the 

effects of multiple inelastic response mechanisms are combined into a single moment-

rotation relationship.  

More recently, researchers have begun using continuum-type elements to represent the 

response of reinforced-concrete joints in combination with transition interface elements 

that are used to maintain compatibility with beam-column line elements. These models 

offer the potential for accurate simulation of inelastic response mechanisms at the price 

of increased computational effort. However, to date, only simple continuum idealizations 

of the joint region have been proposed (Elmorsi et al. 2000; Fleury et al. 2000). A joint 
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model previously proposed by the author (Lowes and Altoontash 2003) explicitly 

represents the mechanisms that may determine inelastic joint action. This model offers 

the potential for objectivity and transparency in modeling the joint response. Figure  2-18 

shows the schematic representation of the model with separate springs to represent 

individual bond-slip and rebar pullout mechanisms. Though this model offers the 

potential for a more accurate and transparent representation of the joint, it requires 

detailed information on bond-slip response which is not currently available The 

simplifications and assumptions of an alternative (more simplified) joint model, 

presented in this study (Figure  2-15), were inspired by the detailed joint element of 

Figure  2-18.  

2.4 Proposed Joint 2D models 

In this section, the shear panel and the connection interfaces are represented in the form 

of new two-dimensional joint elements, based on the simplifications and assumptions 

mentioned previously. The basic two-dimensional joint element is generally referred to as 

Joint2D. The version of the joint element with member-end rotations and five springs is 

named Joint2D-SPR5 (Figure  2-19), and the joint element with rigid member-end 

connections and one shear spring is referred to as Joint2D-1SPR (Figure  2-23). Joint2D, 

like any regular structural analysis element, imports the nodal deformations and exports 

the element stiffness matrix and nodal forces. In addition, Joint2D is responsible for 

imposing geometric constraints to satisfy the compatibility.  

As shown in Figure  2-17, the Joint2D model is introduced into the OpenSees platform as 

a new element, which interfaces with the standard OpenSees element class. Included in 

the element implementation are extensions to the multipoint constraint (MP_Constraint) 

and node (Node) classes of OpenSees (refer to Appendix A for more details on the 

OpenSees classes). The primary operation of the joint element is creating a central node 

and connecting this central node to the external node by means of kinematic constraints 

(see Figure  2-19 and Figure  2-22). The central node is located at the center point of this 

parallelogram. For the two-dimensional frame model, the central node has four degrees of 
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freedom, the three standard degrees of freedom and one extra degree of freedom for the 

shear deformation.   

The four external nodes are those where the joint element is connected to the adjoining 

beam-column elements. The kinematic constraints are decomposed to four multipoint 

constraints. Each multipoint constraint connects the degrees of freedom between one 

exterior node and the central node. Uniaxial (single degree-of-freedom) material objects 

are used to assign the joint shear stiffness and the joint-to-member interface stiffness (in 

Joint2D-5SPR). 

The joint element is developed for symmetric joints with beam center lines passing 

through the column centroid, so it is essential that the initial layout of the exterior nodes 

constructs a parallelogram.  

2.4.1 Element characteristics and formulation 

The two dimensional beam-column joint is idealized as a parallelogram shaped shear 

panel with adjacent elements connected to its mid-points. The midpoints of the 

parallelogram sides are referred to as external nodes. These nodes are the only analysis 

components that connect the joint element to the surrounding structure. 

The foundation of kinematic formulation of the shear panel is the geometric features of a 

parallelogram. The shear panel maintains its parallelogram shape as it moves and 

deforms in the planar system. The parallelogram shape is maintained by the kinematic 

constraints between the external nodes and the central node.  

A parallelogram is a four-sided plane figure that has two sets of opposite parallel sides. 

There are three unique geometric features that differentiate a parallelogram from any 

other quadrilateral figure. The sides on the opposite sides of a parallelogram have equal 

length, they are parallel, and the diagonals bisect each other, i.e. they intersect at their 

mid-points. Since there is no restriction applied to the corner angles, the parallelogram 

can deform in the shear mode by changing the angle between adjacent sides, without 

changing the size, or imposing any axial or flexural deformation on the joint. 
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For the two dimensional formulation discussed here, the nodes are tagged in a counter-

clockwise order, beginning with the node on the right side of the element. The initial 

location of the external nodes is defined as vectors of size two: 
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The nodal displacement field is defined by two translations and one rotation. The nodal 

displacements are time dependent vectors with three degrees of freedom. The initial 

displacements at step  are zero. 0i =

The nodal deformation vectors for the load step  are defined as: i
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 (2.2) 

The updated locations of nodes for the time-step  are calculated by adding the nodal 

deformations to the initial coordinates: 
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 (2.3) 

The first set of equations for satisfying the parallelogram geometric constraints 

correspond to the location of the intersection of the parallelogram diagonals, or the 

parallelogram centroid. The lines that connect midpoints of the opposite sides are referred 

to as main chords. For this formulation, the two main chords connect the first node to the 

third node and the second node to the fourth node respectively. The two diagonals of a 

parallelogram and both main chords bisect exactly at the same location, which establishes 
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the location of the central node. The coordinates of the parallelogram centroid, i
cX  are 

thus calculated as follows: 

 1 3 2 4
1 1( ) (
2 2

i i i i
c )iX X X X X= ⋅ + = ⋅ +  (2.4) 

or in expanded form, 
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 (2.5) 

The system of equations can also be presented as: 
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The second geometric feature used in this formulation is the length of the parallelogram 

sides. It is possible to prove that the length of each main chord is equal to the length of 

the side parallel to it. To maintain the joint panel size during the analysis, the length of 

the vectors connecting the nodes on opposite sides must remain constant and equal to the 

initial size: 
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 (2.7) 

The expanded form of (2.7) is calculated as (2.8) and (2.9) to be later used for the length 

correction algorithm: 

 ( ) ( ) ( ) ( )2 2 20 0 0 0 0 0 0 0
1 3 1 3 1 3 1 3 1 3 1 3

i i i i 2
x x u u y y v v x x y y− + − + − + − = − + −  (2.8) 
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 ( ) ( ) ( ) ( )2 2 20 0 0 0 0 0 0 0
2 4 2 4 2 4 2 4 2 4 2 4

i i i i 2
x x u u y y v v x x y y− + − + − + − = − + −  (2.9) 

The external nodes are rigidly constrained to the midpoints of each side of the 

parallelogram. Therefore, the rotation of the external nodes is equal to the rotation of the 

parallelogram side and the parallel main chord. The rotation of each external node is 

described using the cross product of the updated main chord and the main chord at its 

initial position: 
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where the α  and β  angles are the rotation of each main chord with respect to their initial 

alignment (Figure  2-20). The coordinates of the parallelogram center can be written in 

expanded form as: 
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(2.13) 

Using the expanded equations (2.5), (2.8), (2.9), (2.12), and (2.13), all the nodal 

deformations can be explicitly derived as functions of i
Cx , , i

Cy iα , iβ , which are the 

translations and rotations of the central node. 

The constraint equations in OpenSees and most response history structural analysis 

programs are enforced in piecewise linear form. The incremental piecewise linear 

formulation of the multipoint constraints is necessary because the geometric information 
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is available only for the beginning of the step, when the step size is unknown. In 

OpenSees, the initial state of each load step is known and the incremental form of the 

constraint equations are used to predict the next step. Assuming that the steps are fairly 

small, a first order Taylor expansion of the rotation angles is valid. 

The piecewise-linear incremental form of the equations can be achieved by chain 

differentiating the equations: 
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( ) ( ) ( ) ( )1 3 1 3 1 3 1 3 0i i i ix x u u y y v vδ δ δ δ− ⋅ − + − ⋅ − =                         (2.15) 

( ) ( ) ( ) ( )2 4 2 4 2 4 2 4 0i i i ix x u u y y v vδ δ δ δ− ⋅ − + − ⋅ − =
                       

(2.16) 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

(
0 0 0 0
1 3 1 3

1 3 1 32 2 2 20 0 0 0 0 0 0 0
1 3 1 3 1 3 1 3

cos i
y y x x

u u v v
x x y y x x y y

α δα δ δ δ δ
− −

= − +
− + − − + −

)−   (2.17) 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

(
0 0 0 0
2 4 2 4

2 4 2 42 2 2 20 0 0 0 0 0 0 0
2 4 2 4 2 4 2 4

cos i
y y x x

u u v v
x x y y x x y y

β δβ δ δ δ δ
− −

= − +
− + − − + −

)−   (2.18) 

Using the definition of the inner product of two vectors, ( )cos iα  and ( )cos iβ  can be 

calculated as: 
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The differential form of equations (2.17) and (2.18) can be rearranged in the form of a 

system of equations as: 

( ) ( ) ( ) ( ) ( )( ) ( )( )0 0 0 0 0 0 0 0
1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3
i i i ix x x x y y y y y y u u x x v vδα δ δ δ⎡ ⎤− ⋅ − + − ⋅ − = − − − − −⎣ ⎦ δ

 (2.21) 
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 (2.22) 

By substituting the coordinate and the displacement of the central point, and splitting the 

equations for each external degree of freedom: 
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The relation of deformation increments of external nodes and the ones of the central node 

are represented in matrix form in equation (2.24). The Joitn2D-1SPR with rigid member-

end interfaces will incorporate equation (2.24) as its compatibility relations. 
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Next, the stiffness relationships are introduced to the model, which describe the shear 

panel and member-end rotations. The deformation of the shear panel in shear mode 

corresponds to the change of the angle between the main chords. The variation of the 

angle between the main chords is quantified as ( )δα δβ− . The shear stiffness is 

introduced as a rotational spring connecting the two rotational degrees of freedom of the 

central node. Conceptually, the resultant moments of this spring are nonlinear functions 

of  ( )δα δβ−  : 
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β )
α β
β α
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                                            (2.25) 

or, in piecewise-linear incremental form: 
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= ×⎨ ⎬ ⎢ ⎥− ⎩ ⎭⎣ ⎦⎩ ⎭

⎨ ⎬                                     (2.26) 

Equations (2.25) and (2.26) will define the resultant force vector and the tangent matrix 

for Joint2D-1SPR. In the Joint2D-5SPR model with the member-end rotations to the 

model, the kinematic constraints between the rotational degree of freedom of the external 

node and the central node must be released. This is possible by removing the row related 

to the rotational degree of freedom from the constraint matrix. The released constraints 
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are replaced by rotational springs. The resultant constraint matrix and stiffness matrix are 

presented in : 

constrained
external centralU C Uδ = ×δ                                          (2.27) 

where C  is the assembled matrix of the individual constraint matrices that connect each 

external node to the central node (Figure  2-22), and  and constrained
externalUδ centralUδ  are 

increments of deformation vectors of constrained and retained degrees of freedom. 
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The nodal moment increment for the Joint2D-5SPR element is computed as:  

 unconstrained
rotationalM K Uδ δ= ×  (2.29) 
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The nodal moments for the joint element are computed as:  
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 (2.31) 

It needs to be mentioned if any of the frame elements are rigidly connected to the joint, 

the rotational degree of freedom at the connection node must be constrained to the 

corresponding degree of freedom and its referring column and row must be removed off 

the stiffness matrix. The element Joint2D-1SPR has all four frame elements rigidly 

connected to the joint element. The internal components of the Joint2D-1SPR (Figure 

 2-23), its deformed shape (Figure  2-24), the external degrees of freedom (Figure  2-25), 

and the modified constraint matrix are presented (Figure  2-26). 

2.4.2 Implementation in OpenSees 

The OpenSees features and the object oriented terminology related to the Joint2D 

implementation are briefly described in this section. A more detailed description of the 

OpenSees components and structure is provided in Appendix A. The OpenSees platform 

is designed around an object oriented architecture, which facilitates using the existing 

classes to develop new components. The analytical model in OpenSees is divided to two 

objects, referred to as the analysis and domain objects. The domain refers to the object 

responsible for storing the model components and the analysis is responsible for 

performing the calculations. The joint elements are introduced as a member of the 

domain.  

Conventional elements (such as the beam-column elements) do not modify the domain; 

they only import the nodal displacements from the domain and return the stiffness matrix 
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and nodal forces to the domain. The situation is a bit different for the Joint2D elements, 

which modify the analytical model (domain) by adding several other components. 

Joint2D adds a central node and a series of four multipoint constraints to the domain, and 

then constructs itself as an element over the four external nodes and the central node 

(Figure  2-19 and Figure  2-23). The central node and the constraints use the existing 

OpenSees class definitions with some modifications to satisfy the joint formulation. 

Implementation of the Joint2D formulation is explained in three parts: defining the joint 

element subcomponents, implementing the multi-point constraints, constructing the 

Joint2D. 

Defining the joint element subcomponents: The central node and four multipoint 

constraint objects are sub-components, which the joint element constructs and adds to the 

domain. Since the multipoint constraints connect the central node to the external nodes, 

the central node and its properties are discussed first. Each node is specified by a unique 

tag. The tag assignment for the external node is arbitrary, while the tag assignment of 

external node tags must be sequential in a clockwise or counter-clockwise order. 

The central node is introduced to the domain by the joint element, not the user. In the 

element command interface, the user is only required to provide a tag for the central 

node. The location of the central node is determined by the joint element based on the 

location of the four external joint nodes. The central node is located on a two dimensional 

coordinate system, exactly at the intersection point of the mains chords. As mentioned in 

the element specifications, it is required that main chords bisect each other, so that a 

virtual parallelogram can be constructed centered at the central node, with external nodes 

located at the midpoint of its sides. The displacement field for the external nodes is 

defined by two translations and one rotation; i.e. the standard three degrees of freedom 

for a regular two-dimensional frame model. The central node has four degrees of 

freedom, two translations and two rotations. The joint shear deformation is defined 

between these two rotations (Figure  2-20 and Figure  2-24). 
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The constraint equations are defined in equation (2.28) as a matrix, relating the external 

nodal displacements to the central node displacement. To comply with the object oriented 

structure of OpenSees, the constraint equations are separately defined between each set of 

two nodes, as shown in Figure  2-22. Four sets of multi-point constraint objects maintain 

the external node positions on a parallelogram, and they reduce the extra degrees of 

freedom, associated with the external nodes. The five nodes of Joint2D have a total of 16 

degrees of freedom; of those 8 degrees of freedom (for Joint2D5-SPR) and 12 degrees of 

freedom (for Joint2D-1SPR) are constrained to the central node. 

Implementing the multi-point constraints: The multipoint constraint connects the central 

node to each external joint node. The central node is referred to as the retained node since 

its motion is independent, while the external node is referred to as the constrained node. 

The displacement components of the constrained (external) node that are controlled by 

the constraint equations are called constrained degrees of freedom. The constraint on the 

rotational degree of freedom of the external node is decided based on the rotational fixity 

defined at the external nodes. The independent displacement components of the retained 

(central) node that control the motion of the constrained node are referred to as retained 

degrees of freedom. The retained and constrained degrees of freedom are introduced as 

two vectors to the multipoint constraint object. 

For the case when the member-end rotation is allowed at the external nodes (i.e. Joint2D-

5SPR): 
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where the subscripts refer to the external and central nodes respectively. When the frame 

element is rigidly connected to the external node, i.e. no member-end rotation in 

Joint2D1SPR: 
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 (2.35) 

The multipoint constraint formulation for the joint element is similar to a rigid link. One 

of the two rotations of the retained node determines the rigid body rotation of the rigid 

link. This rotation is called the primary rotational degree of freedom of the retained node 

(Figure  2-22 and Figure  2-26 ). The other rotation of the retained node, the auxiliary 

rotational degree of freedom, determines the rotation of the constrained node. For 

programming purposes, a single formulation is introduced, where the primary and 

auxiliary rotational degrees of freedom will switch places for each node (see Table  2-1). 

Table  2-1: Central node primary and auxiliary degrees of freedom for Joint2D 

Node Primary Rotation Auxiliary Rotation 

1 cenα  cenβ  

2 cenβ  cenα  

3 cenα  cenβ  

4 cenβ  cenα  

MP_joint2D-15SPR and MP_joint2D-1SPR are the names for the multipoint constraint 

class for the two dimensional joint element. The constrained and retained node tags and 

degrees of freedom, along with the primary rotation degree of freedom, are declared in 
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the MPjoint2D constructor. The implementation of Joint2D allows the user to arbitrarily 

set each member-end rotation as rigid (for more details on the Joint2D command refer to 

Appendix B). Two additional variables are used to indicate the fixity of the member-end 

rotation and the large deformation condition.  

The constraint formulation is defined in the form of a linear system of equations, and the 

resulting constraint matrix is exported to the analysis object. Depending on the large 

deformation formulation specified by the user, the constraint matrix is either constant or 

time varying. The constraint matrix formulation is defined and calculated as: 

C RU C Uδ δ= ×  (2.36) 

where CUδ  refers to the displacement increments of the constrained degrees of freedom 

of the constrained external node, C  is the constraint matrix, given by equation (2.37) or 

(2.38), and  RUδ  represents the displacement increments of the retained degrees of 

freedom at the retained (central) node. The general form of the constraint equations is 

introduced by defining primary and auxiliary rotations. 

In the case where any or all of the external nodes are released to permit member-end 

rotation (i.e. when the external node rotation is connected through a rotational spring to 

the central node) the rotational degree of freedom of the external node is not constrained. 

In such cases, the constraint formulation is modified to the following: 

( )
( ) Pr

1 0

0 1

i i R
C RC

Ri i
C imaryC R
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v x x

δ
δ

δ
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δθ

⎧ ⎫⎡ ⎤−⎧ ⎫ ⎪ ⎪⎢ ⎥= ×⎨ ⎬ ⎨⎢ ⎥− −⎩ ⎭
⎬

⎪ ⎪⎣ ⎦ ⎩ ⎭

                               (2.37) 

For cased without member-end rotations (Joint2D-1SPR or Joint2D-5SPR with selected 

constraints), the constraint formulation is: 
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                            (2.38) 

Constructing the Joint2D: In OpenSees, the elements are stored as domain components 

in the domain object.  The Joint2D is a subclass of element and consequently a subclass 

of the domain component. The domain components of each class are identified by a 

unique tag. Beside the tag, the elements also require specification of the nodal 

connectivity and the material information. Joint2D invokes a pointer to the domain to add 

the central node and multipoint constraints to the domain it belongs to. The following 

arguments are imported at the constructor level of the Joint2D element: 

• A unique element tag for the joint element 

• The tags of four external nodes.  

• An unused tag for the central node 

• One uniaxial material model for the shear panel and up to four more uniaxial 

material models for member-end rotations 

• A pointer to the domain that the joint element belongs to. The pointer is sent by 

the Model Builder and used for adding new components to the domain. 

• The tag for the large deformation condition  

The user-specified tags of the external nodes are used to retrieve the nodal pointer from 

the domain. The nodal pointers in turn provide access to the coordinates of external 

nodes. An error check is performed on the location of the intersection point of the main 

chords. The intersection point of the main chords must be located within the radius of  

 from the centroid of the imaginary parallelogram constructed on the 

external nodes. Here the joint size is the minimum length of the main chords. The 

commands for creating the joint elements are presented in Appendix B. The number of 

degrees of freedom of the external nodes is also checked.  

(1.0 6e JointSize− × )
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The domain is checked to make sure the user-specified central node tag is not already 

used by another node. Then the central node is constructed at the location of 

parallelogram centroid, with four degrees of freedom. The central node is added to the 

domain, so it will be involved in the analysis. 

A copy of the material models that the user provides to the joint are stored as element 

private data. If the member-end rotation materials are not specified, a rigid connection at 

the external node is assumed as the default condition. Otherwise, uniaxial material 

models introduced by the user are assigned to the rotational springs for the joint element. 

These material models simulate the nonlinear joint shear or interface behavior by 

updating the stiffness matrix and the resisting nodal forces for every load step. The 

matrix and vectors are dynamically allocated for the element stiffness matrix and nodal 

forces. 

The last step in constructing the Joint2D element is the construction of the multipoint 

constraints and addition of them to the domain. The constrained and retained degrees of 

freedom are determined based on the fixity at the external nodes. The constrained and 

retained nodal degrees of freedom and the element specified tags for the primary rotation 

(see Table  2-1) and large deformation condition are sent to the multipoint constraint 

constructor and the constraint object is added to the domain. 

Once the element is created and introduced as a part of the domain, it is included as part 

of the analysis, so at each analysis iteration, the analysis object requests the tangent 

stiffness matrix and nodal forces from the joint element. The joint element retrieves the 

nodal displacements and calculates the deformations for each rotational spring based on 

the current geometry. The rotational deformations are submitted to the uniaxial material 

models (representing the joint shear and interface springs), which returns the resisting 

moment and tangent stiffness to the joint element. These values are then applied to the 

joint element stiffness matrix and residual forces vector, per the derivation presented in 

the previous formulation section. For the rigid connections, the multi-point constraint 

enforces the rigidity, and uniaxial material information does not apply (zero values are 

assumed for the uniaxial material model stiffness and resultant force).  
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A series of damage models (as described in chapter 3) are also implemented in OpenSees. 

These damage models calculate the structural or component damages based on the forces, 

deformations, energy, or a combined formulation. The joint element can invoke the 

damage models to calculate and record the structural damage that the joint undergoes. 

The damage models are generated in the input file and they are introduced as 

supplementary arguments to the joint element. The damage of each spring in the joint 

model will be recorded as element output. Based on the damage model used, the joint 

damage can be calculated as a function of the total deformation, plastic deformation, or 

another combination of the force/deformation of the rotational springs.  

2.4.3 Validation cases for 2D joint models 

As part of the implementation process, an analytical model of a simple subassembly with 

the joint element and elastic frame elements was created to check the model 

implementation. The sizes and material properties in the example are arbitrary, but they 

were selected in a manner to facilitate hand calculation of the system under different 

loading modes. The subassembly model was then monotonically loaded in axial, shear 

and asymmetric modes, and the equilibrium of the joint zone and the whole structure was 

examined. The compatibility was checked for both the joint and the frame elements 

connected to the joint. The joint stiffness matrix was also tested by comparing the 

analysis results with hand calculations.  

The joint element was subjected to cyclic loading and large deformations for verifying 

the performance of multi-point constraints. The joint element maintained the initial size 

and the external nodes were located at the expected location on the deformed 

parallelogram.  

The joint was subjected to a rigid body rotation in small increments and the results were 

compared with the case for one large step. The large displacement formulation with 

length correction (described in Section 2.6) gave identical results for both cases. For 

observing the P −∆ effects, a highly distorted joint was subjected to axial forces and the 
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resulting P −∆  moment was detected in the shear panel was checked for equilibrium in 

the deformed geometry. 

2.5 Joint3D 

Basic assumptions regarding the deformation modes for the two-dimensional model are 

simple to extend for the three dimensional model. The three dimensional joint is viewed 

as a block with frame elements connected to the centroid of each face, Figure  2-27. This 

block is assumed to be flexible in shear and rigid in the axial and flexural modes; hence, 

it will be referred to as shear block. The sizes and dimensions of the shear block do not 

change through the process. The shear block is modeled by a parallelepiped, a 

polyhedron whose faces are parallelograms lying in pairs of parallel planes (Figure  2-28).  

The shear block is subjected to six force components at each face, Figure  2-29, but, only 

the shear forces can deform the shear block. The shear resistance is provided by three 

rotational springs, each defined along a local axis. The 3D joint implementation is limited 

to cases where adjacent beam-column members are rigidly connected to the joint (i.e. 

comparable to the Joint2D-1SPR element). Where necessary, the end rotations can be 

added separately by rotational springs. 

2.5.1 Element characteristics 

Joint3D is a three dimensional extension of the Joint2D-1SPR model which represents 

the shear block in three dimensional the analysis models. The Joint3D is constructed over 

six external nodes. An imaginary parallelepiped is constructed on external nodes in a 

sense that each node is located at the center of one of the parallelepiped faces. In Joint2D 

model all the rotations and deformations occur in a single fixed plane, i.e. the rotation 

vectors all have a constant direction, whereas in Joint3D the direction of rotation vector 

varies. A local coordinate system is defined to signify the direction of rotation vectors for 

the joint shear deformation. The local coordinate system is defined by the external nodes 

at two opposite sides of the block. The order for tagging the external nodes is done such 

that the local x’ axis is defined by nodes 1 and 2, the local y’ axis is defined by nodes 3 
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and 4 define, and nodes 5 and 6 define the local z’ axis (Figure  2-28).  The order of the 

nodal tags does not necessarily imply the local axes are orthogonal, and the formulation 

is developed for large deformations where the local axes may not remain orthogonal. The 

nodal locations in the normalized local coordinate system are defined as: 

( ) ( )
( ) (
( ) (

1 2

3 4

4 6

1,0,0 1,0,0
0, 1,0 0,1,0
0,0, 1 0,0,1

x x
x x
x x

′ ′= − =
′ ′= − =
′ ′= − =

)
)
                                           (2.39) 

The external nodes have six degrees of freedom each, three translations and three 

rotations. The movements of external nodes are constrained to the central node by 

multipoint constraints and move attached to the shear block. The adjacent members are 

rigidly connected to the external nodes, so the displacement of the external nodes directly 

determines the global deformations of the connected beam-column members. The central 

node controls both rigid body motion and shear deformation of the element with its 9 

degrees of freedom (6 degrees for the rigid-body motion and 3 degrees for shear 

distortion).  

2.5.2 Formulation 

The formulation of the Joint3D element depends on the geometric features of 

parallelepipeds. A principal plane is defined as a plane parallel to one of the faces that 

passes through the parallelepiped centroid. Three principal planes are defined for a 

parallelepiped, which divide the parallelepiped to eight equal parallelepipeds (Figure 

 2-28). Each principal plane is identified by a normal vector and the central node, i.e. 

centroid of the volume. The intersection of principal planes with the volume of the 

parallelepiped is a parallelogram in three-dimensional space. The external nodes are 

defined by the intersections of two principal planes and the parallelepiped face. The 

assumptions of axial and flexural rigidity of the parallelepiped imply that the size of these 

three principal parallelograms can not change and their deformability is limited only to 

shear distortion (change of angle). The local coordinate system is defined by three vectors 

connecting the external nodes on each two opposite faces (Figure  2-28). The main chord 
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is a line that connects two nodes on two opposite faces of parallelepiped. The central 

node is located at the centroid of the parallelepiped where the principal planes intersect 

and main chords bisect each other.  

The rigid-body motion of the Joint3D element is prescribed by the displacements and 

rotations of the central node, while the three shear deformation modes are determined by 

the relative rotation between the principal planes. The magnitude of the shear 

deformations is expressed by shear angles in the local coordinate system. The shear 

angles are scalar values and they are stored as nodal rotations. The central node has three 

extra degrees of freedom for storing these shear angles.   

The initial location of an external node n  is defined as a vector of size three, defined to 

have zero initial displacements at step 0i = :  

0

0 0

0

n

n n
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⎧ ⎫
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⎪ ⎪
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 (2.40) 

The nodal displacements are time variant vectors with six degrees of freedom, three 

translations and three rotations. The nodal deformation vectors for the load step i  are 

defined as:  
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 (2.41) 

The updated locations of nodes for the time-step  are calculated by adding the nodal 

deformations to the initial coordinates: 

i
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As the element deforms in shear, all the joint dimensions remain constant through the 

analysis and only the angle between the principal planes may change. This means the 

main chords always intersect at the centroid and they bisect each other. The location of 

the central node, i
cX , can be calculated based on the position of the external nodes. 
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         (2.43) 

The following nine equations satisfy the condition that main chords bisect each other:  

1 2 3 4 5
1 1 1( ) ( ) (
2 2 2

i i i i i i
6 )X X X X X⋅ + = ⋅ + = ⋅ + X                            (2.44) 

The next geometric feature used in this formulation is that the length of the parallelepiped 

main chords must remain constant to maintain the axial and flexural rigidity. This feature 

can be expressed in the form of three equations. 
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                                             (2.45) 

The other feature used here is that the faces remain parallel. The external nodes are 

rigidly connected to each face of the parallelepiped; therefore the rotation vector of two 

external nodes on the opposite faces of the parallelepiped are identical and they must be 
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equal to the rotation of the normal vector of the principal plane parallel to the 

parallelepiped face. This feature is captured by the following equations: 
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                            (2.46) 

The fixed set of equations required for the model relates nodal displacements to nodal 

rotations. Formulating the general three-dimensional rotation of principal planes requires 

careful adherence to a correct notation. For minimizing the number of redundant 

parameters in this formulation, the rotation of a main chord is only allowed to occur in its 

corresponding principal plane. This rotation will cause the principal parallelogram 

deform locally in the principal plane is defined on. The rotation of the main chord will 

cause the main chord end nodes move, and the other two nodes in that principal plane 

rotate. Figure  2-31 shows a principal parallelogram of the joint, and how its deformation 

affects the nodal deformations. The rotation of each main chord imposes a deformation 

component to the nodes at two ends of the main chord, resulting in 18 equations to relate 

the rotation of mains chords to external nodes. 

In a two-dimensional plane with three degrees of freedom, the rotation vector is always 

parallel to the z-axis and it maintains a constant direction. In three-dimensional space 

with six degrees of freedom, there is no guarantee that the rotational vectors maintain 

their initial direction. For large deformations analysis, it is essential to consider the 

change in direction of the rotation vectors. Calculating the general rotation of a vector in 

three dimensions is a delicate task since superposition can not be used for large 

deformations. If a number of 3D rotations are applied, the result depends on the order 

rotations are applied, which means that the element formulation can not be based on total 

rotations for large deformations (and rotations). This is one of the reasons that most 

structural analysis platforms use incremental formulations for enforcing the kinematic 

constraints, since for small incremental rotations the rotation can be approximated as 

vectors. Since the behavior of the Joint3D element relies on the superposition of different 

deformation modes, the formulation is based on the deformation increments, rather than 
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total deformations. For infinitesimal rotations, the rotation of a vector will be simply 

calculated by the outer product of the vectors, Figure  2-30. 

All the deformation modes of the joint parallelepiped can be explicitly derived as 

functions of central node motion and the shear deformation in principal planes. The shear 

deformation angles in principal planes are added as supplemental degrees of freedom to 

the central node, so the central node deformation are expressed in the form of three 

translations, ( ), ,i i i
c c cu v w  three rotations ( ), ,i i i

c c cα β χ  , and three shear deformations 

( )' ' ', ,i i i
x y zγ γ γ  all defined along the local axes.  

{ }' ' '

Ti i i i i i i i i i
center c c c c c c x y zu v w α β χ γ γ γ∆ =  (2.47) 

To summarize, the displacement of each external node is governed by the rigid body 

motion of the central node ( )RBδ  , and the shear distortion of two principal planes 

passing through the node. The shear distortions are described in the form of a rotation due 

to shear deformation of one of the principal planes ( )Rotδ  and a translation due to shear 

deformation of the other plane ( )Dispδ . The normal vector of the principal plane that 

governs the rotation is defined as ( ), ,rot rot rot
rot x y zη η η η=  and the rotation angle of this 

plane is rotγ . The normal vector of the principal plane that governs the displacement is 

defined as  and the rotation angle of this plane is ( , ,disp disp disp
disp x y zη η η η= ) dispγ . The vector 

that connects the central node to the external node is defined as . In 

equation form, these relationships are described as follows: 

( ), ,x y z∆ = ∆ ∆ ∆

 node RB Rot Dispδ δ δ δ= + +  (2.48) 
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With the nodal deformation relationships established, the joint shear stiffness 

relationships are introduced next. In the 2D formulation for the shear panel, a spring was 

introduced between the internal degrees of freedom. In the 3D formulation the internal 

degrees of freedom lying in each principal plane are connected in a similar manner. The 

nodal forces in the global system are defined as follows: 
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Or in the piece-wise linear incremental form: 
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where xK ′ , yK ′ , and zK ′  are the tangent stiffness of the rotational springs defined along 
, , and x′ y′ z′  axes respectively. 

2.5.3 Implementation 

The Joint3D uses the same modeling concepts used in the two dimensional model. 

Joint3D has six external nodes and one central node. The central node has 3 extra degrees 

of freedom (9 DOF total) to represent the joint shear deformations. External nodes are 

connected to the central node by special MP_Joint3D multipoint constraints, allowing 

large deformation capability. Three rotational springs provide shear resistance for the 
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shear modes. The springs are introduced along the main chords and their moment is 

effective on the principal plane they are normal to. 

The central node is introduced in the same manner as the two dimensional element. The 

location of the central node is determined based on the midpoint of main chords and an 

error check procedure guarantees the mid point of all main chords are coincident. 

The constraint equations are defined to relate the external nodal displacements to the 

central node. The MP_Joint3D is the multipoint constraint object developed for this 

purpose, and six sets of multi point constraint objects provide the constraint equations.  

Joint3D has 45 degrees of freedom, but 36 of these are constrained to the central node, 

resulting in 9 free degrees of freedom. 

Implementing the multi-point constraints: The implementation of multipoint constraints 

for the 3D case is different than two dimensional case since two nodes are required to 

define the direction of principal planes passing through the retained node, Figure  2-33. 

The central node is the retained node, and the external node is the constrained node. As 

mentioned in the formulation section, two out of three principal planes pass through each 

external node. Shear deformation in one of these planes, dispγ , causes displacement (i.e. 

the translation of the constrained node is only related to dispγ ), and the shear deformation 

in the second plane, rotγ , causes rotation (i.e. rotations of the constrained node are only 

related to rotγ ). The normal vectors of these planes are parallel to the local coordinate 

system and they are defined by a normalized vector connecting the central node to a 

specified external node. The information for creating the multipoint constraint (i.e. the 

local axes used for rotating or translating the external nodes) is summarized in Table  2-2.  

Based on the constraint formulation, all the translational and rotational degrees of 

freedom of the external nodes are constrained to eight degrees of freedom of the retained 

(central) node (i.e. for each external node, one of the rotational degrees of freedom of the 

central node is excluded as a retained degree of freedom). The constrained and retained 

degrees of freedom for the Joint3D multi-point constraint are summarized as: 
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Table  2-2: Rotation vectors for Joint3D nodal displacement and rotation 

Node Rotation Node Rotation Angle 
Displacement 

Node 

Displacement 

Angle 

1 6 (local z’ axis) 'zγ  4 (local y’ axis) 'yγ  

2 6 (local z’ axis) 'zγ  4 (local y’ axis) 'yγ  

3 2 (local x’ axis) 'xγ  6 (local z’ axis) 'zγ  

4 2 (local x’ axis) 'xγ  6 (local z’ axis) 'zγ  

5 4 (local y’ axis) 'yγ  2 (local x’ axis) 'xγ  

6 4 (local y’ axis) 'yγ  2 (local x’ axis) 'xγ  

MP_joint3D is constructed automatically by Joint3D element, based on the tags specified 

by Joint3D element for: (1) the constrained and retained nodes, (2) a node that signifies 
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the direction for rotγ  and the central node degree of freedom for rotγ  , (3) a node and 

degree of freedom for dispγ  ,  and (4) a indicator for large deformation formulation.  

The constrained and retained degrees of freedom are formed by two vectors and they are 

returned to the main analysis algorithm along with the constraint matrix. Depending on 

the large deformation condition, the constraint matrix is either selected to be constant or 

time varying (see section 2.6 for more details on the time varying constraint). The 

constraint matrix formulation is defined and calculated as: 

 C RU C Uδ δ= ×  (2.54) 

    (2.55) 

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0 0 0
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The approach for handling large or small deformation is the same as the 2D model. The 

small deformation formulation uses the constraint matrix calculated at the initial step, 

while the large deformation formulation updates the constraint matrix at each committed 

step based on the current nodal configuration. The user chooses between these methods 

through a flag for large deformations and length correction.  

Constructing the Joint3D: The constructor of the Joint3D element is quite similar to the 

2D element. The Joint3D adds the central node and multipoint constraints to the domain, 

where the element is generated. The following user-defined arguments are imported at 

the constructor level of the Joint3D element: 

• A unique element tag for the joint element 

• The tags of six external nodes 
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• An unused tag for the central node 

• Three uniaxial material models for the shear block deformations             

• A pointer to the domain 

• The tag for the large deformation condition  

The command line for creating the Joint3D elements in OpenSees is presented in 

Appendix B. 

2.5.4 Validation cases for the 3D joint model 

A 3D beam-column subassembly was created with a single joint in the center, with are 

located along x and y axes and a column located along z axis. The bottom of the column 

is hinged and end of all four beams are rollers allowing displacements in xy plane. A 

displacement history was applied to the top of the column. The joint formulation was 

then checked for the following cases: 

• The central point is always located at the middle point of every two front nodes. 

• Every two front planes always remain parallel . 

• Joint size remains constant. 

• For the constant constraint matrix, the nodes locally move only on their 

corresponding normal plane. 

• Penalty and transformation constraint handlers result in identical answers. 

• The external reactions must satisfy the equilibrium equations of the system. 

• Apply the displacement history to each separate shear mode and observe the 

interaction between modes. For rollers at each beam end, the x-x and y-y 

displacements do not interact with each other and they only load y’ and x’ shear 

modes. 

• Equilibrium of force transfer between shear modes for various support conditions. 
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2.6 Large deformation formulation for the multi-point constraints 

For small deformation models the configuration of the system is assumed to be constant 

and the constraint matrix is calculated based on the initial configuration. When 

deformations become larger, then constant constraint matrix, if not updated for every 

step, will lead to change in the multi point constraint length, and an incorrect path for 

constrained node. The error associated with the constant constraint matrix does not allow 

the element to capture the second order results for geometric nonlinearity, see Figure 

 2-35. Fortunately, this error is not cumulative for cyclic loading and, since the joint 

returns to its exact size whenever it is positioned in its original configuration.  

A more accurate solution can be achieved by using a time varying constraint matrix. As 

shown in Figure  2-36, the time varying constraint matrix results in a more accurate path 

for the constrained node, but the length of the multi-point constraint will be constantly 

increasing. The increasing length error will be a cumulative error that may become 

excessive after several large cycles. The increasing length error can be eliminated by a 

length correction scheme, whereby the constrained node is displaced at the end of each 

load step to maintain the initial multi point constraint length. For the 2D joint, the length 

correction factors are calculated by (2.8) and (2.9) to be multiplied by the main chords to 

relocate the external nodes: 

 
( ) ( )

( ) ( )
( )

2 20 0 0 0
1 3 1 3

1 3 1 32 20 0 0 0
1 3 1 3 1 3 1 3

i i i
or or c ci i i i

x x y y iX X X
x x u u y y v v

− + −
← ×

− + − + − + −
X− +  (2.56) 

 
( ) ( )

( ) ( )
( )

2 20 0 0 0
2 4 2 4

2 4 2 42 20 0 0 0
2 4 2 4 2 4 2 4

i i i
or or c ci i i i

x x y y iX X X
x x u u y y v v

− + −
← ×

− + − + − + −
X− +  (2.57) 

The OpenSees implementation permits the user to choose any one of three constraint 

schemes- (a) constant, (b) time varying without the length correction, and (c) time 

varying with length correction. 
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2.7 Numerical methods for handling multipoint constraints 

The analysis object applies the piecewise linear constraint formulation to the system of 

equations by constraint handler classes. The details of the large deformation formulation, 

how the constraints are handled, and the global formulation of the joint element will be 

discussed later in this section.  

The transformation or penalty constraint formulations provide two alternative approaches 

for applying the multi-point constraints to the analysis model. Since the joint element 

formulation highly depends on multipoint constraints, the constraint handling method 

determines how the joint element influences the solution. The advantages and 

disadvantages of using each of these methods depend on the nature of the problem, 

modeling details, and solution algorithms. There is no general rule for choosing one of 

these methods, and it is left to the user to determine which may fit the problem better. 

However, some guidelines based on testing of the joint is provided later in section 2.8 

2.7.1 The transformation handler 

The transformation constraint formulation replaces the constrained degrees of freedom by 

the transformed retained degrees of freedom, hence it reduces the size of system of 

equations. It also modifies the stiffness matrix and the load vector of all elements that are 

connected to the constrained node. The transformation method is quite efficient, 

particularly for the linear problems, but in the OpenSees implementation, it has some 

limitations for complicated models with multiple constraint equations and time varying 

incremental problems. One of the major limitations of the OpenSees transformation 

implementation is that it does not permit “chained” multiple constraints where one 

retained node is constrained to third node. This limitation is observed for cases such as 

when the joint elements and rigid-body diaphragms apply kinematic constraints to a 

common node. 

The transformation formulation for handling a multipoint constraint is discussed here. 

Consider a simple case that two nodes are constrained by a multipoint constraint, with an 

elastic element that connects the constrained node to a third unconstrained (free) node 
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(Figure  2-34). The displacement field for the retained node, constrained node, and the 

unconstrained (free) nodes are defines as: 
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 { }F
free freeu∆ =  (2.60) 

In which the subscripts refer to the node name and the superscript of R, C, and F refer to 

retained, constrained and free degrees of freedom. The constraint relationship is defined 

as: 

C
con retu C u= × R                                                   (2.61) 

The nodal deformations for the element are defined by the constrained node and the free 

node as: 

0 0
0 0
0 0

C R R
con ret ret
F F F
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F F F
free free free

u u uC
u I u T u T

Iu u u

⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎡ ⎤
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎢ ⎥ ⎪ ⎪ ⎪ ⎪∆ = = × = × = ×∆⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥
⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢ ⎥⎣ ⎦⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎩ ⎭ ⎩ ⎭

                (2.62) 

Note that the orders of elem∆  and trns∆  are not the same, and using (2.62) the transformed 

degrees of freedom  trns∆  replace the element nodal deformations in the global system of 

equations.  

The energy function of the element is defined as: 

1 1
2 2

T T T T T T
elem elem elem elem trns trns trns elemelem K F T K T TΦ = ∆ × ×∆ + ∆ × = ∆ × × × ×∆ + ∆ × × F (2.63) 
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To enforce the equilibrium, the energy function must be minimized with respect to 

deformations: 

 0elem

u
∂Φ

=
∂

 (2.64) 

 0T T
trns elemT K T T F× × ×∆ + × =  (2.65) 

So the system of equations must be solved for trns∆   and constrained degrees of freedom 
C
conu  are thereby removed from the solution. 

The element stiffness matrix and nodal forces are calculated as: 

T
trns

K T K T= × ×  (2.66) 

and  

T
trns elemF T F= ×  (2.67) 

In the transformation method, the constraint matrix must be multiplied by the stiffness 

matrix of connected elements at every single step, as part of the assembly of the global 

stiffness matrix. 

2.7.2 The penalty handler 

The penalty approach is a numerical method for enforcing the constraint equations on the 

system of equations. The penalty method minimizes the difference between the actual 

displacements of constraint degrees of freedom and the calculated values based on the 

constraint equations. This difference is expressed as a vector for each multipoint 

constraint, calculated as: 

C R
con retu C u D− × =  (2.68) 
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Where C
conu  and R

retu  are the actual deformations at the constrained and retained degrees 

of freedom, respectively. The physical representation of the penalty method is achieved 

by adding stiff springs between C
conu  and R

retuC ×  vectors.  

To formulate the penalty method, the difference vector D  is added to the energy 

equation, using a penalty matrix. The penalty matrix is a diagonal matrix with very large 

values, or numerical infinity. In concept, it is possible to use a separate penalty value for 

each constrained degree of freedom, but typically a unique penalty value is used for the 

whole problem. So the constraint term in the energy equation will be: 

1
2

T
C D PM DΦ = × ×  (2.69) 

where IPVPM ⋅=  , and  is the penalty value (the notations PV M  and V  refer to 

matrices and vectors, respectively). 
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 (2.70) 

To enforce the equilibrium, all terms of the energy function must be minimized with 

respect to deformations, so: 

 0
C
conC

T T R
ret

I C u
PV

u C C C u

− ⎧ ⎫⎡ ⎤∂Φ ⎪ ⎪= =⎢ ⎥ ⎨ ⎬
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 (2.71) 

To summarize, in the penalty method the extra stiffness terms (2.71) are added to the 

system of equations along with the normal element stiffness matrices. This method does 

not have the limitation against “chained” constraints that the transformation method has. 

This is because it does not remove the constrained degrees of freedom and instead solves 

the full system of equations. Depending on the penalty value (PV), there will be some 

degree of flexibility in the constraints, which is not present in the transformation method. 
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2.8 Accuracy, convergence stability and solution rate 

The force-deformation formulation of the joint elements is fairly straightforward and is 

comparable in many respects to a multi-directional zero-length spring. Both of the joint 

models do not perform any nonlinear equation solution within the element, Instead, they 

instead rely on the global solution algorithms. The main burden of the joint elements is 

related to the extra degrees of freedom and multi-point constraints. The number of 

additional degrees of freedom imposed to the system depends on the handling method 

that one chooses for multi-point constraints (i.e. penalty versus transformation). 

The transformation method for handling the constraints reduces the size of the system of 

equations by removing the constrained degrees of freedom. For a 2D joint model, 16 

degrees of freedom are reduced to 4, and for a 3D joint model 45 degrees of freedom are 

reduced to 9. This reduction in the size of the system of equation is quite significant. The 

multipoint constraints handled by transformation method are replaced by mathematical 

relations that make the constraints absolutely rigid. The transformation method is more 

accurate and efficient for linear problems. Since the accuracy of the joint element 

response depends directly on how accurately the multipoint constraints are handled, the 

joint element will be quite precise when it is used with transformation constraint handler. 

One possible source of inaccurate response will be due to large deformations. This 

problem is handled by updating the constraint matrix and length correction. The 

transformation constraint handler may not be efficient for some nonlinear problems, since 

the rigid constraints may cause large force imbalances that may lead to convergence 

problems. 

The penalty constraint handler on the other hand does not reduce the size of the linear 

system of equation, so the size of the linear system of equation is larger. For small 

models, the size of the linear system of equation does not have a considerable influence 

the run time, while as the number of degree of freedom grows, the extra degrees of 

freedom in the linear system of equation may have a considerable influence. Switching to 

penalty constraint handler did not have a negative influence on the run time and accuracy 

for the validation problems (chapter 4) with limited degrees of freedom. 
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Choosing the penalty value is a delicate task, since the penalty value must not be small to 

make the right constraint flexible, and the penalty values must not be too large so as to 

exceed the computer precision and lead to an ill-conditioned stiffness matrix. As a rough 

estimate, the penalty value is suggested as the larger of either 1.0  or 1.0  times the 

largest value of the stiffness matrix (but not greater than the typical machine precision of 

). 

12e 3e

1.0 16e

2.9 Recording analysis outputs for joint elements 

An element recorder object monitors the state of an element during the analysis. The 

element recorder writes the element converged state at the end of each load step to a file 

or to a database. The response of joint elements can also be recorded using the element 

recorder. The valid inquiries to a Joint2D element when creating an element recorder are: 

• The displacements of the central node will be recorded as a vector. The 

displacement of the central node can be used for calculating the rigid-body motion 

of the joint. 

• The joint size returns the distance of the nodes on opposite sides of the joint. The 

joint size value can be used to monitor the constraints under large cyclic 

deformation. If the change in the joint size is larger than expected, the length 

correction algorithm can be used. 

• The joint deformation as the spring rotation at external nodes and at the panel.  

• The joint force as the spring moment at external nodes and at the panel. 

• The plastic rotation of the springs. The Plastic rotation at external nodes and at the 

shear panel is calculated by subtracting the elastic component of the rotation. The 

elastic part of the rotation is calculated based on based on initial or unloading 

stiffness. 

• The joint stiffness matrix 
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Figure  2-1: Influence of the joint on the analysis results (Tsai et al., 2000) 
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Figure  2-2: Joint types in a 2D RC frame model 
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Figure  2-3: Joint types in a 3D RC frame model (ACI-352) 
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Figure  2-4: Deformed reinforced concrete joint 
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Beam-end rotation 

Shear deformation

Figure  2-5: Deformed steel moment resisting joint 

 Figure  2-6: Deformed RCS joint 

Gap opening
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Axial deformation Bending deformation 

Interface nodal rotation Shear deformation
Figure  2-7: Deformation modes of a joint 
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Figure  2-8: Gravity and lateral loading modes 
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Figure  2-9: Free body diagram of the joint external forces  (positive sign convention) 
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Figure  2-11: Joint load decomposition - symmetric bending modes 
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Figure  2-12: Joint load decomposition; anti-symmetric bending mode 

64 



 

 

panelw

h

c V
b

panelw

h

c V
b

panelVpanelV

2 4 2 4
1 2

y y
panel y

w

F F M MV F
c

+ −
= + −

( )1 2 4
2 4

2
2

y y y
panel
shear w

F F FM c M M+ +
= ⋅ − −
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Figure  2-14: The joint equilibrium equations 
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Figure  2-15: The joint zones represented by rotational springs 
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Figure  2-16: Previously proposed joint models 
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Figure  2-17: Joint element in OpenSees 

 Figure  2-18: Joint model with transition elements (Lowes and Altoontash, 2003) 
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 Figure  2-20: Joint2D-5SPR deformed shape with member-end rotations 
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Figure  2-19: Graphic representation of the internal components of the Joint2D-5SPR element 
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Figure  2-21: Constraint relations for the Joint2D-5SPR with rigid MERs 

 Figure  2-22: Joint2D-5SPR multipoint constraint with Member-End Rotation 
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 Figure  2-24: Joint2D-1SPR deformed shape, the shear panel moment-deformation 
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Figure  2-23: Internal components of the Joint2D-1SPR element 
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Figure  2-25: Constraint relations for the Joint2D-1SPR with rigid MERs 

 Figure  2-26: Joint2D-1SPR multipoint constraint with Member-End Rotation 
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No flexural deformation

 Figure  2-28: Shear block principal planes and local coordinate system 
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Figure  2-30: Vector rotation for infinitesimal rotations 
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Figure  2-29: Joint3D nodal degrees of freedom/force components 
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Figure  2-31: In plane deformation of a principal parallelogram 
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Figure  2-34: Retained, constrained and free nodes in transformation formulation 
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3 Damage models and degrading hysteretic material models 

One of the intermediate steps in the Performance Based Earthquake Engineering process 

involves calculation and assessment of Damage Measures. The Damage Measures are 

the qualitative state of the structural damage after an earthquake, which are calculated as 

a function of Engineering Demand Parameters. The decision variables (e.g. economic 

loss, down time, and repair time) are then determined based on the Damage Measures. 

According to the PBEE framework equation, there must be a solution to determine DMs 

analytically. 

Damage evaluated through the structural analysis can be expressed on a global or 

component basis. Damage evaluation on a global basis is particularly appropriate for 

collapse assessment, whereas individual component damages are more appropriate for 

evaluating losses prior to collapse. The overall state of structural damage is typically 

calculated based on the global outputs of the analytical model, such as inter-story drift. 

Alternatively the global damage assessment can be aggregated based on the individual 

component damage. Some of the mostly used Engineering Demand Parameters to 

evaluate damage include the following: 

• Parameters related to floor movement, such as floor displacement, velocity or 

acceleration. In modeling, these parameters are acquired as nodal displacement, 

velocity, or acceleration 

• Inter-story drift (relative displacement between two floors).  

• Parameters related to structural components, such as internal forces, or plastic 

deformations 

The damage for individual elements is calculated based on element data such as element 

deformations, forces, or dissipated energy. These engineering parameters must be 

extracted from the solution and processed for calculating a Damage Index. A Damage 

Model is defined as an operator that calculates the Damage Index by applying a specific 

damage rule (e.g. Park-Ang damage model). The damage index can be recorded for 
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subsequent loss assessment and in some cases it may be used by the analysis components 

for degrading constitutive stiffness or strength parameters.  

A state-of-art review by Williams et al. (1995) listed and categorized damage models for 

RC components as non-cumulative and cumulative damage models. The damage models 

rely on the force, displacement, energy or a combination of them. In this research a 

generic damage model is introduced into OpenSees, which casts the RC damage models 

in a standard form the OpenSees analysis program.  

The generic damage model, or in OpenSees terms the Damage Model class, inputs the 

parameters in the form of an array and uses one of several available damage formulations 

to calculate the damage index (Figure  3-1). The standard input vector includes the 

displacement, force, unloading stiffness and plastic deformation. Elastic and dissipated 

energy are calculated by the damage formulation as a function of the standard input 

variables, while any other desired parameters can be appended to the input vector. The 

damage index is reported as a continuous scalar quantity; normalized to the unit scale 

where 0.0 corresponds to the undamaged case and 1.0 corresponds to total damage. The 

cumulative damage models store the history data necessary for the damage calculation.   

The damage models are calibrated individually for each structural or non-structural 

component to serve as numerical links, relating EDPs to DMs. Damage states of 

structural and non-structural components are typically define qualitatively; therefore they 

cannot be easily aggregated to form a global damage indicator which the target decision 

variable can be based on. A simple solution is presented later in this chapter to integrate 

the component damage indices by assigning importance weights to structural components 

on the basis of how they correspond to the decision variable (i.e. the repair cost or the 

risk of collapse). 

3.1 Existing damage models for RC components 

Selecting and calibrating the right damage model for each RC component is a delicate 

task, which requires knowledge of the available damage models, as well as the monotonic 

and cyclic behavior of RC components. Damage in reinforced concrete components may 
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be caused by excessive deformation or by repeated load reversals. The damage in a 

reinforced concrete component is associated with damage to the concrete (aggregate-

cement matrix), reinforcement steel (rebar yielding, fracture or buckling), bond loss, or a 

combination of all these elements. The damage models are categorized based on the 

loading types and the failure mechanisms (Williams and Sexsmith 1995). 

Non-cumulative damage models: Non-cumulative damage indices use the envelope of 

maximum response such as component ductility or loading, as the basic variable to 

calculate the damage. The ductility is usually expressed in terms of curvature, rotation, 

strain, or deformation; while the loading envelope is defined for moments, stresses or 

forces. A non-cumulative damage index is calculated based on the peak value of the basic 

variable which is normalized by the nominal capacity of the component. Non-cumulative 

models are not load path dependent and they do not generally reflect the damage due to 

cyclic loading.  

Cumulative damage models:  Cumulative damage models are employed to represent the 

damage under cyclic loading. Accumulated plastic deformation or the hysteretic energy 

are commonly used for calculating cumulative damage indices. The deformation based 

cumulative damage models are mostly developed based on the low-cycle fatigue 

formulation, where large ductility excursions are sustained over many loading cycles 

(Banon et al. 1981; Wang and Shah 1987; Chung et al 1987; Hindi and Sexsmith 2001). 

Accumulation of plastic deformations has been used as the basic variable in damage 

indices proposed by Mehanny and Deierlein (2000). Cumulative damage model based 

solely on energy was introduced by Kratzig et al. (1989).  

Combined damage models: These damage models consider a combination of damage 

due to excessive deformation and energy abortion. The combined damage model 

introduced by Park and Ang (1985a) is widely used due to its simplicity and the fact that 

calibration information is available. Some cyclic models such as Mehanny and Deierlein 

(2000) also include combinations of peak and cumulative effects (deformation and/or 

dissipated energy). 
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3.2 Damage Model implementation 

The Damage Model is a new class introduced by the author to OpenSees. The damage 

model is a tagged/moveable object that is defined in the analysis domain by a tag and it is 

stored by elements, material models, and recorders (terms and definitions related to the 

OpenSees platform are described in the Appendix A). Specific types of damage 

formulations are introduced as subclasses of the damage model. Typical structural 

damage models are not rate dependent (i.e. the damage state does not dependent on the 

rate of loading. So, the default damage formulations implemented in this research are not 

rate dependent, however, the damage class keeps the options open to represent the rate 

dependent damage models. The damage model is introduced by the damage type, a tag, 

and calibrating parameters for the damage formulation (Appendix B). 

Typical solution of a nonlinear structural analysis problem is involved with 

prediction/correction procedures, where the trial state of the system may be calculated a 

few times before the nonlinear solution converges. The trial state of the system is 

determined by using the last converged step as the start point. The trial steps will be 

discarded once the solution converges and the converged solution will be stored for the 

next step.  

Elements and material models in OpenSees are all capable to store the latest converged 

solution as history data and calculate the trial states without altering the stored converged 

state. Due to the hysteretic nature of most of the damage models, the input parameters for 

each step are also treated as temporary trial data. The trial data is not stored and only a 

trial damage index is calculated. Once the solution has converged for a step, the trial data 

is saved as committed data.  

The damage index is calculated and reported as a scalar value which is typically a 

combination of damage, both in positive and negative loading excursions. The rule used 

to combine the positive and negative damage depends on how the damage model is 

formulated. For some cases (e.g. degrading material characteristics) it is essential that the 

80 



 

positive and negative damage indices are reported separately. The Damage Model is 

capable of returning the damage for positive and negative loading excursions separately. 

3.2.1 Normalized peak 

Normalized peak is a damage model based on the maximum (envelope) value of a 

response parameter, which makes it a non-cumulative damage model. The Normalized 

Peak damage model can be applied to a variety of response parameters, including force, 

deformation, or plastic deformation. It determines the positive peak value and negative 

peak value of the response envelope and calculates the damage index by normalizing the 

peak values with respect to ultimate response threshold. The damage accumulates 

monotonically, and the failure is defined when the damage index reaches 1.0. The 

maximum positive and minimum negative ultimate response thresholds (capacities) and 

the type response parameter are used to construct the Normalized Peak damage model. 

Mathematically, the index is described by the following equation: 

 1max ,i i
i i

Value ValueDamageIndex DamageIndex
ValueU ValueU

+ −

−+ −

⎛ ⎞
= ≥⎜ ⎟⎜ ⎟

⎝ ⎠
 (3.1) 

where  is the recorded envelope value of the response parameter at step i, and 

 is the ultimate response threshold for positive and negative excursions. 

iValue±

ValueU ±

3.2.2 Kratzig 

The Kratzig damage index is based on dissipated energy contributions, employing the 

maximum energy at the failure point under monotonic loading as the calibrating 

parameter (Kratzig 1989). The ultimate energy capacities for positive and negative 

monotonic loading (  and ) are used as calibration parameters. The energy 

capacities of a member can be calculated analytically by using a fiber cross section model 

and considering criteria to define critical limit states, such as rebar rupture or concrete 

crushing.  

+
UE −

UE
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The Kratzig damage formulation applies the concept of primary and follower half cycles 

to account for both the excursion with the maximum amplitude, and the cumulative 

damage of smaller excursions. The Primary Half cycle (PHC) refers to a half cycle with 

maximum deformation amplitude that enlarges the displacement envelope. Any other half 

cycle with smaller amplitudes will be accounted as a Follower Half Cycle (FHC). Figure 

 3-3 shows the how primary and follower half cycles are identified for a monotonically 

increasing loading with three cycles at each displacement level. The energy dissipation in 

primary and follower half cycles (e.g.  and  respectively) is calculated by 

integrating the energy increments (Figure  3-4). The dissipated energy history for positive 

and negative half cycles is used to calculate intermediate damage indices: 

SiE iE

 Si i

U i

E E
DI

E E

+ +
+

+

+
=

+ +
∑ ∑

∑
 (3.2) 

 Si i

U i

E E
DI

E E

− −
−

−

+
=

+ −
∑ ∑

∑
 (3.3) 

where  is the ultimate energy capacity in monotonic loading in positive and negative 

directions. The displacements (deformations) are used to keep the track of the primary 

and follower half cycles. Initially the displacements (deformations) of the primary half 

cycles are assumed to be zero for both negative and positive loading. The primary half 

cycle displacement increases to the displacement envelope on each loading direction as 

the system deforms. Energy increments are calculated for each load step as: 

UE±

 ( ) (1
1
2i i i i iE F Fδ −= + × ∆ −∆ )1−  (3.4) 

Depending on the displacement direction, the energy increment is added to ∑ +
iE  or 

as a follower half cycle, unless the displacement ∑ −
iE i∆  exceeds the previous primary 

half cycle. In this case the energy increment are added to the summation of primary half 

cycles, i.e. ∑  or ∑ . +
SiE −

SiE
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The failure ( 1.0DamageIndex = ) occurs when the energy dissipated in primary half 

cycles  exceeds the ultimate energy capacity , as modified by the accumulation 

of follower half cycles in the nominator and denominator (Equations 3.2 and 3.3). The 

follower half cycles are included both in the nominator and the denominator, such that 

they contribute considerably less to the damage index. 

∑ SiE UE

When a combined index is defined, the positive and negative damage indices are 

combined as:  

 ( ) 1.0DamageIndex DI DI DI DI+ − + −= + − ⋅ ≤  (3.5) 

3.2.3 Mehanny - Deierlein 

This damage model (Mehanny and Deierlein, 2000) is based on cumulative member 

ductility in the form of total plastic deformations. This damage model is inspired by the 

energy based damage model developed by Kratzig (1989) model and the Otes (1985) 

concept for capturing the cyclic damage accumulation. The maximum plastic 

deformation capacity in positive and negative loading (  and ) and three positive 

parameters ( 

+
puθ −

puθ

α , β , and γ ) are used as the calibrating parameters. 

Plastic rotation, pθ , is chosen as the basic input to this damage model. The plastic 

rotation is supplied to the damage model either in the form of a pure plastic deformation 

or as the non-recoverable part of the elastic deformation calculated from the total 

deformation, force and unloading stiffness, using the following equation: 

 p total
unloading

F
K

θ θ= −  (3.6) 

A half cycle is defined as a monotonic change in plastic deformation. Once the plastic 

deformation increment ( )pδθ  changes direction, a new half cycle is initiated. To 

eliminate unnecessary cycles, all the excursions smaller than certain limits are filtered 

out. The Primary Half Cycle (PHC) refers to the half cycle with highest magnitude, while 
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any other half cycles with smaller amplitude are referred as a Follower Half Cycle 

(FHC). The definition of PHC is slightly different than the definition used for the Kratzig 

model. In this formulation there is a unique PHC at each point and once a new PHC 

occurs the former PHC will be treated as a FHC (Figure  3-5). 

Damage indices for positive and negative deformations are calculated separately as: 
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where
currentPHCp

+θ  and
currentPHCp

−θ  are the positive and negative primary peaks and 

iFHCp ,

+θ and 
iFHCp ,

−θ are positive and negative follower peaks. As noted previously, α  and 

β  are c

The failure (

alibrating parameters. 

1.0DamageIndex = ) occurs when the energy dissipated the primary half 

s the ultimate energ

 

cycles exceed y capacity, or an infinite number of follower half cycles 

equalizes the nominator and denominator. The damage indices are combined as: 

( ) ( ) 1.0DamageIndex DI DI
γ γγ + −= + ≤  (3.9) 

where γ  is calibrating parameter. 
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3.2.4 Hysteretic energy 

The hysteretic energy damage model uses a cyclic deterioration formulation to calculate 

the damage index. The underlying deterioration formulation was originally proposed by 

Rahnama and Krawinkler (1993) as an index to reduce the material properties (e.g. 

strength or stiffness) at the end of a loading cycle. The deterioration formulation used 

herein is dependent on the dissipated energy of the last excursion and the total cumulative 

dissipated energy. The deterioration coefficient (β ) is given as: 

 1.0
C

excursion
Excursion

U

E
E E

β
⎛ ⎞

= ⎜ ⎟⎜ ⎟−⎝ ⎠∑
≤

y

 (3.10) 

where  and  are specified by the user as calibration parameters.  is ultimate 

energy capacity, normally defined as a multiplier of the yield energy, i.e. 

UE c UE

U yE Fλ δ= ⋅ ⋅ . 

The energy values are calculated by integrating energy increments, using either the total 

energy or the plastic energy (i.e. the recoverable or elastic energy is excluded). In cases 

an unloading stiffness is specified in the input, the damage is calculated based on plastic 

energy.  is the energy dissipated in current cycle and once a new load cycles 

begins,  is reset to zero. 

excursionE

excursionE

When used as a deterioration mode for materials, the deterioration coefficient is used to 

reduce the material model stiffness and strength are reduced at the end of each half cycle, 

i.e. at the zero force point or when the material force switches direction. The deteriorated 

strength/stiffness is calculated by multiplying the last step value to the loss of 

( )1 Excursionβ− . For example the yield strength at excursion i  is calculated as: 

 ( )1
1Y Y excursion iexcursion i excursion i

F F β == = −
= × −  (3.11) 

The hysteretic damage index is formulated to reflect the total deterioration by accounting 

for the cumulative cyclic deterioration. Further, the damage index is uploaded at the end 
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of each excursion. The relationship between the damage index after excursion i and 

cyclic deterioration parameter is expressed as: 

 ( ) ( ) ( ) ( ) ( )1 21 1 1 1 1i i iDI 1β β β−− = − × − × × − × −… β  (3.12) 

This equation can be further simplified to the following, 

 ( ) ( ) ( )11 1 1i iDI DIβ −− = − × − i  (3.13) 

and, eventually to the following to give the damage index iDI  at the end of excursion i: 

 1 1.0i i i i iDI DI DI 1β β− −= + − × ≤  (3.14) 

The damage index value iDI  is calculated and updated at the end of each excursion.  
 

3.2.5 Park-Ang  

Park-Ang is a combined damage model, which was originally calculated for RC 

components (Park and Ang, 1985). The Park-Ang model calculates the damage index is a 

linear combination of the damage caused by excessive deformation, and repeated cyclic 

loading, captured in the form of dissipated energy. The general form of the Park-Ang 

damage formulation is as follows: 

 1.0Max

U u U

DamageIndex dE
F

δ β
δ δ

= + ≤
⋅ ∫  (3.15) 

where Maxδ  is the peak deformation, Uδ  is the ultimate deformation capacity under 

monotonic loading,  is the calculated yield strength (the smaller value of the yield 

strength or the ultimate strength), and 

uF

β  is the calibration parameter for cyclic damage. 

The dissipated energy is calculated by integration of energy increments calculated by 

(3.4). 

A variation of (3.15) is implemented and used in this research (Park and Ang 1985): 
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where ( )cE δ  is the accumulated energy per loading cycle for the current displacement 

and α  and β  are two calibration parameters for cyclic damage. 

A detailed classification of damage levels suggested by Park, Ang and Wen (1985b) is 

used to related the observed empirical damages and the calculated damage indices. 

Table  3-1: Park-Ang damage level classifications 

Damage level Damage Index Damage measure 

I 0.1DI <  No damage; localized 
minor cracking 

II 0.1 0.25DI≤ <  Minor damage; light 
cracking throughout 

III 0.25 0.4DI≤ <  
Moderate damage; 
severe cracking, 

localized spalling 

IV 0.4 1.0DI≤ <  
Severe damage; 

crushing of cracking, 
reinforcement exposed 

V 1.0DI ≥  Loss of element load 
resistance 

Table  3-1 summarizes the ranges of damage indices associated with a certain damage 

level. This table will be later referred in Chapter 4 for damage study on the beam-column 

joint zone. 

3.3 Damage recorder implementation 

A nonlinear element must be able to reach the damage model and calculate its damage, 

where most of the existing nonlinear elements in OpenSees platform do not have a 

capability to calculate and report damage, other than by a simple EDP recorder. On the 

other hand, the newer elements developed in this study and future studies can be designed 
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to directly interact with damage index. The inability of existing elements to interact 

directly is resolved by an intermediate damage recorder class to access the element 

information and calculate the corresponding damage indices. 

The nonlinear element force-deformation relationships are determined by material 

models or sections. Depending on the circumstances, the force, deformation and/or 

energy state of the sections can be used to calculate the element damage. The damage 

recorder is created for an element or a series of elements and uses a damage model to 

calculate the overall element damage or damage at certain section(s). The damage 

recorder is defined in OpenSees by specifying an output file, element material or section 

response, and a damage model. The element response is fed into the damage model at 

every converged step and the damage index is calculated and recorded. 

3.1 One-Dimensional Hysteretic Load-Deformation Response Model 

OpenSees uses a generic one-dimensional (uniaxial) hysteretic load-deformation model, 

which can be substituted by a variety of rules to facilitate the modeling process (Figure 

 3-6). In this research three new uniaxial material models are implemented to represent the 

response of the rotational springs in the joint model (both the shear panel and the 

member-end rotations).  

The idea of changing hysteretic model by hysteretic energy of by a combination of peak 

deformation and hysteretic energy has been used is a variety of structural analysis 

computer programs (IDARC, 2004; FEDEAS, 2004; SNAP, 2003). After reviewing 

previous studies on hysteretic material models that can be used to represent the cyclic 

behavior of reinforced concrete components (Townsend, 1977; Rahnama, 1993; 

Mostaghel, 1999; Mettupalayam, 2000; Deng, 2000; Ibarra et. al., 2004) three hysteretic 

material models are selected. The selected material models (Bilinear, Clough, and 

Pinching) were previously developed and implemented in SNAP by Ibarra (2003) to 

capture the strength deterioration and cyclic deterioration. SNAP is an in-house computer 

program that carries out dynamic and quasi-static inelastic analysis for SDOF systems. 

These material models are used to model overall behavior of an RC connection or the 

individual mechanisms contributing to the component response (e.g. rebar pull out, bond 
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slip behavior, and shear behavior). As part of this research, these hysteretic materials are 

implemented in OpenSees with some modifications to interact with the damage models, 

and as will be discussed in Chapter 5, to calculate and return material response sensitivity 

to the modeling parameters.  

As described by Ibarra (2003), the Bilinear, Clough, and Pinching material models are 

defined by a response envelope, an unload/reload path, and damage rules to control the 

degradation define the uniaxial material model. These models share a similar envelope, 

while the characteristics of the unloading/reloading paths are different. The four material 

states that define a hysteretic uniaxial material model (loading, reloading, and unloading 

states) are illustrated in Figure  3-7. Load-deformation paths for the loading states (states 

1 and 2) in the positive and negative direction are defined by the backbone envelopes at 

the beginning of the analysis (undamaged model without any deterioration). The 

backbones can be modified during the analysis to simulate the cyclic deterioration. 

Whenever there is a deformation reversal, the unloading/reloading states (states 3 and 4) 

are redefined based on specific rules for each material model and the unloading/reloading 

path endpoints. The force-deformation point at which the reversal occurs defines the 

beginning point for the unloading/reloading state; and, the transition point to loading in 

the opposite direction defines the endpoint.  

Hysteretic damage is simulated through deterioration in unloading stiffness (unloading 

stiffness deterioration), deterioration in strength achieved at previously unachieved 

deformation demands (strength deterioration), and deterioration in the strength developed 

in the vicinity of the maximum and minimum deformation demands (reloading strength 

deterioration). Figure  3-15 to Figure  3-17 show the impact of these three different 

damage modes on the hysteretic response. A generalization of the damage index is used 

to define hysteretic damage for the current displacement increment.  

3.1.1 Bilinear with cap 

The bilinear material model is an extension to the basic elastic-plastic hardening 

formulation, with additional features to model softening at large deformations and 
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hysteretic deterioration. The loading paths (states 1 and 2) for the bilinear material 

models are defined by the positive and negative envelopes shown in Figure  3-8. The 

envelopes are defined independently, so this material model can be used to simulate 

structural components with different properties in each loading direction. The monotonic 

behavior of the bilinear material is described by an elastic-isotropic hardening rule with a 

softening cap.  

An optional residual strength can be specified as a minimum resistance that the model has 

at large deformations. The residual value is used for both positive and negative ends of 

the envelope. The bilinear model envelopes can be used as the generalized force-

deformation relation for concrete elements, as suggested by FEMA 356 for nonlinear 

analysis of the reinforced concrete components. 

The implementation of the bilinear material model is based on the definition of positive 

and negative force envelopes, since force response is limited to the maximum and 

minimum force values prescribed by the envelopes. The force envelopes are defined 

based on initial material parameters and as it will be mentioned later, they may cyclically 

deteriorate. The force envelopes for the bilinear material are defined by three key points. 

Table  3-2 is used to determine these key points for the positive envelope. Same table can 

be easily generated for the negative envelope.  

Table  3-2: Force-deformation envelope key points 

Point Deformation/Strain Force/Stress Stiffness 

1 minδ +<  res yF R F+ += ⋅  0 

2 
( )

min

1h y

h elastic

R F
K

α
δ

α

+
+ − + ⋅

=
⋅

 res yF R F+ += ⋅  h elasticKα ⋅  

3 capδ +  
( )1cap h y

h elastic cap

F F

K

α

α δ

+ +

+

= − +

⋅ ⋅
 cap elasticKα ⋅

4 
( )1cap h h y

res cap
cap cap elastic

R F
K

α α α
δ δ

α α

+
+ +

⎛ ⎞− − +
= +⎜ ⎟⎜ ⎟ ⋅⎝ ⎠

res yF R F+ += ⋅  0  
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5 resδ +>  res yF R F+ += ⋅  0  

The terms in Figure  3-8 and Table  3-2 are defined as follows: 

elasticK  is the initial elastic stiffness, yF +  is a positive value for the yield strength in 

positive direction,  is a negative value for the yield strength in negative direction, yF −
hα  

is the isotropic hardening ratio as a fraction of elastic stiffness,  is the residual force 

ratio as a fraction of yield strength, 

R

capα  is a negative value for the cap slope ratio as a 

fraction of stiffness, capδ +  is a positive value for the cap displacement on positive side, and 

capδ +  is a negative value for the cap displacement on negative side. 

The unloading/reloading path for load reversals is simply defined as an elastic path, 

unloading from the reversal point with a constant stiffness to the point it intersects the 

backbone envelope (Figure  3-9).  

An option is provided for the Bilinear model to modify the force envelopes after the 

deformation exceeds the cap deformation ( capδ ), i.e. the softening branch. In this case, the 

force envelope value for the maximum deformation is used as cut-off limit for the 

envelopes. Figure  3-10 shows the cap cut-off option. 

For the sensitivity analysis, described later in Chapter 5), it is necessary to define the 

envelope in the form of a single analytical function. The multi-linear envelope is 

expressed analytically by using boxcar function as: 

 
( ) ( )

( ) ( ) ( ) ( )
min ,

,

1

1

cap

cap res

envelope h y h elastic

h y h cap elastic cap cap elastic res res

F B F K

B F K K H

δ δ

δ δ

δ α α δ

δ α α α δ α δ δ δ

+ +

+ +

+ +

+ +

⎡ ⎤= ⋅ − + ⋅ ⋅ +⎣ ⎦

⎡ ⎤⋅ − + − ⋅ ⋅ + ⋅ ⋅ + − ⋅⎣ ⎦ F+ +
(3.17) 

where 

 ( ) ( ) ( ),

1
0a b

a x b
B x H x a H x b

elsewhere
≤ ≤⎧

⎡ ⎤= − − − = ⎨⎣ ⎦
⎩

 (3.18) 
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and the Heaviside Step Function is defined as:   

 ( )
0 0
1 02
1 0

x

H x x

x

<⎧
⎪

= =⎨
⎪

>⎩

 (3.19) 

The tangent of the envelope is defined as: 

 ( ) ( )
min , ,cap cap res

envelope
h

F
B B
δ δ δ δ capδ α δ δ α δ

δ
+ + + +

∂
= ⋅ ⋅ + ⋅ ⋅

∂
 (3.20) 

A predictor force (or stress) for a trial deformation (or strain) is calculated assuming the 

step is totally elastic(3.21). The predictor force is the compared with the envelope values 

(3.22) to correct the force to the envelope level in case it exceeds the boundary. 

 ( )trial excursion trial commited commitedF K Fδ δ= ⋅ − +  (3.21) 

  (3.22) envelope trial envelopeδ δ δ− ≤ ≤ +

The unloading and reloading phases of the bilinear material model are fairly simple since 

a constant stiffness (slope) is assumed.  

3.1.2 Peak-oriented hysteretic material (Modified Clough) 

The monotonic loading force-deformation (stress-strain) behavior of peak oriented 

material models and the bilinear material are identical. The loading regime of peak 

oriented material models starts with an elastic-hardening plastic constitutive rule, 

followed with a softening section and a residual force value. Peak oriented material 

models have totally different unloading/reloading paths, compared with the bilinear 

model.  

The force envelopes for peak-oriented materials are similar to the envelope used for the 

bilinear material model, with the only difference being that the positive envelope is zero 
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for negative deformations and the negative envelope is zero for positive deformations 

(Figure  3-11). The loading envelope is defined by five key points, which are determined 

based on the user input (Table  3-3).  

Table  3-3: Force-deformation envelope key points 

Point Deformation/Strain Force/Stress Stiffness 

1 0 0  

2 y
y

elastic

F
K

δ
+

+ =  yF +  elasticK  

3 capδ +  
( )

cap y

h elastic cap y

F F

Kα δ δ

+ +

+ +

= +

⋅ ⋅ −
 h elasticKα ⋅  

4 
( )y cap

res cap
cap elastic

R F F

K
δ δ

α

+ +
+ +

⋅ −
= +

⋅
 res yF R F+ += ⋅  cap elasticKα ⋅  

5 resδ +>  res yF R F+ += ⋅  0  

The multi-linear envelope is analytically expressed by using boxcar function (3.20) as: 

 
( ) ( ) ( )

( ) ( ) ( )
0, ,

,

y y cap

cap res

envelope elastic y h elastic y

cap cap elastic cap res res

F B K B F K

B F K H F

δ δ δ

δ δ

δ δ δ α δ δ

δ α δ δ δ δ

+ + +

+ +

+ +

+ + + +

+⎡ ⎤= ⋅ ⋅ + ⋅ + ⋅ ⋅ − +⎣ ⎦

⎡ ⎤⋅ + ⋅ ⋅ − + − ⋅⎣ ⎦

 (3.23) 

The tangent of the envelope is defined as: 

 ( ) ( ) ( )0, , ,y y cap cap res

envelope
elastic h elastic cap elastic

F
B K B K B K

δ δ δ δ δ
δ δ α δ α

δ
+ + + + +

∂
= ⋅ + ⋅ ⋅ + ⋅ ⋅

∂
 (3.24) 

Consider the unloading/reloading path. The unloading occurs with the unloading stiffness 

(normally the degraded elastic stiffness) until the force reaches zero. The reloading path 

is defined based on the peak points reached in previous cycles. The initial peak points are 

set to the yield points (point 2 in Figure  3-11), and as the material is loaded into the 

nonlinear region, the peak points are relocated on the loading envelope. The positive and 

negative peak points are identified by the peaks deformations ( peakδ +  and peakδ − ), and the 
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corresponding force envelopes ( peakF +  and peakF − ). The reloading stiffness is calculated 

according to Equation (3.25) by targeting from a reloading point to the peak point. The 

reloading point refers to the unloaded state or the latest step where the reloading occurs. 

 peak reloading
reloading

peak reloading

F F
K

δ δ

+
+

+

−
=

−
 (3.25) 

The reloading stiffness is used to calculate the predicted force, unless the trial 

deformation exceeds the peak deformation, the material state switches back to the loading 

state and the corresponding force is calculated by the envelope. 

3.1.3 Pinching material model 

Pinching behavior often occurs due to crack opening and closing and bond-slip behavior 

in reinforced concrete components. The behavior of the pinching model is similar to the 

peak oriented material model, except the reloading branch initially points to a pinching 

point lower than the peak point, and once the reloading branch hits the pinching point, it 

will aim to the peak point. The locations of pinching points are specified by the user as a 

percentage of the peak points (Figure  3-13). 

Two additional load-deformation target points define the state 3 (state 4) load path with 

pinching. The first target point reached once substantial unloading has occurred and the 

point at which substantial reloading occurs. For state 3 (state 4), the load developed upon 

unloading is defined as a fraction of the minimum (maximum) strength that can be 

developed. With the unloading stiffness defined, this establishes the end of the substantial 

unload phase. The load-deformation point at which substantial reloading occurs for state 

3 (state 4) is defined as a fraction of the minimum (maximum) historic deformation 

demand and a fraction of the load developed at the minimum (maximum) deformation 

demand. 
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3.2 Material parameter deterioration 

The physical behavior of reinforced concrete components, typically measured by the 

strength and stiffness, deteriorates under cyclic loading. The strength and stiffness 

deterioration is significant for members without adequate confinement, rebar bond-slip, 

etc. The material models are formulated to reflect the deterioration in the physical 

behavior. Hysteretic damage is simulated through deterioration in unloading stiffness 

(unloading stiffness deterioration), deterioration in strength achieved at previously 

unachieved deformation demands (strength deterioration), and deterioration in the 

strength developed in the vicinity of the maximum and minimum deformation demands 

(reloading strength deterioration). Figure  3-14 shows the impact of strength and stiffness 

deteriorations for two of the models introduced by Ibarra (2004). In the current 

implementation, each deterioration mode is ruled by a separate damage index, acquired 

from one of the damage model described primarily. The damage indices and deterioration 

parameters are calculated and updated at the end of each half cycle. 

3.2.1 Strength deterioration 

The strength deterioration is carried out through reducing the yield strength (Figure  3-15) 

according to the following: 

 ( ) ( )1
excursion i

y y y strF F R F DI R F
=+ + +

y
+= − ⋅ × − + ⋅  (3.26) 

The strength deterioration given by this equation is limited to a minimum strength 

determined by the minimum residual force defined by the user. 

3.2.2 Stiffness deterioration 

Stiffness deterioration is applied to the unloading path (states 3) by reducing the 

unloading stiffness (Figure  3-16). For the bilinear material model, the stiffness 

deterioration also extended to the reloading path (state 4) also. The minimum threshold 

for the deteriorated stiffness is the backbone hardening stiffness (bilinear material) or the 

reloading stiffness (peak oriented models). 
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For the bilinear model, the unloading stiffness deterioration is formulated as: 

 ( ) ( )1excur stf elastic h elastic h elasticK DI K K Kα α= − × − ⋅ + ⋅  (3.27) 

or, for the peak oriented models as: 

 ( )1excur stf elasticK DI K= − ×  (3.28) 

3.2.3 Accelerated stiffness deterioration 

The accelerated stiffness deterioration model is exclusively defined for peak oriented 

material models to reduce the reloading stiffness. In accelerated stiffness deterioration, 

the displacement component of the peak point is increased to mimic the cyclic stiffness 

loss by pointing to a new peak point (Figure  3-17). The new displacement of the peak 

point is recalculated as: 

 1
max

1

1
1

excursion i i i
peak

i

DI DI
DI

δ δ
= +−

−

⎛ ⎞−
= + ×⎜ −⎝ ⎠

⎟  (3.29) 

The maximum increase to the peak point displacement is limited to max2 δ +× . 
 

3.2.4 Cap deterioration:  

The cap, or the softening section of the loading envelope, is identified by the point where 

the softening initiates (Point 3 in Figure  3-8 and Figure  3-11) and the cap slope. The 

cyclic deterioration relocates the cap branch toward the origin (Figure  3-18), without 

changing the cap slope. A reference force  is used to determine the distance of the 

capping branch to the origin. The reference force is determined by the intersection of the 

cap slope and the force (y) axis. The initial the reference force is calculated for positive 

and negative loading as: 

caprefF

 Recap f cap cap elastic capF F Kα δ± ± ±= − ⋅ ⋅  (3.30) 
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where  is presented in Table  3-2 or Table  3-3. capF ±

The reference force is reduced due to deterioration: 

 ( ) 0
1

excursion i excursion

capref cap caprefF DI F
= =± = − ⋅ ±  (3.31) 

The reduced reference force is used to indicate the new location of the capping branch, 

and the new cap displacement is determined by the intersection of the cap and the 

hardening slope. 
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Figure  3-1: Generic damage index class in OpenSees 
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 Figure  3-6: Hysteretic material models in OpenSees 
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Figure  3-7: Material states for general uniaxial material (Lowes and Altoontash, 2003) 
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Figure  3-8: Loading envelope for bilinear model with capping
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Figure  3-12: Modified Clough peak oriented material model
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 Figure  3-14: Material models with/without cyclic deterioration 
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Figure  3-13: Pinching material model 
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Figure  3-15: Strength deterioration (Modified from Ibarra 2003) 
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Figure  3-16: Stiffness deterioration (Modified from Ibarra 2003) 
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 Figure  3-18: Cap deterioration (Modified from Ibarra 2003) 
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4 Calibrating methods and validation problems 

4.1 Versatile joint model for moment resisting frames 

As introduced in previous chapters, the simple joint element can be calibrated to simulate 

the joint response in different types of structural frames. This chapter begins with a brief 

review of three possible applications for the joint element to steel moment-resisting 

frames, reinforced concrete frames, or reinforced concrete-steel composite frames. The 

focus then shifts to the primary application of this research which is to reinforced 

concrete structures; and, detailed calibration information is provided for simulating RC 

joints through a combination of uniaxial materials applied to the Joint2D model. The 

formulation is verified by comparing analysis results and experimental observations. 

4.1.1 Steel structures 

Steel beam-column joints contribute to the structural deformation and energy dissipation 

of steel frames by panel zone deformation in shear mode and, for some cases, through 

concentrated beam end rotations. Older design provisions (e.g. AISC 1980) were based 

on the premise that the panel zone should remain elastic and that all inelastic deformation 

must occur in the beams. However, even in these cases the panel zone shear deformation 

has been shown to be contributing up to 30% of the overall drift of a frame (Krawinkler 

et al. 1971). Newer design codes allow some controlled inelastic deformation at the joint 

panel as well as the beams, so both the panel zone and the beams contribute to seismic 

energy dissipation (e.g. FEMA 267A, 1997). Reliance on the shear panel deformation for 

newer designs will be even more and should be considered in the analysis. 

In analyzing steel joint panel zones, it is assumed that the sides of the panel zone remain 

straight after panel zone deforms, which results in some local plastic deformation in the 

columns (Krawinkler et al., 1975). Many typical models for steel joints (e.g. El-Tawil et 

al., 1999) assume pure shear deformation in the panel zone with straight sides and local 

plastic hinging (or kinking) in the column flanges. The Joint2D-1SPR element can 

represent this mechanism.  
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The unbalanced beam moments developed at the column face are chosen as the basic load 

parameter for characterizing the joint behavior (Krawinkler at al. 1978). The shear 

behavior of the panel zone is a function of the aspect ratio of the panel, the thickness of 

the column web and additional shear reinforcement, resistance of the elements 

surrounding the panel zone (column flanges and in-plane stiffeners), connecting media 

and loading condition at the column interfaces. 

4.1.2 Reinforced Concrete-Steel (RCS) composite structures 

Reinforced Concrete-Steel (RCS) structures refer to composite systems with reinforced 

concrete columns and steel beams. Beam-column joints in RCS frames are usually 

configured with a steel beam that is embedded and runs continuously through the 

reinforced concrete columns. The relative rotation of the beams and columns in lateral 

loading is resisted by two mechanisms, shear deformation of the embedded part of the 

beam and bearing deformation at the contact parts of the beam and column. Research has 

been done on behavior and modeling the beam-column joints in RCS frames (Deierlein 

and Kanno, 1994). A shear panel is proposed as an analytical model for RCS joints with 

beams and columns rigidly framed to the panel (Mehanny and Deierlein, 2000b). The 

shear and bearing mechanisms are modeled by two uniaxial materials in series 

(representing the panel shear distortion and the relative rotation of the beams and 

columns due to the bearing deformation mode). By employing the series spring material 

in OpenSees, Cordova and Deierlein (2004) have used the Joint2D-1SPR model to 

simulate RCS joints. 

4.1.3 Reinforced concrete structures 

The joint element is able to model shear deformation of the panel zone in RC joints, as 

well as the effects of bond slip or bar pullout at the beam-joint interface. The calibration 

process in this study is modeled after the American Concrete Institute joint committee 

(ACI 352-R02) provisions for the beam-column joints. The following limitations of the 

ACI provisions are assumed in this study: normal weight concrete in the joints, beam 

width is smaller than column width, and the beam and column centerlines are coincident. 
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Irregular design cases which do not satisfy these assumptions are listed in Chapter 6 as 

suggestions for future research.  The calibration process is based on previous analytical 

and experimental studies and design guidelines (FEMA 356 and ACI 352-R02) to define 

the load-deformation response of the shear panel on the basis of material properties and 

joint geometry.  

4.2 Reinforced concrete joint calibration 

Gravity loading of a frame usually applies little joint shear due to small unbalanced 

moments at opposite sides of a joint, while lateral loading results in significant 

unbalanced moments and large joint shear (Figure  4-1). In particular, earthquake loading 

of a joint may result in substantial shear loading of the joint panel into inelastic zone.  

The shear forces acting on the joint panel zone are usually transferred as a combination of 

direct shear and the moment induced shear.  

Direct shear refers to the shear force in a beam/column element, which is directly 

transferred to the shear panel (Figure  4-2). The transfer mechanism for direct shear is the 

same as the mechanism in beams or columns, i.e. friction stresses, aggregate interlock 

and dowel action. The shear deformation at the interface zone is minimal due to large 

section increase at the intersection of the frame member and the joint, and due to extra 

confinement provided by the adjacent members framed to the joint. Few data are 

available for use in evaluating a stiffness relationship for interface shear (Lowes and 

Altoontash, 2003). However as the interface deformations are assumed to be small, this 

deformation mode is not addressed in the proposed model. 

The moment acting on an external face of a joint can be expressed as a tensile-

compressive force couple, and the shear force induced by this force couple is referred to 

as the moment induced shear. The compressive component of the force couple is applied 

as compressive stress in the concrete and the rebar, while the tensile component is 

typically applied as tension in the rebar(s). The tensile component is transferred partly 

through bond stress between the flexural reinforcement and the shear panel, and partly 

though the compression at the opposite side of the joint (see Figure  4-3). The latter 
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mechanism (compression) tends to dominate once the bond-transfer mechanism 

deteriorates due to high bond stresses combined with severe cyclic loading. Degradation 

of the bond transfer leads to the slip which causes extra flexibility at the beam to joint 

interface. The member-end rotational springs are calibrated to represent the extra 

flexibility induced by the bond slip. Calibration of this mechanism is sensitive since even 

after just a few high magnitude cycles, severe bond degradation is likely. A pinching type 

material model best represents the bond-slip. Calibrating this model is complicated due to 

complexity of bond-slip mechanism; therefore some approximations and assumptions are 

necessary to provide a practical way to calibrate this model (Lowes et al., 2003b). 

Using the joint equilibrium expressions, the direct shear and moment induced shear are 

superimposed and applied to the shear spring. The joint panel response is modeled 

through a constitutive relationship expressed in terms of shear force versus deformation. 

According to experimental and analytical data, this response can be represented by a peak 

oriented hysteretic model with pinched reloading path (Lowes et al., 2003a). The 

constitutive parameters for this material model are calibrated on the basis of the panel 

shear capacity and design details. 

The initial approach for characterizing the shear-panel response was evaluating the 

experimental results. However, there are relatively few data sets available for joints with 

different ranges of material properties, geometries, reinforcement details, and cyclic load 

histories. Additionally, the approaches and instrumentation layouts used to measure the 

shear deformation, bond-slip, flexural yielding in beams and columns, and other highly 

localized deformations in the joint are not consistent between the available investigations. 

The considerable number of parameters influencing the joint response and lack of 

detailed experimental information to capture the influence of every individual parameter 

on the cyclic joint behavior makes it difficult to develop a unique calibration formula to 

provide an accurate response prediction for a joint with varying design configurations. 

On the other hand, there are analytical approaches that can help characterize the behavior 

of joint components within an acceptable range of experimental data. 
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In the current study, an algorithm is presented to derive the constitutive model for the 

shear panel, based on Modified Compression Field Theory (MCFT) (Vecchio and 

Collins, 1986) with some modifications to better define the envelope of shear stress 

versus strain of the joint core. The analytical and experimental data provided by Stevens 

et al. (1991) are used to define the cyclic response. The proposed procedure allows a user 

to calculate the constitutive parameters for a hysteretic material model, based on the 

material properties, the joint geometry, and joint reinforcing steel ratio (Figure  4-4). 

The joint response depends on the material behavior (i.e. elastic and nonlinear behavior 

of steel and concrete), physical dimensions of the joint, design details and confinement 

provided at the joint core, and the reinforcing bar anchorage length and details. 

Experimental and analytical parametric studies (Filippou et al., 1984; Durrani and Wight, 

1985; Ehsani and Wight, 1985; Bonacci and Pantazopoulou, 1993; Pantazopoulou and 

Bonacci, 1994) provide some useful information on the parameters that may influence the 

RC beam-column joint behavior. 

4.2.1 Shear behavior and the panel zone 

For beam column joints in a two-dimensional frame, the joint panel experiences planar 

shear loading. The major failure mechanisms observed in the laboratory tests are listed as 

yielding or fracture of transverse reinforcements, crushing of the concrete in 

compression, or slipping on the crack face. These failure mechanisms are captured and 

simulated by Modified Compression Field Theory (Vecchio et al., 1986). The Modified 

Compression Field Theory (MCFT) in the original form developed by Vecchio and 

Collins (1986) only characterizes the monotonic response of joint panel and the response 

envelope for cyclic loading. The MCFT is recommended to characterize the global 

response of reinforced-concrete panels subjected to uniform shear and uniform shear plus 

axial load. 

The MCFT was later used for developing a constitutive model for RC finite element 

analysis (Stevens et al., 1991) and the theory is extended to Disturbed Stress Field Model 

for cracked reinforced concrete elements (Vecchio, 2000; Vecchio et al., 2001). The 
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MCFT assumes that the principal concrete stress direction coincides with the direction of 

principal strain, and the concrete compressive strength is reduced due to coexisting 

tensile strain in the normal direction (Figure  4-5). The MCFT is appropriate for use in 

defining the response of the shear panel since the panel zone shear behavior is determined 

by the response of previously cracked concrete carrying compression in the direction of 

the principal compressive stress and by the response of reinforcing steel carrying tension 

across concrete cracks that open in the direction of the principal tensile stress (Lowes 

2002). These response mechanisms are incorporated into the MCFT. The analytical 

models used to verify the MCFT (Lowes 2003b) exhibit damage patterns and failure 

modes similar to those observed in joint test specimens (Lehman et al 2004, Pantelides 

2002). The MCFT defines the shear-panel response as a function of concrete and steel 

material properties and vertical and horizontal ratios of the joint reinforcement.  

Application of the MCFT to generate an envelope to the shear response history requires 

the introduction of some extra assumptions on the joint core response. The MCFT defines 

a plane stress constitutive model in which there is coupling between normal (axial) and 

shear response. The joint model is developed assuming that all joint loads, including 

column axial load, are transferred through the joint core.   

The MCFT in the form proposed by Vecchio and Collins (1986) is extended to simulate 

the response under cyclic loading (Stevens et al., 1991); however the modifications by 

Stevens impose some level of sophistication that does not warrant the expected simplicity 

of a practical model for the joint simulation. For this study, the response envelope is 

derived by using MCFT, and experimental data provided by Stevens et al. (1991) are used 

to determine the unload–reload path. Concrete compressive strength is also reduced using 

the factor proposed by Stevens et al. (1991). A concrete tensile stress-strain response 

model is derived from the Stevens data (1991) and used in the current implementation of 

the MCFT. 

Calibration of the material for the joint panel is not complete without characterization of 

the reversed-cyclic history. The cyclic behavior must represent a highly pinched stress-

strain history due to the opening and closing of cracks in the confined reinforced 
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concrete. This behavior can be represented by the pinching uniaxial material model with 

unloading response defined to be equal to the initial stiffness and the reloading pinching 

point defined to occur at a shear strain equal to approximately 25% of the maximum 

hysteretic shear strain demand and shear strength. The Stevens data (1991) show an 

extremely pinched shear stress–strain history. This behavior is represented using the one-

dimensional material model with parameters defined as follows:  

• Unloading stiffness assumed to be equal to the initial stiffness 

• The shear stress at which reloading occurs is defined to be zero  

• The break point on the reloading path (the pinching point) is located at 25% of the 

peak-point deformation and 25% of the peak-point shear stress 

MFCT calculates the panel response based on the concrete material properties, vertical 

and horizontal steel ratios in the joint panel, steel reinforcement material properties, and 

axial load on the joint panel. The application of MCFT requires the introduction of 

several assumptions regarding the axial and flexural response of the beam-column joint. 

It is assumed that all the unbalanced flexural load is transferred as shear through the joint.  

Computing the shear-force versus deformation backbone: A computer program in 

MATLAB was developed for calculating the shear-force versus deformation backbone 

for reinforced concrete joints. The iterative method used in this procedure is based on the 

MCFT with some modifications and new assumptions. The variables used as input 

variables for calibrating the hysteretic material model for the joint panel can be 

summarized as: 

verP  Vertical gravity force on the joint (KN) 

xS   Maximum distance of x reinforcement (M) 

yS   Maximum distance of y reinforcement (M) 

xρ   Reinforcement ratio along x direction  

yρ   Reinforcement ratio along y direction 

cf ′   Concrete compressive strength (KPa) 
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cE   Concrete elastic modulus (KPa) 

yxf   Yield stress for reinforcement along x direction (KPa) 

yyf   Yield stress for reinforcement along y direction (KPa) 

sE   Steel elastic modulus (KPa) 

hα   Steel hardening ratio 

a   Maximum aggregate size (mm) 

The MCFT algorithm was originally introduced by (Vecchio et al. 1986). In this research, 

the original algorithm is modified to capture the softening, using a displacement 

(deformation) controlled approach. The shear deformation (strain) is monotonically 

increased and the Newton-Raphson method (or for the softening branch the modified 

Newton method with initial tangent) is used to calculate the horizontal and vertical 

normal strains. The concrete material follows the modified Kent-Park model (Kent and 

Park, 1971) and the steel is assumed to be elastic-hardening plastic. The overall shear 

stress of the joint panel is assumed to be equal to the concrete shear. After convergence at 

each shear strain level, a check is performed to determine the possible shear failure mode 

(rebar yielding at the crack face, concrete failure in compressive mode, or slip along the 

crack face). 

In this algorithm, horizontal and vertical stresses of xσ  and yσ  are assumed to be 

constant and they are determined from the external loading condition. xyγ  is the 

independent variable increasing form zero up to a limit point defined by one of the failure 

modes. xε  and yε  are calculated through an iterative modified Newton algorithm to 

satisfy the force boundary conditions. The outcome of this algorithm is the shear stress 

( xyτ ) envelope of the panel. The xy xyτ γ−  in the MCFT is used to represent xy xyV γ− , 

assuming the shear stress and strain is uniform through the joint. 

The MCFT algorithm for determining the v γ−  envelope (modified from Vecchio and 

Collins, 1986): 
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Step 1) Calculate the force boundary values and the initial values for xε  and yε  by the 

following equation: 

 hor
x

gx

Pf
A

=  (4.1) 

 ver
y

gy

Pf
A

=  (4.2) 

 0xε =  (4.3) 

 
( ). 1 . . .

ver
y

gy sy C gy sy

P

SA E A E
ε

ρ ρ
=

− +
 (4.4) 

where horP  and verP  are the horizontal (beam) and vertical (column)axial forces, gxA  and 

gyA  are the column and beam gross cross section areas, xf  and yf  are average horizontal 

and vertical normal stresses, and xε  and xε  are average joint panel horizontal and 

vertical strains, respectively (Figure  4-6), and other terms are input variables as defined 

previously . 

Step 2) Initialize the shear strain 0xyγ =  

Step 3) Calculate the principal strains ( 1ε  and 2ε ) and the crack angle θ  
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 (4.6) 
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Step 4) The average stress in concrete is derived for both the maximum and minimum 

principal strains. 

For tension where 1 0ε > : 

o Prior to cracking when 4
1 0.5 10cr

cr
c

f
E

ε ε −≤ = = ×  

 2 .c Cf E 1ε=  (4.8) 

o After cracking when 1 crε ε>  

 1
11 200

cr
c

ff
ε

=
+

 (4.9) 

For compression where 2 0ε <  

 
2

2 2
2 2max 2c c

c c

f f ε ε
ε ε

⎡ ⎤⎛ ⎞ ⎛ ⎞
⎢ ⎥= −⎜ ⎟ ⎜ ⎟′ ′⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 (4.10) 

Where  for the given perpendicular strain 2maxcf 1ε  is: 

 2max

1

1 1.0
0.8 0.34

c

c

c

f
f ε

ε

=
′ −

′

≤  (4.11) 

cε ′  is a negative quantity, usually chosen 0.002cε ′ = − . 

Step 5) The stress in the horizontal ( sxf ) and vertical ( syf ) reinforcing bars is calculated 

based on an elastic-plastic kinematic hardening plastic material model. Taking account of 

the signs, the model is described as: 
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Step 6) The concrete stresses in the global (x-y) coordinate system ( cxf  and cyf ) is 

determined based on Mohr’s stress transformation equations: 

 1 2 1 2 cos 2
2 2

c c c c
cx

f f f ff θ+ −
= +  (4.14) 

 1 2 1 2 cos 2
2 2

c c c c
cy

f f f ff θ+ −
= −  (4.15) 

Step 7) Compute the trial horizontal and vertical stresses in the shear panel and check the 

convergence criteria: 

 .Trial
x cx sx sxf f ρ= + f

sy

 (4.16) 

 .Trial
y cy syf f ρ= + f  (4.17) 

If both .Trial
x x xf f tol f− <  and .Trial

y y yf f tol f− < , then the convergence conditions are 

satisfied and the Modified Newton-Raphson loop is terminated, and the process goes to 

step 10. Otherwise, the process continues to  the next step. 

Step 8) Recalculate the strains in global coordinate system 
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Step 9) Proceed to step 3 to recalculate the stresses and strains (step 3 to 8) with new 

values for horizontal and vertical strains.  

Step 10) It is assumed that the entire shear stress ( xyτ ) is carried by the concrete 

(implying 0sxτ ≈  and 0syτ ≈ ), so: 

 1 2 sin 2
2

c c
xy cxy

f fτ τ θ−
≈ =  (4.20) 

Step 11) Check for rebar yielding at the crack face, and calculate the shear ( ciτ ) and 

normal compression stress ( cif ) on the crack:  

 ( )1 1c c sx yx sxf f fρ∆ = − ⋅ − f  (4.21) 

If , then 1 0cf∆ ≤ 0ciτ =  and 0cif =  

If , then 1 0cf∆ > 1
max0.18
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c
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fC v
θ

∆
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If , then  and 0C ≤ 0cif = 1
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c
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fτ
θ
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where  is defined in equation (4.33). Otherwise: maxciv
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Calculate reinforcement stresses at crack face sycrf and sxcrf : 

 
1 tan

i
c ci

sxcr sx
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If sycr yyf f> yielding of the x-reinforcements at the crack face governs.  

Step 12) Check for concrete failure in compressive mode. 

If 2max
1

1

0.8 0.34
c c

c

f f ε
ε

′> ⋅
−

′

 the panel has failed in the compressive mode 

Step 13) Check the slip along the crack face mechanism: 

Determine the crack control characteristics of x and y reinforcements: 

 1.5mx xS S= ×  (4.28) 

 1.5my yS S= ×  (4.29) 

Calculate the average crack width: 

 1
sin cos

mx my

S

S S

θ θ θ=
+

 (4.30) 

 1w Sθε= ×  (4.31) 

Calculate average tension in the concrete 1cf : 
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1cf  has an upper limit. If ( ) ( )2
1 max 0.18 0.3 tanc ci sx yx sxf k fτ θ ρ> + + − f  the failure has 

happened due to slip on crack face. 

Step 14) Increment the xyγ and restart from step 3. 

Step 15) Plot the calculated values of shear stress xyτ  versus shear strain xyγ . 

This algorithm used in sections 4.4 and 4.5 to analytically determine the parameters of 

the material model that represents the shear panel behavior. Figure  4-7 shows a typical 

application of the MFCT for modeling the beam-column joints in a frame (Section 4.4.2), 

where the results are used to define a multi-linear envelope for the shear panel material 

model. In addition to defining the response envelope, the probable shear failure mode is 

also be determined by using the MCFT algorithm, e.g. rebar yielding at the crack face, 

concrete failure in compressive mode, or slip along the crack face mechanism. 

4.2.2 Member-end rotation 

The member-end rotational springs are calibrated to capture the effects of reinforcing bar 

yielding and bond slip in the joint. A simple, yet practical calibration procedure is 

presented here to determine the moment-rotation properties of the member-end springs. It 

is assumed that adequate development length is provided for the reinforcing bar to 

prevent complete pull-out. Ideally the joint size is larger than the development length of 

the reinforcement bars and complete anchorage is provided within the joint, but typically 

the joint sizes is not sufficient enough and the beams are anchored into the opposing 

beam framing into the connection, Or in exterior or continuum joints, the beam are 

installed with a 90 degree hook. 
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4.2.2.1 Bond slip 

A constitutive model is developed to define the load-deformation history of the bond-slip 

springs that simulate inelastic anchorage-zone response (Figure  4-8). One possible 

approach for defining the bar stress–slip relationship is to use data from experimental 

testing of joint subassemblies. However, there are relatively few experimental 

investigations that accurately report bar slip data. Experimental measurement of bar slip 

requires a relatively sophisticated instrumentation setup and the adoption of a definition 

as to what constitutes slip. Measurement of experimental bar stress requires the use of 

steel strain gauge data and an assumed hysteretic material model or an assumption about 

the stress distribution across the beam or column cross section. These factors limit the 

availability of experimental data, the objectivity of the available data, and the generality 

of a model developed on the basis of these data. Given this situation, in the current study, 

a model is developed using data from experimental testing of anchorage-zone specimens 

and assumptions about the bond-stress distribution within the joint. This approach 

enables the use of a much larger data set and provides a bar-stress versus slip model that 

can be generally applied in general for simulating joint response. 

Average bond strength values are defined on the basis of experimental data provided by 

previous investigations. Average bond strength values for regions where the reinforcing 

bar is elastic are computed using the empirically defined maximum bond strength for 

elastic reinforcement, the bond-stress versus slip model proposed by Eligehausen et al. 

(1983), and the assumption that zero to maximum bond strength is developed along the 

elastic length.  

Four different average bond strength values are proposed for the four different bond zone 

conditions that may develop within the joint (Table  4-1). The results of the experimental 

investigation by Eligenhausen et al. (1983) are used as a basis for defining the bond 

strength for an elastic reinforcing bar loaded in tension. For a beam longitudinal 

reinforcing bar anchored in a joint and stressed in tension to a level that does not exceed 

the yield stress, the concrete in the vicinity of the bar is expected to carry compression or 

tension with limited crack width (Figure  4-8). Such anchorage-zone conditions are not 
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expected to reduce bond strength significantly from values obtained in classical bond 

studies, such as the Eligenhausen study (1983), that use specimens with short anchorage 

lengths and initially undamaged anchorage zone concrete.  

Table  4-1: Average bond stress 

Notation (average )MPaµ Steel strain Description 

teµ  2.0 cf ′  0 s yε ε< ≤  Tension-Elastic 

tpµ  0.5 cf ′  s yε ε>  Tension-Post yield 

ceµ  3.1 cf ′  0y sε ε− ≤ < Compression-Elastic 

cpµ  3.1 cf ′  s yε ε< −  Compression-Post yield 

Figure  4-9 shows the proposed bar-stress versus slip envelope (Lowes and Altoontash, 

2002) as well as envelopes computed from experimental data provided by the case of 

monotonic loading. Cyclic response extension of the monotonic bar-stress versus slip 

history for the case of reversed-cyclic loading requires calibration of the unload–reload 

path and the hysteretic damage rules (Lowes et al. 2002): 

• Unloading stiffness: assumed equal to the elastic stiffness. 

• Residual bar stress: computed assuming that a uniform residual bond stress of 

( )0.15 cf MPa′  ( ( )1.6 cf psi′ ) to represent data provided by Eligehausen et al. 

(1983). 

• Slip at which reloading occurs as a fraction of maximum historic slip: defined 

to be 0.25 to represent Eligenhausen et al. (1983) and Hawkins (1982) data. 

• Force at which reloading occurs as a fraction of the force developed at the 

maximum historic slip: defined to be 0.25 to represent Eligenhausen et al. 

(1983) and Hawkins et al. (1982) data. 
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4.2.2.2 Rebar pull out 

The crack opening at the beam/joint interface (causing member-end rotations) is related 

to the bond-slip behavior. The envelope to the bar-stress versus slip relationship is 

developed through a bond-slip formulation with several simplifying assumptions. The 

first assumption is that there is uniform bond stress along the anchored length of a 

reinforcing bar that remains elastic and along the length of the reinforcing bar that is 

loaded beyond its yield stress (though the magnitude of bond stress is different in each 

region). Second, slip is assumed to define the relative movement of the reinforcing bar 

with respect to the concrete at the face of the joint. The slip is calculated as a function of 

the strain distribution along the bar. Third, the bar is assumed to exhibit zero slip at the 

point of zero-bar stress (i.e. once full development length is achieved). This approach is 

similar to that used by Filippou and Popov (1984), and Mazzoni (1997).  

Figure  4-8 shows an idealization of the bond stress and resulting bar stress distribution 

for an anchored bar loaded beyond yield. Parameters identified in Figure  4-8 are defined 

in the following paragraph. Employing the simplifying assumptions described previously, 

the bar-stress versus slip relationship is defined as outlined bellow: 

The first step of this procedure involves formulating the pullout behavior of a single rebar 

and then it observes the behavior in a reinforced concrete section. The rebar is assumed to 

be completely bounded in concrete, and the reinforcement steel is assumed to be elastic-

hardening plastic. The slip is calculated separately for the rebar pre-yielding and post-

yielding states, where the bar stress is defined as:  

 ( )
y

s
y y

E

E y

ε ε ε
σ

σ α ε ε ε ε

⋅ ≤⎧⎪= ⎨ + ⋅ ⋅ − >⎪⎩
 (4.34) 

Pre-yielding: For the pre-yielding case where s yσ σ≤  the tensile force of the rebar is 

balanced by the bond force along the stress penetration depth. The stress penetration 

length,  is the length that stress of the rebar is completely transferred to the concrete dL
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and it is assumed to be totally anchored. The reinforcement bar tensile force is calculated 

for average bond stress as: 

 
2

4s s te
DF πσ µ π⋅

dD L= × = ⋅ ⋅ ⋅  (4.35) 

where, teµ  is determined on Table  4-1, D  is the bar diameter, and  is the development 

length of the bar to transfer the tension to concrete through bond stress. Equation (4.35) 

can be rearranged to calculate  as: 

dL

dL
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Based on equilibrium, it is possible to calculate the rebar stress at any location (x) from 

the anchorage point by integrating the bond stress from: 

 4 te
s x

x
D
µσ ⋅

=  (4.37) 

where x is the distance from the anchorage point. The bar strain at this location is 

calculated as: 

 
4 te

s x
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The slip is defined as the deformation in the reinforcement bar at the crack face. The slip 

is calculated by integrating the bar deformation: 

 
2 2
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te d s
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L Fslip dx
E D E
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µ π
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= = =
D⋅ ⋅ ⋅ ⋅∫  (4.39) 

For convenience, the following constant is defined for the pre-yield rebar slip 

relationship: for convenience of formula presentation. 
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 20.5te te sC π µ α 3E D= ⋅ ⋅ ⋅  (4.40) 

Using this, the slip can be expressed as: 

 
2
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Fslip F F
Cte

= ≤  (4.41) 

Post-yielding: The post-yielding case is more complicated since there are two levels of 

bond resistance ( teµ  and tyµ ) with their associated bond lengths (  and dL ydL ). The bar 

stress and bond lengths are calculated by the following: 
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Based on equilibrium, it is possible to calculate the rebar stress at any location (x) from 

the anchorage point: 
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Another constant is defined for post-yield rebar slip relationship: 

 20.5ty ty sC π µ α 3E D= ⋅ ⋅ ⋅  (4.48) 
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The resulting slip-rebar force relationships are plotted and simplified to a bilinear model. 

For the case of development length greater than the width of the joint, when the rebar is 

anchored into the opposing frame member, the deterioration of bond strength within the 

joint zone will be much more severe under cyclic loading due to the shear damage at the 

panel zone. In this case, it may be appropriate to assume reduced bond strength for the 

full length of rebar embedded in the joint (i.e. the bond stress for the post yielding state), 

which results in more flexibility for the member-end rotation springs. Based on the 

calibration study on cases with slip as the dominant failure mechanism, it is suggested to 

reduce the post-yield average bond stress. 

The bar-stress versus slip relationship defined by the bilinear model monotonically 

increases. However, experimental data indicate that bond strength deteriorates once a slip 

limit is exceeded (Eligenhausen et al., 1983), and it is assumed that the bond strength 

deteriorates once slip exceeds 3 mm (0.1 in.), and post peak stiffness is defined equal to 

10% of the initial stiffness. These assumptions are consistent with the results of previous 

studies (Eligenhausen et al., 1983; Lowes, 1999). 

Constitutive rules for the member-end rotation springs are derived by using a modified 

fiber section analysis that accounts for the bond-slip behavior. 
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4.2.2.3 Modified section for the rotation at the connection face 

The moment-rotation diagram of the beam or column interface is derived by a fiber 

section model analysis. It is assumed that the beam (or column) is connected to a 

reinforced concrete support. This reinforced concrete support provides confinement for 

the concrete and complete development lengths for the longitudinal reinforcements, so as 

to limit deformations to the pull-out effects. The computational results of the fiber 

analysis are then used to calibrate a uniaxial material model or to develop a section that 

represents the effects of rebar pull-out. 

The calibration process requires a series of modifications to the beam or column fiber 

sections to represent the bar pull-out mechanisms. The section analysis is performed on a 

unit length section, where the section displacements are equal to the strains and the 

curvatures are identical with the rotations. The calculated curvatures must then be scaled 

to the effective stress dissipation depth, so that the unit length section represents the 

actual rotation. 

The effective depth of the section is defined as the depth that the effects of the axial 

stresses due to bending are totally dissipated through bond transfer. Based on calibration 

studies, the development length of the embedded reinforcement bars is recommended as 

the effective depth. The actual member-end rotation mechanism is compared with the 

analytical equivalent section (Figure  4-10), where is assumed to be: effL

 u y y
eff

ty ts

F F F
L

D Dµ π µ π
−

= +
⋅ ⋅ ⋅ ⋅

u

 (4.50) 

where u sF A σ= ⋅  is the reinforcement bar ultimate tensile force. 

A bilinear (steel) uniaxial material model is used for the rebar pull-out. The material 

properties are derived based on the bar pull-out formulation and a scaling factor for the 

effective stress. The stress-pullout deformation plot of a rebar is calculated based on the 
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formulation derived in the previous section. The relationship can be represented by a 

bilinear model which must be scaled for the unit-length section analysis. 

The equivalent stiffness based on the pull-out can be calculated as: 

 rebar rebar rebar
slip

pullout pullout

FK Aσ ⋅
= =
∆ ∆

 (4.51) 

where slipK  is an average stiffness for the bar pull-out mechanism. The slip mechanism 

occurs along the development length. If the slip-force relation for the pull-out mechanism 

is defined in a stress-strain domain, the equivalent elastic modulus is calculated as: 

 developementrebar
slip slip

slip rebar

L
E K

A
σ
ε

= = ⋅  (4.52) 

The fiber section formulation allows analyzing a unit-length fiber section to compute the 

moment-curvature relationships. The moment-rotation a reinforced concrete member 

with the development length is modeled by an equivalent unit-length fiber section. The 

stiffness of the materials used in the equivalent section must be scaled in such a way that 

the deformations are correctly calculated. The unit-length model and the original RC 

section with the development length have equal force, hence, force scaling is not 

required. The scaled stiffness is calculated, assuming both models have equal stress for 

equal deformation: 

 devlength devlength unit unitL Lε ε∆ = ⋅ = ⋅  (4.53) 

so the strain of the unit-length fiber model is calculated as: 

 devlength devlength
unit

unit

L
L

ε
ε

⋅
=  (4.54) 

For both models to have equal stresses, it is assumed: 

 devlength devlength unit unitE Eσ ε ε= ⋅ = ⋅  (4.55) 
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By combining equations (4.54) and (4.55) the equivalent elastic modulus for the unit-

length model is calculated as: 

 unit
unit devlength

devlength

LE E
L

= ⋅  (4.56) 

The pullout stiffness can be implemented to the unit-length model as: 

 developement unit unit
unit slip slip

rebar developement rebar

L LE K K
A L A

= ⋅ ⋅ = ⋅
L  (4.57) 

The concrete fibers of the modified section are defined by a concrete uniaxial material 

with properties for fully confined concrete. The stiffness of the concrete materials is also 

modified for the unit-length section by scaling the strains of the concrete material model: 

 developement
unit concrete concrete

unit

L
DepthRatio

L
ε ε ε= ⋅ = ⋅  (4.58) 

where unitε  is the scaled strain, and concreteε  is the original concrete strain. This scale will 

be used for both the maximum, and the ultimate concrete strains. 

The Depth Ratio will be used to modify the material properties of the unit-length fiber 

model, where as the Depth Ratio is defined as: 

 developement

unit

L
DepthRatio

L
=  (4.59) 

Tri-linear material models are fitted to the moment-curvature results of the modified 

section analysis. These materials are then used to represent the member-end rotation 

spring property. 
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4.3 Calibrating the damage models 

Calibration of the damage model is based on experimental observation of components 

under both monotonic and cyclic loading. The first step in this process is to choose a 

damage model suitable for the observed component. The response of the structural 

component is then used to calculate the engineering parameters that are fed to the damage 

model (e.g. force, deformation, and energy values). The damage state of the experimental 

specimen is typically based on its physical condition and its remaining capacity. A 

correlation between the engineering parameter and the damage index helps to determine 

the calibrating parameters for the selected damage model. A damage investigation is 

presented later in Section 4-6 to calibrate the joint damage (Figure  4-16). 

The ultimate plastic deformation is determined by continuing the softening branch of the 

monotonic loading envelope to the total strength loss, or the failure deformation (if 

known). The ultimate energy for monotonic loading is determined by the integrating the 

area under the force-deformation diagram up to the ultimate deformation.  

The calibration parameters are suggested as: 

o For Park-Ang model: 1α =  and β  depends on the design detains,  0.1β =  is 

suggested for seismic detailed, and 0.25β =  is suggested for joints with no 

transverse reinforcement. 

o For Mehanny-Deierlein model: 1α = , 1.5β = , and 2.0γ =  are suggested for 

reinforced concrete (Mehanny and Deierlein, 2000). 

4.4 Validation problems 

4.4.1 RC beam-column subassemblies with older (pre-1970’s) detailing 

For verification purposes, the joint element is employed for analyzing a test series of 

reinforced concrete joints. In the verification/calibration process, appropriate uniaxial 

material models are selected and their parameters were analytically determined for 

Interior beam-column joints with older (pre-1970’s) detailing. Test results for seven 
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specimens were acquired from a research team at the University of Washington. The 

detailed descriptions for the model details and laboratory results are documented by 

Walker et. al. (2004). The models are detailed to represent samples of pre-1970’s design 

recommendation for RC joints, i.e. joint without transverse reinforcements in the joint 

zone. Two sets of specimens are designed for two different levels of nominal joint shear 

capacities. The average joint shear stress is limited to the nominal joint shear capacity 

calculated by Equation (4.60) or (4.61). 

 1 1.j cv fτ ′=  (4.60) 

 2 2.jv τ cf ′=  (4.61) 

The key parameters for the specimens are summarized in Table  4-2. As shown in the 

table, Four specimens were designed for the target shear stresses of 0.82    ( )cf MPa′  

and three for 1.29    ( )cf MPa′ . 

Table  4-2: Physical properties of specimens 

Specimen ( )cf MPa′  ( )yf MPa  Target 1τ  Target 2τ  

PEER-14 37.8 450 0.14 0.82 

CD15-14 29.8 450 0.14 0.82 

CD30-14 42.5 450 0.14 0.82 

PADH-14 42.9 450 0.14 0.82 

PEER-22 38.4 527 0.22 1.29 

CD30-22 38.1 516 0.22 1.29 

PADH-22 36.3 527 0.22 1.29 

The specimens were subjected to four different load histories. A major feature of the 

experimental results is to evaluate the separate effects of the nominal joint capacity and 

the loading regime on the performance. The specimens for each target shear stress 

demand are nominally identical, though there were variations in the as-built conditions. 

For example, the material test shows some variability in the actual material strength. 

Figure  4-11 shows the test setup for the interior joint subassemblies. 
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The four displacement histories (PADH, PEER, CD15, and CD30) are illustrated in 

Figure  4-12. The Pulse Asymmetric Displacement History (PADH) displacement history 

begins with a positive half cycle to the maximum extend of deformation (5% drift) in the 

experimental study. The PADH loading protocol was intended to reflect the pulse 

characteristics of a near-fault ground motion. Response to the PADH history proved to be 

a rich source of information for developing behavioral rules for analytical models, which 

require a monotonic envelope and information about response to asymmetric load cycles. 

The PEER displacement history consists of increasing cyclic deformations with three 

cycles at each deformation level. CD15 and CD30 consisted of many cycles at Constant 

Displacement amplitude of ±1.5% or ±3.0% drift, with the goal of determining the effect 

of a long duration earthquake. In the CD15 history the constant displacement cycles were 

followed by a series of asymmetric cycles intended to demonstrate the effect of loading in 

one direction on the strength in the other. These cyclic load histories are used to validate 

the joint model and select and calibrate a damage index for the joint response. 

The normalized measured joint shear stress versus joint shear strain is plotted for all 

seven specimens Figure  4-13. The MCFT algorithm (moment equivalent shear is 

calculated by multiplying the shear stress to the joint volume) is used to define the 

material parameters for the shear panel (Figure  4-14).  

The MCFT has a major limitation for problems with no transverse reinforcement in the 

panel zone. Once the tensile stress in concrete exceeds the cracking stress, there will not 

be any tensile resistance. In such cases, the panel will immediately crack along the 

diagonal and the MCFT algorithm will not converge. For beam-column joints the 

problem is different since even without transverse joint reinforcement, the longitudinal 

reinforcement provides some resistance and holds the joint panel together. In this sense, 

the longitudinal reinforcement acts as transverse reinforcement. The beam and column 

longitudinal reinforcements at the perimeter of the shear panel also provide some 

confinement to the concrete panel.  

Based on the calibration study performed on the joints without transverse reinforcement, 

it is proposed to consider 40% to 50% of the beam or column longitudinal reinforcement 
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at the panel perimeter as effective transverse reinforcement that can be incorporated into 

the MCFT algorithm. Thus the only calibration parameter introduced for modeling the 

joint shear panel without transverse reinforcement is the recommended percentage of the 

cross sectional area of the beams or columns longitudinal reinforcement at the panel 

perimeter. Otherwise, all the required MCFT parameters are determined based on the 

physical properties of the joint. The calibration ratio of longitudinal bar participation is 

derived by minimizing the relative difference of the MCFT results and the measured joint 

strength. For the seven tests calibrated in this study, a longitudinal participation 

percentage of 45% results in the minimal relative difference between the measured and 

calculated joint shear strength. The calculated and measured joint strengths ( 1 jM  as a 

function of cf ′  or 2 jM  as a function of cf ′ ), are compared in Figure  4-15. 

The backbones for the shear panel and interface rotations are derived as outlined in 

Section 4.3. The Pinching material model with the Park-Ang deterioration rule is used to 

represent shear panel and interface rotations. Specific modeling recommendations are 

summarized in Section 4.4.3.  

The absence of transverse reinforcement within the joint zone results in the sensitivity of 

these specimens to cyclic loading. Therefore, the deterioration modeling parameters play 

a significant role in the simulated behavior. The Park-Ang damage model is selected after 

performing a damage analysis and comparing the outcomes with the Normalized Peak 

and Mehanny models (Figure  4-16 to Figure  4-20). The ideal cyclic damage model will 

return the same damage index for a given physical damage. While some discrepancies 

were observed for the damage models tested for this study, the inconsistencies in the 

damage index versus physical damage are partially due to the method used for observing 

the physical damage in the laboratory. The observed damages are reported at the peak of 

the loading cycle, which may be different with the exact damage time. For example, 

damage descriptor of 20% strength loss was always reported at a fixed maximum drift 

(5%), and thus, was biased by the chosen loading protocol. 

The average coefficient of variation (COV) of the damage indices for a given physical 

damage is used to compare the damage models. The Park-Ang (COV 30.4%) and 
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Normalized Plastic Deformation (COV 28.8%) damage models show better agreement 

with the physical damage, compared to the Mehanny model (COV 60.2%). The Park-Ang 

damage model has the advantage of taking into account the cyclic damage, as well as the 

damage due to excessive deformation.  

Displacement-based nonlinear beam-column elements with fiber sections are used to 

model the beams and columns. The fiber sections are aggregated form Giuffre-

rmation results for seven specimens are presented in Figure  4-21 to Figure 

 4-27. The results show considerably good agreement with the test results. 

Most analytical and experimental studies on RC joint behavior have been done on 

l lies. To investigate the interaction of joint 

tudy utilizes test data from a 0.7 scale RC frame single-bay two-story frame 

that was built and tested at the National Center for Research on Earthquake Engineering 

e characteristics 

of the analytical model are summarized as: 

• Column-base rotation is allowed by adding a zero-length section 

Menegotto-Pinto steel and Kent-Park concrete material models (refer to Section 4.4.2 for 

more details). 

The force-defo

4.4.2 0.7 scale two-story RC test frame 

statica ly determinate beam-column subassemb

response with that of the overall structure, this part of the study deals with development 

of a detailed analytical model to present the behavior of a reinforced concrete frame. The 

results demonstrate the influence of the joint and member-end rotations on the overall 

frame behavior. This model will also be used as the testbed for the reliability studies in 

Chapter 5. 

The frame s

laboratory in Taiwan (Tsai et al., 2001). The measured records of actuator forces and 

floor displacements are reported. In this study, a push over, cyclic load history, cyclic 

displacement history, and transient time history analysis are performed.  

Figure  4-28 shows the test frame, instrumentation and the actuators. Th

• Two-dimensional model 
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• Nonlinear displacement-based beam-column elements with fiber sections 

sing the smooth 

•  and updating nodal coordinates 

Nodal tags and elem 4-29. 

The structural model is configured in OpenSees and in multiple files to encapsulate each 

columns. The T-beam section is 

designed to represent beam-slab interaction, and it is constructed by the beam with two 

• Realistic material models introduced for steel and concrete, u

curves rather than multi-linear material models 

• Beam-column joints are represented by the Joint2D element 

Geometric nonlinear model with P-Delta effects

• Push over displacement-controlled analysis 

• Time history analysis by applying prescribed floor displacements 

ent connectivity for the analytical model are shown in Figure  

part of the model for parametric investigations. All the variables are introduced in a 

separate file for more convenient parameter modification. The domain components and 

analysis objects are constructed based in these variables. 

Two fiber sections are defined separately for beams and 

layers of reinforcement and the slab with its longitudinal bars. The concrete material 

properties for the cover of the beam and the slab are set for the unconfined concrete with 

zero tensile strength and unconfined compression strength after reaching the maximum 

strain. The beam core is confined by the action of the hoops, and the properties of the 

core concrete are calculated based on the Kent-Park models (1971), allowing some 

tensile strength. The physical width of the slab is large and it is likely that the whole slab 

is not engaged in the T-beam action. Based on the ACI recommendation (ACI-318, 

2002), the effective width of the slab is assumed to be four times the beam width. The 

fiber sections include a large number of fibers to capture the high gradient of stresses, and 

strain due to crack opening effects. Approximately 50 fibers are used for strong axis 

bending of each section (Figure  4-30). The column section is also constructed by a 

confined concrete core, unconfined cover and the reinforcements distributed in the 

perimeter. The confined concrete core of the columns follows the modified Kent and Park 

stress-strain curve.  
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The Giuffre-Menegotto-Pinto model (FEDEAS, 2004) with isotropic strain hardening is 

used for all the reinforcement bars. The material model used for both cover and core 

concrete is constructed using uniaxial Kent-Scott-Park concrete material object with 

 for the column core concrete confined by rectangular hoops are originally 

proposed by Kent and Park (1971) and modified by Scott et al. (1980) 

degraded linear unloading/reloading stiffness, tensile strength and linear tension 

softening. Figure  4-31 shows the uniaxial material model for the confined reinforced 

concrete. 

The core concrete for both beam and column core is assumed to be confined. The 

parameters

The modified Kent and Park relation calculates the peak compressive stress and ultimate 

strain based on the following material and geometry parameters: 

cf ′  Concrete compressive cylinder strength (MPa) 

yhf  Yield strength of hoop reinforcement (MPa) 

sρ  Ratio of volume of hoop reinforcement to volume of concrete core 

e of the hoops (mm) 

Th  co

h′′  Width of concrete core measured to the outsid

hs  Spacing between hoop reinforcements (mm) 

e ncrete stress ( cf ) is calculated for a given strain ( cε ) as: 

0.002c Kε ≤  For 
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and for 0.002c Kε >  
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The tensile strength for confined concrete is 

( )[ ]KZfKff cmcCct 002.01.25.0 −−′<′= ε  (4.67) 

ned by the unconfined concrete properties 

where 

The parameters for cover concrete are defi

0yh sf ρ= =  with no tensile strength (i.e. 0ctf = ). 

The dimensions and properties used for calibrating the hysteretic material model for the 

The physical properties of the panel zone are fed to the modified-compression field 

rve with strength capping is fitted to this curve. The 

regression information is then used as the material model properties for the joint shear 

joint panel can be summarized as: 

theory algorithm and a shear versus shear-deformation relationship for the panel zone is 

extracted. A bilinear backbone cu

springs. 

850verP KN=  

0.09xS m=   0.306S m=  y

0.0212xρ =   0.0345yρ =  
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276yxf MPa=  414yyf MPa=  

5 P2.07 10sE M a 0.1h= ×  α =  

24.157cf MPa  1′ = 0cE MPa= ×  

m

The characteristic information are applied to the rebar-pullout formulation and a 

constitutive model for single bar pullout is extracted for both beam and column sections. 

These characteristic models are used for section analysis that yields the moment-rotation 

relationship for the member-end rotational springs. 

tic sections are calculated based on 

ACI318-R02 recommendations. 

42.304

19a m=  

The beams linked to the actuators are modeled with elastic elements (elements 7 

connecting nodes 9 and 10, and element 10 connecting nodes 19 and 20). The sections 

and material model parameters for equivalent elas

24.03cf Mpa′ =  

The specified effective stiffness coefficients for beams and columns recommended by 

FEMA-273 are as follows: 

 0.35eff c gbeam
EI E I= ⋅ ⋅  (4.68) 

0.7eff c gcolumn
EI E I= ⋅ ⋅  (4.69) 

everal approaches are considered for modeling the

distributed plasticity. The force based nonlinear beam-column element and the 

isplacement based element are applied to the structural

n. This element uses a 

flexibility formulation that interpolates the force between the sections. The iterative 

S  nonlinear frame behavior with 

d  model. 

The force based distributed plasticity frame element of OpenSees allows the user to 

introduce a single element with multiple sections at the location of integration points to 

model a beam-column member undergoing plastic deformatio

138 



 

flexibility solution inside the element may encounter problems due to numerical inverting 

the stiffness of sections with no strength left. Adding the flexibilities and the subsequent 

inversion to get element stiffness may also be problematic. 

The nonlinear displacement-based beam-column element of OpenSees is a more reliable 

choice for modeling the beams and columns. In contrast with the force based element, 

each beam or column member must be modeled by multiple elements for better accuracy 

and capturing more realistic results. Each frame member is modeled by five or six 

 

m is applied and the norm of 

displacement increments is used as convergence measure. Since the system remains in 

• Linear equation solver for general sparse system of equation with pivoting 

-controlled or the arc-length method 

orithm, the Newton 

displacement-based elements to help the model achieve a well behaved and accurate 

result comparable to a single fore-based nonlinear element with five integrations points.  

The column-base rotation is captured by a zero-length section with modified properties as 

described in the member-end rotational spring properties. 

The initial analysis is performed for the gravity loads. Gravity nodal loads are gradually

applied at the top of the columns and the element forces are stored while the time step is 

set to back to zero. A Newton nonlinear solution algorith

the elastic range, there is no need for a large number of load steps. All the analysis 

objects for the gravity analysis are removed at this point and new objects are introduced 

separately for push over, time history and transient analyses. 

The analysis modules for the nonlinear analysis including the following: 

• Degree of freedom number generator for minimizing the bandwidth using reverse 

Cuthill-Mackee algorithm. 

• Constraint handler for transformation or penalty formulation 

• Integrator for the nonlinear predictor-corrector algorithm, using the load-

controlled, the displacement

• Nonlinear solution algorithm using the Modified Newton alg

algorithm or the Newton algorithm with line-search capabilities 
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• Convergence criteria by testing and comparing the norm of unbalance residuals, 

norm of displacement increment, or the norm of energy increment 

The pu loor levels and 

inc s

displacem trolled integrator monitors the displacement increment at floor levels to 

let the structure reach the softening parts with reasonable convergence rate. To achieve 

odes at each floor level. The analysis starts with a Newton 

algorithm and lowest level of convergence tolerance. To guarantee the solution 

 displacement-based model, i.e. 

beginning with the Newton algorithm and switching to the modified Newton method, 

• Analysis type for static analysis or dynamic analysis with the effects of inertia 

forces.  

shover analysis is performed by applying an initial load to the f

rea ing these loads proportionally until the structure loses its load-bearing capacity. A 

ent-con

convergence in cases where the system cannot meet the tolerance criteria, the 

displacement increment size is reduced and the initial stiffness is used for the Newton 

algorithm. 

The displacement controlled nonlinear analysis is performed by importing the lateral 

displacement (at the actuator level) histories from the input files and imposing the 

displacements to the n

convergence, the solution algorithm may be switched to either the Newton method with 

initial stiffness, the Krylov-Newton method, or the Newton method with line search. In 

cases where none of the nonlinear solution algorithms can solve the problem, it is 

necessary to increase the tolerance temporarily for a single step. The robust combination 

of nonlinear solution algorithms helped achieving convergence for the analysis. The 

results of the displacement controlled nonlinear analysis (Figure  4-35 and Figure  4-36) 

show good agreement for the frame lateral resistance.  

The force controlled nonlinear analysis is performed by importing the actuator forces 

from the input files, and apply forces to the nodes in the model where actuators are 

connected. The analysis classes are similar to the

Krylov-Newton, or Newton method with line search, whenever required. The integrator is 

set to Load-Control initially, but it switches to Arc Length method when the convergence 

is not achieved (softening occurs). The results of the load controlled nonlinear analysis 
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(Figure  4-37 and Figure  4-38) show good agreement for the frame stiffness and lateral 

resistance.  

In the transient analysis, two earthquake acceleration records (Loma Prieta 1989 and Chi-

Chi 1999 earthquakes) are applied to the system as a uniform excitation. The Newmark 

integration method is used for transient analysis. The transient analysis of this frame is 

used for the reliability study in chapter 5.  

o

 

umns, the ultimate strength of the concrete is reduced to 

 stress block. The reduced strengths are 

applied to the Kent-Park model for calculating the detailed material model 

4.4.3 Recommendations for improving the analysis models: 

The observations on modeling a reinforced concrete frame in OpenSees are summarized 

in the following suggestions: 

 For calibrating the material behavior: 

- It is noticed that the concrete does not reach its cylindrical test strength in

the beams and col

cf ′85.0 , based on the Whitney's

properties. 

- The cover concrete can reach only 70% of the assumed strength of fc′85.0  

unloading stiffness for the concrete is reduced to 7.5% of the initial 

stiffness. 

- The pinch

- The 

ing point displacement and force for the materials used in the joint 

. 

o The del 

- T

con nfined, 

over and the slab concrete are unconfined with no tensile 

strength. 

element was chosen as 15% of the peak point displacement and force

 frame mo

he beam and slab are modeled as a T-beam section, with the core and cover 

crete separately introduced. The beam core concrete is considered co

while the beam c
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- The effective slab width that is involved in the bending of the T-beam is chosen 

as the smaller value of the actual slab width and four times the beam width. 

- Displacement based formulation for nonlinear frame elements was chosen and to 

achieve the compatibility, the beams and columns are divided to five 

- The convergence test criteria is switched to energy increments and the tolerance 

4.5 P oncrete joints 

Seismi

structu he damage state corresponding to each performance level, 

and finding an analytical approach to describe the performance quality with an 

ess requires detailed 

experimental study on structural components (joints) with similar design and detailing. 

ond-slip, or (2) the damage due 

to joint shear failure. Depending on the governing damage mechanism, the observed 

that are used to define a relationship between performance levels were found to be drift, 

displacement-based nonlinear elements. 

is reduced to 1.0e-14 

erformance levels for reinforced c

c performance of beam-column joints is studied by observing the progress 

ral damage, defining t

engineering quantity (Pagni and Lowes, 2004). This proc

The experimental results must document the observed physical damages and the 

corresponding load-step, time, forces and deformations.  

In this research two sets of experimental results on beam-column joints (older design) 

were reviewed (Pantelides et. al., 2002; Walker et al., 2004) to summarize the damage 

mechanisms and their corresponding damage states. Two major damage mechanisms for 

beam column joints are observed: (1) the damage due to b

physical damages and their sequence are different. Five performance levels and their 

corresponding physical damages for both of the damage modes are summarized in Table 

 4-3, and Table  4-4. The performance levels in Table  4-3, and Table  4-4 are in agreement 

with the performance levels presented in Table 3-1 (Park et al., 1985b). 

For a joint with shear damage as the dominant failure mechanism, Figure  4-39 to Figure 

 4-42 show the observed damage states (Walker et al., 2004). The governing parameters 
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plastic deformation, joint crack width, and the joint strength coefficient. The observed 

joint-shear and shear-deformation are analyzed by Normalized-Peak, Park-Ang, and 

Mehanny-Deierlein damage models and the damage index history is stored. Based on the 

 to define the damage index range 

for a damage state by using a probability range (84th percentile). The ideal damage model 

experimental report on the exact time step for each observed damage state, the 

corresponding damage index is singled out. So for every damage state of each specimen, 

a damage index is available. Some discrepancies are expected due to limitations in the 

damage model and due to the accuracy of experimental readings (the observed damages 

are reported at the end of each loading half-cycles, while in reality the damage might 

have happened in the middle of the half cycle), so for each performance level (damage 

state) a distribution of damage indices are observed.  

Lognormal probability distributions are used to relate the performance level (damage 

state) to the calculated damage indices. Figure  4-43, Figure  4-44, and Figure  4-45 show 

these distributions for the Park-Ang, Mehanny and Normalized Peak damage models. 

These plots can be used to acquire the probability of occurrence of a target damage state 

for a given damage index (4.70), or they can be used

will have a smaller dispersion range for each damage state. 

 ( )P DM di DI=  (4.70) 

It is possible to use damage indices as Engineering demand parameters and the 

relationships between the damage states and damage indices fill the gap between the 

Engineering Demand Parameters and the Damage Measures. 
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Table  4-3: Observed damage states for bond related damage 

Damage level Physical damage state Observed characteristics 

I 
First yielding of 

longitudinal 
reinforcement 

Barely visible, initial cracking in the joint 
or no cracking at all 

II Full development of the 
bond slip mechanism 

Cracking in the joint less than 0.01 in. 
wide 

III Significant diagonal 
cracking in the joint 

Cracking in the joint more than 0.02 in. 
wide, and the extension of these cracks 

into the column 

IV Spalling of concrete at 
the corner(s) of the joint 

Spalling where the beam bars were 
slipping 

V Total loss of lateral load 
carrying capacity Collapsed 

 

Table  4-4: Observed damage states for the shear related damage 

Damage level Physical damage state Observed characteristics 

I 
First yielding of 

longitudinal 
reinforcement 

Barely visible, initial cracking in the joint 
or no cracking at all 

II Significant diagonal 
cracking in the joint 

Cracking in the joint more than 0.02 in. 
wide, and the extension of these cracks 

into the column 

III Full development of the 
joint shear mechanism 

Extensive cracking in the joint and the 
extension of diagonal joint cracks into the 

column 

IV Spalling of concrete at 
the core of the joint 

Spalling where the beam bars were 
slipping 

V Total loss of lateral load 
carrying capacity Collapsed 
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Figure  4-3: Rigid body diagram for the shear panel with/without anchorage w
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Figure  4-7: Shear panel calibration using MCFT 

 Figure  4-8: Longitudinal anchorage in the joint zone 
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 Figure  4-9: Simulated and observed bar stress versus slip for anchored reinforcing bar 
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Figure  4-10: Section model for member-end rotation 
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Figure  4-11: Test setup for single joint subassembly, Walker et. al. (2004) 

 Figure  4-12: Loading protocols for the test setups, Walker(2004) 
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Figure  4-13: Shear panel experimental data Walker (2004) 
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Figure  4-18: Damage model comparison, exposure of joint cover 
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Figure  4-19: Damage model comparison, exposure of column rebars 
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gure  4-20: Damage model comparison, 20% reduction in envelope 
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 Figure  4-22:
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Figure  4-23: Comparison of the observed and simulated response for CD15-14 (Walker, 2004) 
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Figure  4-24: Comparison of the observed and simulated response for CD30-14 (Walker, 2004) 
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Figure  4-25: Comparison of the observed and simulated response for PADH-22 (Walker, 2004) 
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Figure  4-26: Comparison of the observed and simulated response for PEER-22 (Walker, 2004) 
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Figure  4-27: Comparison of the observed and simulated response for CD15-22 (Walker, 2004) 

 Figure  4-28: 0.7 scale RC frame test setup and instrumentation (Tsai et al., 2001) 
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Figure  4-29: OpenSees model for the NCREE frame (Tsai et al., 2001) 
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Figure  4-30: Fiber sections used in the NCREE frame model 
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Figure  4-31: Kent-Scott-Park concrete material model 

 Figure  4-32: Giuffre-Menegotto-Pinto steel material model (FEDEAS, 2004) 
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Figure  4-33: Calibrating the column-end rotation 
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Figure  4-34: Calibrating the beam-end rotation 
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 Figure  4-35: NCREE frame (Tsai et al., 2001) displacement controlled analysis: floor 1 
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 Figure  4-36: NCREE frame (Tsai, 2001) displacement controlled analysis: floor 2 
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 Figure  4-38: NCREE frame (Tsai, 2001) load controlled analysis: floor 2 
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Figure  4-37: NCREE frame (Tsai, 2001) load controlled analysis: floor 1 
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 Figure  4-39: Damage levels I, first yielding of longitudinal reinforcement (Walker 2001) 

 

 Figure  4-40: Damage level II, Significant diagonal cracking in the joint (Walker 2001) 
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gure  4-41: Damage level III, Full development of the joint shear mechanism (Walker 2001) 

 F

 

igure  4-42: Damage Level IV, spalling of concrete at the core of the joint (Walker 2001) 
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Figure  4-43: Damage index to damage measure for Park-Ang model 
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Figure  4-44: Damage index to damage measure for Mehanny model 
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5 Application to reliability studies 

The goal of the performance assessment of a structure was briefly described in the 

introductory chapter as the estimation of the probability of exceeding a certain 

performance level. Quantitative representation of performance is possible by using 

intermediate Engineering Demand Parameters (EDPs) and Damage Measures (DMs). The 

major focus of this research is on developing a methodology for relating the earthquake 

input to the structural damage measures. The processes of finding a correlation between 

the decision variables (life safety, economic loss, downtime, etc.) and the damage 

measures are left as future research topics for others.  

Previous chapters described a deterministic approach for detailed simulation of reinforced 

concrete structures and recording the damage in the structural components. The 

simulation models are typically calibrated and developed on the basis of average values 

of important parameters. In this chapter, methods are proposed which use the calibrated 

analytical models to study the effects of physical variability and modeling uncertainties 

on the overall performance of the system. To eliminate the effects of the ground motion 

uncertainty for this investigation is limited to analysis with a specified ground motion 

record and intensity. Thus, the methodology provides for extracting fragility curves, 

describing the probability of exceeding one or more damage states, conditioned on the 

earthquake ground motion, i.e. ( ),  P DM IM ground motion . 

This chapter provides essential information for performing reliability analysis on RC 

frames, with focus on the role of beam-column joints. The uncertain quantities in RC 

modeling are reviewed and probability distributions for the joint response are aggregated 

from the variability in material parameters and the analytical model uncertainty. Limit-

state functions are defined by limiting the damage index for individual joints. The general 

concept and formulation of response sensitivity is presented (Zhang and Der Kiureghian, 

1991; Conte et al., 1999; Conte 2001), and the sensitivity formulation for the joint 

element and the hysteretic material models are derived and appended to the OpenSees 

models. The OpenSees reliability toolbox (Haukaas and Der Kiureghian, 2000; Haukaas, 
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2003a) is used to perform FORM, MVFOSM, and Monte Carlo simulations to estimate 

the failure (exceeding the limit-state function) probability and to derive fragility curves 

for individual joint damage. 

5.1 Uncertain quantities for RC components 

The expected performance of a RC structure (to a specified earthquake input) is governed 

by variability in the physical properties of the as-built structure (aleatory variability), as 

well as uncertainties in the simulation models and process (epistemic uncertainties). The 

discrepancy between the simulated results and the actual response of reinforced concrete 

frames can be formalized by defining the random variables that represent the uncertain 

modeling parameters. 

Even after years of research on the reinforced concrete behavior analysis, there are many 

aspects of the behavior left unstudied. The different approaches for characterizing the RC 

component behavior are examples of these uncertainties. Assumptions such as effective 

slab width, the calibration of the shear panel, and the foundation rotation are a few 

samples of epistemic uncertainties in predicting the RC frame behavior. Concrete by 

nature is not a homogeneous material, and the quality and strength of the concrete and its 

bond characteristics to steel reinforcement may vary for each element of the structure. 

Variables are referred to as “Basic Random Variables” if they are physical properties 

that can be observed and measured independently. Statistical information can be collected 

for the basic random variables, from which probability distribution functions can be 

derived. Material properties, member dimensions, and gravity (dead and live load) 

loading parameters are examples of basic variables. Engineering parameters, such as 

element stiffness and structural component strengths are functions of basic variables, 

herein referred to as “Derived Random Variables”. Any of the random variables can be 

represented by a vector: 

 { }1 2, , , nX x x x= …  (5.1) 
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The probabilistic distribution for each random variable is selected based on the nature of 

uncertainty for that parameter. A comprehensive collection of random variable 

distributions are available in the reliability module OpenSees (see Table  5-1). The 

distributions are constructed based on user input, from which the OpenSees models return 

PDF, CDF and inverse CDF values. 

Table  5-1: Random variables in OpenSees 

Beta ( 4 parameter) Gamma Lognormal Rayleigh (4 parameter) 

Chi-Square Gumbel Normal Uniform 

Exponential Laplace Pareto (4 parameter) Weibull 

The Normal distribution is suggested for geometrical properties such as nodal 

coordinates, while the variability in the material properties is best described by a 

lognormal distribution (Ellingwood and Galambos, 1982). The characteristics of these 

two widely used probability distributions are briefly reviewed. 

Normal distribution: The Normal or Gaussian distribution is a two parameter distribution 

model, with many convenient properties. In engineering, many random variables with 

unknown distributions are often assumed to be normal. This is usually a good 

approximation due to a characteristic of the central limit theorem, which states that the 

mean of any set of variables with any distribution having a finite mean and variance tends 

to the normal distribution (Menun 2001). 

The probability distribution function (PDF) for the normal distribution of variable x is 

defined as: 

 ( )
( )2

221
2

x

p x e
µ

σ

σ π

− −

=  (5.2) 

in which ( ),x ∈ −∞ ∞ , µ  is the average and 2σ  is the variance. 

The cumulative distribution function is calculated as: 
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( )2

221
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tx

P x e dt
µ

σ

σ π

− −

−∞

= ∫  (5.3) 

The normal distribution with 0µ =  and 2 1σ =  is identified as the standard normal 

distribution, expressed for variable z as: 

  ( )
2

21
2

z

zφ
π

e
−

=  (5.4) 

The cumulative distribution function (CDF) for the standard normal distribution is 

calculated as: 

 ( )
2

21
2

z t

z e
π

−

−∞

Φ = ∫ dt  (5.5) 

The integral (5.5) is numerically calculated and available in the form of tables or in 

approximate analytical functions. A general normal distribution for x, with arbitrary mean 

and standard deviation, can be converted to a standard form for z by changing variables 

to: 

 ( )x
z

µ
σ
−

=  (5.6) 

Using (5.6), the CDF for the general normal distribution is calculated as: 

 ( ) xP x µ
σ
−⎛= Φ⎜

⎝ ⎠
⎞
⎟  (5.7) 

where  is defined by (5.5). A linear combination of jointly independent normal random 

variables has a normal distribution. 

Φ
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 (5.8) 

Lognormal distribution: The lognormal is a continuous distribution in which the 

logarithm of a variable has a normal distribution. In contrast with the normal distribution, 

the lognormal distribution is skewed. The probability distribution function (PDF) for the 

lognormal distribution is defined as: 

 ( )
( )2

2
ln

21
2

x M
Sp x e

S x π

− −

=
⋅

 (5.9) 

in which , and [0, )x ∈ ∞ M  and  are the distribution parameters. The mean, variance 

are related to 

S

M  and  as follows: S

 
2

2
SM

eµ
+

=  (5.10) 

 ( )2 22 2 1S M Se eσ += −  (5.11) 

The cumulative distribution function is calculated as: 

 ( )
( )2

2
ln

2

0

1 1
2

t Mx
SP x e dt

tS π

− −

= ∫  (5.12) 

The cumulative distribution function of an arbitrary lognormal distribution can be 

calculated using the standard normal and a variable change to: 

 ( )ln X M
Z

S
−

=  (5.13) 

The cumulative probability is calculated as: 
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  ( )
2

ln

21 l
2

x M
tS n x MP x e dt

Sπ

−
−

−∞

−⎛= = Φ ⎜
⎝ ⎠∫ ⎞

⎟  (5.14) 

5.1.1 Uncertainty in concrete strength 

Concrete as a construction material is subjected to significant uncertainty in compression 

strength and other mechanical behavior. Variations in the properties and proportions of 

concrete constituents and the quality of mixing, transportation and placement are major 

sources of uncertainty. Discrepancies in test results add to the uncertainty in the expected 

compressive strength, since even specimens from the same batch of concrete show 

different strength levels. Figure  5-1 shows the observed compressive strength for 176 

normal weight concrete specimens, all of which had a nominal strength of 3000 psi 

(MacGregor 1997).  

Many of researchers have suggested that the concrete compressive strength is a normal 

distribution (e.g. Mirza et al., 1979a) for concrete produced with good quality control, 

although for concretes with lower quality control, a lognormal distribution gives a better 

fit. The coefficient of variation (COV) of cast-in-place laboratory-cured specimens has 

been reported as between 15% and 20%, where approximate observed values are 12%, 

15%, and 18% for precast, ready-mix in-situ, and site-mix in-situ concrete, respectively.  

For design purposes, the specified compressive strength ( cf ′ ) is specified statistically as a 

compressive strength such that no more than permissible proportion of tests will fall 

bellow it (ACI-214, 2002). The required average strength to ensure the requirements for 

the specified compressive strength is referred to as crf ′ . As the COV is reduced (e.g. 

though improved quality control), the value of the required average strength can also be 

reduced. Figure  5-2 shows how the COV may affect the required average strength. For 

cases where a standard deviation can be established (i.e. σ  is specified), the average 

value for compressive strength can be calculated based on Table  5-2. The average and 

standard deviation values for concrete compressive strength are used in the analytical 

model. 
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Table  5-2: Required average compressive strength when data are available to establish a standard 
deviation (ACI-318) 

Specified compressive strength cf ′  (psi) 
 

Required average compressive strength 
crf ′  

5000cf ′ ≤  Use the larger value of: 
1.34cr cf f σ′ ′= +  

2.33 500cr cf f σ′ ′= + −  

5000cf ′ >  Use the larger value of: 
1.34cr cf f σ′ ′= +  

0.9 2.33cr cf f σ′ ′= +  

 

Depending on the quality of the concrete and the observed or selected coefficient of 

variation, parameters of the normal distribution for representing the concrete compressive 

strength is calculated. 

5.1.2 Uncertainty in steel yield strength 

The variability in the rebar yield strength is mostly caused by variation in the material 

itself and variation in bar area. The variation of the yield strength along a single bar is 

generally small, while the variability of samples from different batches may be high. A 

review on yield strength of reinforcing bars showed the COV was on the order of 1% to 

4% for individual bar sizes and 4% to 7% for all bar sizes derived from one source 

(Mirza et al. 1979b). Test results on grade 40 and 60 steel bars showed agreement with a 

normal distribution within the range of 5th to 95th percentile, though lognormal 

probability distributions is suggested (Figure  5-3). 

5.1.3 Uncertainty in shear panel modeling 

The material model used to represent the joint force-deformation relationship has 

multiple parameters. The probabilistic features of these parameters are governed by a 

combination of uncertainty in the theoretical model, along with variability in the material 

and other modeling parameters. The physical features of the joint and construction 

quality (i.e. bar placements, aggregate size and type etc) also contribute to the response 

variability. Four modeling parameters are considered for the probabilistic study on the 
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joint behavior: elastic stiffness, yield shear, stiffness hardening ration, and the cap 

deformation.  

The uncertainty in the theoretical model for calibrating the shear panel is the consequence 

of model limitations, the assumptions made in the process of developing the analytical 

model, and the assumptions made in using the model. To quantify modeling 

uncertainties, data from the model calibration (chapter 4) is used to estimate the relative 

difference between the theoretical and observed strength. Based on the available data 

(described bellow), the relative error follows a normal distribution.  

The probabilistic function for the shear panel behavior (calculated based on Modified 

Compression Field Theory) is expressed as: 

 ( )theory MCFTV V ε= + v  (5.15) 

where , so: ( ) ( )0, errorv Nε σ←

 ( ),theory MCFT errorV N V σ←  (5.16) 

The suggested coefficient of variation for the elastic stiffness, shear strength, stiffness 

hardening ratio, and the cap deformation is 10% based on the relative error distribution 

(Figure  5-4). 

The effects of the variability in concrete strength cf ′ , steel yield stress yF , and the 

column axial load are studied to determine the joint response variability to the basic 

random variables. A sampling simulation is performed by generating random values for 

cf ′ , yF , and the column axial load. The random numbers are generated according to 

governing probabilistic distributions and within the [ ],µ σ µ σ− +  range. The outcome of 

the Monte Carlo simulation suggests a normal distribution for the joint parameter 

variability with respect to the modeling parameters (Figure  5-5). The simulation is done 

by a MATLAB program, using the MCFT algorithm discussed in Chapter 4. The shear 

failure mode for the modeled joint panel was calculated as tensile yielding of the 
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transverse reinforcement in tension, and the model variability is mainly influenced by the 

variability in steel parameters.  

The overall probabilistic distributions of the joint parameters are calculated by combining 

the model uncertainty and material variability using the conditional probability 

formulation (Figure  5-6). According to the results shown in Figure  5-6, the model 

variability is the dominant source of uncertainty in the joint model.  

5.2 Limit state boundary for RC frames with joint elements 

The structural performance requirements are enforced numerically as limit-state 

boundary equations. ( )g X  is defined as the limit-state function, where  is the vector 

of random variables and the failure domain is defined as . The random 

variables that are involved in the limit-state function can be selected from basic or 

derived random variables. 

X

( ) 0g X ≤

The limit-state boundaries are often described by the inter-story drift for overall system 

performance assessment (Moehle 1997); or in terms of the local damage indices for the 

reinforced concrete components. The damage level of each component is calculated by 

the damage recorder. 

Story drift: Maximum story drift or inter-story drift envelopes are widely used to 

characterize structural performance. There are several recommendations and limitations 

for the allowable story drift in reinforced concrete structures. As an example, FEMA 450 

suggests allowable story drift ratio between 0.025 sxh  and 0.015 sxh , depending on the 

seismic use group. Story drift has advantage for the global performance evaluation, 

especially in preliminary design. However, the drifts do not directly reflect detailed 

information on the structural damage.   

Component damage: Damage to individual components is a more accurate approach for 

defining the structural performance, specially for the lower performance objectives when 
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the collapse is not likely and the component performance objectives are more related to 

repair costs and the associated down-time.  

The target damage index for the limit-state function is selected depending on the 

reliability analysis type. FORM, MVFOSM, and Monte-Carlo simulation (see Section 

5.4) require a predefined limit for the damage index. In such cases the limit-state function 

is defined as , where  is the calculated component damage and (g di DI− ) di DI  is the 

limit (or predefined target) value for the damage index. Where a fragility function is used, 

the damage index limit value varies from 0.0 to 1.0. 

5.3 Response gradients and sensitivity 

There have been several analytical and numerical studies to determine the sensitivity of 

the transient finite element response to the model parameters (Zhang and Der Kuireghian, 

1991; Conte, 1999; Conte, 2000). In the reliability context, the response usually refers to 

the calculated force or deformation. The gradient of the response (or the so-called 

sensitivity) is defined as the variation of the response with respect to a sensitivity 

parameter ( h ). The sensitivity parameter  is one of the basic random variables such as 

the material properties, physical dimensions or loading parameters. 

h

In the global sensitivity formulation by Zhang and Der Kuireghian (1991), the classic 

dynamical equilibrium equation is assumed, where the physical parameters of mass, 

damping and stiffness might be expressed as the random sensitivity parameter. The 

transient equilibrium equation, considering the sensitivity parameter of , is expressed 

as: 

h

 ( ) ( ) ( ) ( )
( )( ) ( )

,
, , ,t h

t h t h t hh h u h ,M u C u R F⋅ + ⋅ + =�� �
� �� �

 (5.17) 

where , , and  are the nodal acceleration, velocity and displacement vectors, 

 is the nonlinear internal forces (

( ),t hu��
� ( ),t hu�

� ( ),t hu
�

( )( , ,t hu h
R
�� ) ( ) ( ),t hh

K u⋅
�

 for a linear system), 
( )h

M and 
( )h

C  are 

the mass and damping matrices, and  is the vector of time-variant external forces.  ( ),t hF
�
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The dynamic equilibrium equation (5.17) is solved by integrating the solution over time, 

using the Newmark-beta method. The acceleration and velocity vectors of each time step 

, at time  are assumed to be functions of last step solution and the current 

displacements, described by the following equations:  

1n + 1nt t +=

 ( ) ( ) (1 11 1
2n n nu t u u u

t
α α α
β β β+ +

⎛ ⎞ ⎛ ⎞
= ∆ − + − + −⎜ ⎟ ⎜ ⎟ ∆⎝ ⎠ ⎝ ⎠

� �� �
� � �

)n nu
� �

 (5.18) 

 
( ) ( )

(1 2
1 1 11

2n n n nu u u u
t tβ β β

+

⎛ ⎞
= − − + −⎜ ⎟ ∆ ∆⎝ ⎠

�� �� �
� � � �

)1 nu+ �
 (5.19) 

where α  and β  are calibration parameters for the Newmark-beta method, and t∆  is the 

time increment. The velocity and acceleration vectors for the current step are substituted 

into the main equation (5.17), in which case the dynamic equation can be written as: 

 
( ) ( )

( ) ( ) ( ) ( )

12

2
2 1 2

2 2

n

n n n

M C u
tt

M C MF K u C u M
t tt

α
ββ

α α β β β α
β β β β ββ

+

⎛ ⎞
⎜ ⎟+ =
⎜ ⎟∆∆⎝ ⎠

⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − −⎜ ⎟+ + − + + − + ∆⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟∆ ∆∆ ⎝ ⎠⎝ ⎠⎝ ⎠

�

� �
� � � nC t u�

�

(5.20) 

The nonlinear equation (5.20) is solved (using the Newton Raphson algorithm) for the 

displacement vector at the current load-step, and the velocity and acceleration vectors are 

calculated subsequently (equations (5.18) and (5.19)). 

Equation (5.17) can be differentiated with respect to  to form the response gradients 

(Zhang and Der Kuireghian, 1991). Using the chain rule for derivation, the general 

sensitivity formulation can be derived as: 

h

 
u

CM u u R u Ru M u C
h h h h u h h

F
h

∂∂ ∂ ∂ ∂ ∂ ∂ ∂
⋅ + ⋅ + ⋅ + ⋅ + ⋅ + =

∂ ∂ ∂ ∂ ∂ ∂ ∂
�� ��� � � �� � �� �

�
∂
�  (5.21) 
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substituting R K
u

∂
=

∂
�
�

, the sensitivity equation can be written as: 

 n

u

CMFu u uM C K u u
h h h h h h

R
h

∂∂∂∂ ∂ ∂ ∂
⋅ + ⋅ + ⋅ = − ⋅ − ⋅ −
∂ ∂ ∂ ∂ ∂ ∂ ∂
�� � �� �� �� � � � �

�

 (5.22) 

In order to calculate the response gradients, the derivatives of model parameters 

(
M
h

∂

∂
,

C
h

∂

∂
,

u

R
h

∂
∂
� ) and the displacement components on the right side of the general 

sensitivity formulation (5.22) must be determined. The same Newmark formulation can 

be used to calculate the response gradients (5.23), by solving (5.24): 

 uv
h

∂
=

∂
��

 (5.23) 

 n

u

CMF RM v C v K v u u
h h h h

∂∂∂ ∂
⋅ + ⋅ + ⋅ = − ⋅ − ⋅ −

∂ ∂ ∂ ∂
�

�� � �� �� �� � � � �
 (5.24) 

The process of calculating the response sensitivity is performed in three steps: 

• Using a regular finite element solution for finding 1nu +�
, 1nu +��

, and  1nu +���

• Calculating the stress sensitivity for the given deformation 
u

R
h

∂
∂
�  

• Calculating the strain sensitivity u
h

∂
∂
�  or v  

�
For static analysis, equation (5.24) is expressed as: 

 n

u

F RK v
h h

∂ ∂
⋅ = −

∂ ∂
� ��

�

 (5.25) 

The stress sensitivity is computed at the element and material levels, and the results are 

then assembled to form the stress resultant sensitivity term of 
u

R
h

∂
∂

�

� . 
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5.3.1 Resultant force sensitivity at element level 

In the finite element formulation, the global resultant forces are calculated by assembling 

the element forces, and the sensitivity can be formulated in the same manner: 

 ( ),
element

u h
elements

R R= ∑
�� �

 (5.26) 

Thus the global sensitivity is first calculated at element level and then assembled to form 

the global sensitivity vector. 

 ( ),
element

u h

elements

R R
h h

∂ ∂
=

∂ ∂∑�� �  (5.27) 

( )( )
 is calculated by applying the chain derivative rule, where the element response 

derivative is calculated as: 

, ,t h

element

u h
R

��

 
( )( ), ,e
t h

e e ee

eu h
u

R u RR
u h h

∂ ∂ ∂
= ⋅ +

∂ ∂ ∂�

� ��
�

�  (5.28) 

where the superscript e refers to individual elements. Initially, the so-called force 

sensitivity of each element is calculated for a given nodal deformation
e

u

R
h

∂
∂

�

� . This 

resultant force sensitivity, 
e

u

R
h

∂
∂

�

� , is required for calculating the global response 

sensitivity, i.e. uv
h

∂
=

∂
��

. The strain sensitivity 
eu

h
∂
∂
�  is then input to the element sensitivity 

routine to calculate the complete gradient. 

The resultant force sensitivity should be defined for each element. In this research the 

focus is on defining the procedure for the beam-column joint. The gradient of beam-

column joint nodal rotations with respect to the sensitivity parameter is directly related to 

the sensitivity of the material model response. The following equations describe the 
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material (force-deformation) sensitivity expressions for the three joint models 

implemented in this research: 

For Joint2D-1SPR:   
u

m
hR

h m
h

α

α

α

θ

α

θ

⎧ ⎫∂
⎪ ⎪∂∂ ⎪ ⎪= ⎨ ⎬∂ ∂⎪ ⎪−⎪ ⎪∂⎩ ⎭

�      (5.29) 

For Joint2D-5SPR: 

1

2

3

4

1

2

3

4u

m
h

m
h

m
hR

h m
h

m
h

m
h

α

α

θ

θ

θ

θ

α

θ

α

θ

⎧ ⎫∂
⎪ ⎪∂⎪ ⎪
⎪ ⎪∂
⎪ ⎪

∂⎪ ⎪
⎪ ⎪∂⎪ ⎪
⎪ ⎪∂∂ ⎪ ⎪= ⎨ ⎬∂ ∂⎪ ⎪
⎪ ⎪∂
⎪ ⎪

∂⎪ ⎪
⎪ ⎪∂⎪ ⎪
⎪ ⎪∂

−⎪ ⎪
∂⎪ ⎪⎩ ⎭

�  (5.30) 

For Joint3D: 

'

'

'

'

'

'

x

y

z

x

y

u

z

m
h

mR
h h

m
h

γ

γ

γ

γ

θ

γ

θ

γ

θ

⎧ ⎫∂⎪ ⎪
⎪ ⎪∂
⎪ ⎪
⎪ ⎪∂∂ ⎪ ⎪= ⎨ ⎬∂ ∂⎪ ⎪
⎪ ⎪

∂⎪ ⎪
⎪ ⎪∂⎪ ⎪⎩ ⎭

�  (5.31) 

where m is the moment resultant for uniaxial materials representing joint force-

deformation relationships. All three of these require calculation of the response gradient 

at material level ( )m θ− . 
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5.3.2 Response gradient at material level 

The response gradient at the material level is defined as the force (stress) derivative with 

respect to the sensitivity parameter. The sensitivity parameter, , is selected from the 

model key parameters that define the loading envelopes (Table 3.3). Depending on the 

material state for the current step, the response sensitivity depends on the 

loading/unloading/reloading path sensitivity. 

h

In OpenSees, the gradient functions have already been implemented (Haukaas, 2003b) 

for uniaxial Steel01, concrete01, hardening and Bouc-Wen material models. Based on the 

modeling recommendations in Chapter 4, three hysteretic material models were 

implemented as part of this research for joint elements. In this section, the force gradient 

functions are derived for the Bilinear, Clough and pinching material models. 

The force (stress) gradient for material models is calculated based on the same systematic 

definitions used for calculating material force (stress) and stiffness. The material state (as 

described in chapter 2) is first determined and the sensitivity is calculated based on the 

material state.  

For loading state of the material (states 1 and 2), the response sensitivity directly depends 

on the loading envelope sensitivity. In Chapter 3, the loading envelope for the peak 

oriented material modes is described as: 

 
( ) ( ) ( ) ( )

( ) ( ) ( )
0, ,

,

y y cap

cap res

y h yenvelope

cap cap cap res res

F B K B F K

B F K H F

δ δ δ

δ δ

δ δ δ δ α δ

δ α δ δ δ δ

+ + +

+ +

+ +

+ + +

δ

+

⎡ ⎤= ⋅ ⋅ + ⋅ + ⋅ ⋅ −⎣ ⎦

⎡ ⎤+ ⋅ + ⋅ ⋅ − + − ⋅⎣ ⎦

 (5.32) 

Employing the chain-rule, the complete derivative of the force-deformation envelope 

(equation(5.32)) with respect to the sensitivity parameter is calculated as: 
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∂ − ∂
+ ⋅ + − ⋅

∂ ∂

(5.33) 

The derivative (5.33) is separately expressed for the force (stress) sensitivity and (strain) 

sensitivity as: 

 envelope envelope
envelope

F F
F

h h δ h
δ∂ ∂ ∂

= + ⋅
∂ ∂ ∂

 (5.34) 

The derivatives of a continuous function multiplied by a boxcar or step function are 

calculate using chain derivative rule, as: 

 
( )( ) ( )

( )(,h h
xx h x h

y H f ),
= ⋅  (5.35) 

 ( ) ( ) ( ) ( ) ( )y x H x f x
f x H x

h h
∂ ∂ ∂

= ⋅ + ⋅
h∂ ∂ ∂

 (5.36) 

The derivative of the step function is zero, except for the neighborhood of the step, where 

it is represented by a Dirac delta function ( D∆ ):  

 ( ) ( )D

H x x x
h h

∂ ∂
= ⋅ ∆

∂ ∂
 (5.37) 
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 ( ) (D

H x c )x c
c

∂ −
= −∆ −

∂
 (5.38) 

where c is a constant value. For the boxcar function,  

 
( )( ) ( )

( )(,,h h
a bx h x h

z B x f= ⋅ ),
 (5.39) 

 
( ) ( ) ( ) ( ) ( ),

,
a b

a b

B xz x f x
f x B x

h h
∂∂ ∂

= ⋅ + ⋅
∂ ∂ ∂h

 (5.40) 

where the derivative of boxcar function is defined as: 

 
( ) ( ) ( ) ( ) (,a b

D

B x x a x b )Dx a
h h h

∂ ∂ − ∂ −
= ⋅∆ − − ⋅∆

∂ ∂ ∂
x b−  (5.41) 

Using the derivative definitions for the boxcar and the step functions, the force (stress) 

sensitivity components of (5.34) are derived as: 
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 (5.42) 

The displacement (strain) sensitivity components of (5.34) are derived as: 
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Equations (5.42) and (5.43) show occasional discontinuities or infinite values due to the 

presence of delta functions. These discontinuities are due to sharp corners of the multi-

linear material models. One solution to this problem is by developing smooth material 

models and thereby avoiding the sharp corners. The other solution, which is applied to 

the material models in this research, involves using the following numerical 

approximation for the step function: 
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 (5.44) 

The sensitivity parameters for the peak-orientated materials are derived as a function of 

variations in the elastic modulus, yield strength (stress), hardening slope, capping 

displacement (strain) and the cap slope. The derivatives are separately calculated with 

respect to the material sensitivity parameters.  

These derivatives are appended to the material models as envelope sensitivity functions, 

for the loading states (states 1 and 2 according to the definitions in Chapter3). Equations 

(5.45) to (5.49) describe the force sensitivity to the six key parameters ( K , yF , capδ , hα , 

capα  and ). R
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Figure  5-7 illustrates the envelope sensitivity to elastic stiffness ( K ). 
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 (5.46) 

Figure  5-8 shows the envelope sensitivity to yielding force ( yF ). 
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Figure  5-9 illustrates the envelope sensitivity to cap displacement ( capδ ). 
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Figure  5-10 shows the envelope sensitivity to hardening ratio ( hα ). 

The response sensitivity for the unloading and reloading material states (states 3 and 4 as 

described in Chapter 3) depends on the unloading and reloading slopes, which are 

different for the Bilinear, Chough, and Pinching material models. The trial force (stress) 

is calculated and the unloading/reloading/loading state is determined (Chapter 3). For the 

unloading/reloading path, the force sensitivity is calculated as: 

 ( )unloading/reloadingtrial commited
trial commited

K
h h hδ δδ

σ σδ δ
∂∂ ∂

= ⋅ − +
∂ ∂ ∂

 (5.51) 

where unloading/reloadingK
h δ

∂

∂
 is the derivative of unloading/reloading stiffness. For reloading 

of the peak-oriented hysteretic models, this term is a function of the target point 

sensitivity (peak point or the pinching point, depending on the material type):   
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In equation (5.52), targetF
h

δ

+∂

∂
 is calculated by using the envelope sensitivity, and 

reloadingF
h δ

∂

∂
 is the force sensitivity of the last committed step.  

The implementation of material sensitivity requires saving the peak point and last step 

force sensitivity as the history variable. The current formulation does not take into 

account the deterioration effects. 

5.4 Reliability analysis algorithms 

Traditionally, fragility curves describe the failure (exceeding a limit-state) probability for 

a given earthquake intensity measure. Fragility curves mostly reflect the record to record 

variability for a given intensity measure, though the variability in the model response 

should also be considered. Typically a large sample of earthquake records are scaled to 

the intensity measure and applied to the structural model in the performance assessment 

process. Incorporating the model variability adds extensively to the computational 

workload, and analysis cost. The reliability analysis methods facilitate the performance 

assessment process. 

The main objective of reliability analysis is to estimate the probability of failure to 

achieve a predefined performance. OpenSees reliability module presents a collection of 

reliability analysis algorithms (Haukaas 2003a). The reliability analysis features of 

OpenSees are developed in a fashion similar to the finite element analysis framework in 

which the model is created and it is matched up by proper analysis algorithms. 

The Mean-Value First Order Second moment (MVFOSM), the First Order Reliability 

Method (FORM), and the Monte Carlo analysis are used in this research to compute and 
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verify an estimate of the failure probability, i.e. finding the probability of hitting a limit-

state function. 

Mean-Value First Order Second Moment analysis: The MVFOSM method is used to 

estimate the mean and variance of a limit-state function, or the correlation coefficient 

between pairs of response quantities (Menun 2002). MVFOSM method employs the 

mean-centered first-order Taylor series approximation of a limit-state function, which 

requires a single finite element solution for the mean-value of random variables and the 

response gradients at the random variable mean points: 

 ( ) ( ) ( )g X g g Xµ µ≈ + ∇ −  (5.53) 

The first-order estimate of the mean is evaluated as the limit-state function value 

evaluated at the mean of the random variables: 

 [ ] ( )E g g µ≈  (5.54) 

and the variance is estimated as a function of response gradients: 

 ( ) TVar g g g≈ ∇ ×Σ×∇  (5.55) 

where  is the covariance matrix of random variables vector . Σ X

Correlation coefficients can be calculated by defining gradients for two or more 

performance functions are defined: 

 [ ] 11, 2 TCov g g g g2≈ ∇ ×Σ×∇  (5.56) 

First Order Reliability Method: The FORM analysis finds the design point in the 

transformed uncorrelated standard normal space, and by an iterative approach, it 

estimates the limit-state function at the design point. The design point is defined as the 

point on the limit-state surface in the standard normal space with highest probability 
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density. The properties of the standard normal space are used to obtain an estimate the 

failure probability (Menun 2002). 

Finding the design point can be a challenging task in nonlinear finite element reliability 

analysis. Some of the main challenges are observed by Haukaas (2003): 

• The nonlinearities in the finite element solution are reflected to the limit-state 

function ( )g X . 

• Local nonlinearities in ( )g X  may be experienced due to numerical 

approximations in the finite element solution (due to solution tolerances). 

• Nonlinearities in the response gradient and the gradient of the limit-state function 

may be experienced as discussed in section  5.3.2, and numerical approximations 

in equation (5.44). 

• The finite element analysis may not achieve equilibrium convergence, and for 

some realizations of the random variables it may not be possible to evaluate the 

performance function. This problem is likely when the reliability analysis 

algorithm modifies the model parameters to a non-physical configuration. This 

situation is anticipated in the failure domain, where gross nonlinearities in 

structural response are expected. 

The FORM analyses attempted in this study did not converge in every instance. To derive 

fragility cures, it is necessary that the FORM analysis is performed multiple times for 

different pre-defined limit-state functions. So when an estimate for the failure probability 

distribution is desired, a sampling scheme may be most efficient, especially since the 

gradients may be costly to compute and they are not required by sampling analysis 

schemes. 

Monte Carlo sampling/simulation analysis: The Monte Carlo Sampling method is based 

on generating random numbers and observing the fraction of the random numbers that 

cause failure. The method is useful for obtaining numerical solutions to probability 

problems that can not be solved analytically by reliability methods.  
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In the classic Monte Carlo simulation the sampling distribution is centered at the mean 

point, while the failure events are more likely to occur in the tail regions of probability 

distributions. Using random distributions centered at the mean value implies that a large 

number of samples are required to obtain good failure probability estimates. It is 

recommended the start point or the center point for the sampling distribution is 

prescribed by a previous FORM analysis (Haukaas 2003). 

5.5 Reliability analysis  

Components of a reliability analysis were discussed in the previous sections of this 

chapter. An OpenSees model is produced to demonstrate the application of the reliability 

algorithms to determine the failure probability. The reliability model is based on the 

validation frame model discussed in Section 4.4.2, subjected to two records from the 

Loma Prieta 1989 and two from Chi-Chi 1999 earthquakes. 

Random modeling parameters are represented by probability distribution functions as 

described earlier in this chapter (e.g. concrete strength cf ′ , concrete strain at cf ′ , 

reinforcing bar yield stress yf , reinforcing bar elastic modulus , joint yield strength, 

joint stiffness, and joint cap deformation). The recorded joint damage indices for the 

time-history analysis are used to define limit-state functions (Section 5.2).  

E

A Newmark transient analysis with sensitivity calculation (Section 5.3) is used to 

analytically calculate the response sensitivities. Other details of the reliability analysis 

model, including the probability transformation, reliability convergence check, merit 

function check, and step-size rule are determined as suggested by Haukaas (2003a). 

Three types of reliability algorithms (Section 5.4) were applied to estimate the failure 

(joint damage) probability for the testbed frame subjected to the previously mentioned 

earthquake records. The results of a MVFOSM and Monte Carlo sampling simulation for 

the damage of the joint element connected to nodes 7,11,6,3 are presented in Figure  5-11. 

For this example, the FORM analysis did not converge, and hence, no results are 

available from the FORM simulation. 
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Figure  5-11 shows the probability distributions (MV-FOSM and MC simulation) for the 

joint damage index exceeding a pre-defined value, i.e.: 

 , _P di DI IM ground motion>  (5.57) 

The results shown in Figure  5-7 and (5.57) could in theory be combined with DM-DI 

relationships (similar to the relations presented in Section 4.6) to complete the 

performance assessment process as: 

 
( )

( ) ( )
, .

. ,
di

P DM IM ground motion

P DM di DI dp di DI im IM ground motion

=

= > =∫ .  (5.58) 

However, appropriate DM-DI relationships are not available for the type of conforming 

construction used in this example problem. Therefore, this demonstration of the 

reliability tools is limited to prediction of DI per (5.57). 
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6 Contributions and observations 

This research contributes to performance based earthquake engineering by developing 

analytical tools for simulation and performance (damage) assessment of reinforced 

concrete beam-column joints within the context of a probabilistic framework.  New 

models are formulated, implemented, and calibrated in the OpenSees platform for 

simulation of beam-column joints, evaluation of component damage measures, and 

calculation of sensitivity parameters for semi-automated reliability analyses. These 

models facilitate calculation of conditional probabilities of exceeding specified 

component damage measures during a nonlinear time history analysis. Example problems 

are used to demonstrate application of the damage simulation and reliability tools.  

6.1 Development, implementation, and calibration of OpenSees models 
for RC joints 

Analytical formulations for modeling 2D and 3D reinforced beam-column joints were 

derived, considering both shear distortions in the joint panel and concentrated rotations at 

the interfaces between the joint and adjacent beam/columns. The modeling process 

distinguishes between the generic finite-deformation kinematics and hysteretic response 

models that are unique to reinforced concrete joints. The hysteretic response model for 

joint shear is formulated based on modified compression field theory, and the interface 

model incorporates calibrated equations for bond-slip and deterioration under cyclic 

loading.   

One of the main challenges in developing the generic joint model involved formulating 

kinematic equations, including the effects of large deformations. Compatibility equations 

were derived based on large-deformation theory, taking into account natural and rigid-

body joint deformations in an incremental piecewise-linear approach. In the models 

developed in this investigation, accurate modeling of large deformations includes a 

corrector scheme applied to kinematic constraint relationships to avoid spurious joint 

deformations that would otherwise accumulate under large cyclic rotations.  
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Implementation of the joint elements in OpenSees required a detailed study of the Object 

Oriented architecture of OpenSees, so as to properly interact with existing object models 

for analysis (e.g., constraint handlers, material models, recorders, etc.).  This 

development required close collaboration with the OpenSees development team. Beam-

column joint elements implemented through this research are being used by a number of 

researchers to model RC and composite RCS frames. Feedback from the users 

contributed significantly to the enhancement of the proposed models. 

6.2 Development of hierarchical models for processing engineering 

demand parameters and damage indices 

The concept of Damage model was introduced to OpenSees as a new class. As a new 

generic class, the Damage model provides a framework for the introduction of several 

types of damage models. The damage model is used by a number of OpenSees 

components (elements, material models and recorders) to serve two primary functions: 

(1) providing a damage recorder; and (2) providing a history variable to track damage 

accumulation during the analysis. Selection of a unique and inclusive input/output for the 

generic Damage Model was challenging since the higher level classes need to 

communicate with the Damage Model for sending the required information. 

A damage recorder was created to act as an interface between elements and damage 

models to extract the element damage indices and record them to an output file. Finding a 

global solution for element internal information was a challenge. Assuming that the 

damage models are mainly used to calculate damage for nonlinear elements, a and that 

nonlinear elements are formulated based on either uniaxial material models or sections as 

force-deformation relationship, so the element damage calculation is focused on the 

materials or sections. Element damage recorders acquire force-deformation data from the 

material/section models used in the element to calculate the element damage. Output of 

damage recorders is used as a new parameter in limit-state functions for component 

performance assessment. 

200 



 

A brief study was performed on selecting and calibrating the cyclic damage and damage 

states for the limited available experimental results. The resulting damage level 

probability is presented as a function of the component damage index. 

6.3 Demonstration of simulation, damage models, and reliability tools in 

application 

Key aspects of modeling uncertainty for the joint element were examined and the 

essentials for performing a reliability analysis were provided, including the definition of 

random variables, limit-state functions, and the response sensitivity. Formulation and 

implementation of the response sensitivity equations for the hysteretic material models 

were another contribution.  

The new reliability and simulation models were applied to calculate the probability of 

reaching Various damage states (DM) in a RC subassembly for a specified input ground 

motion.  The reliability analysis algorithms were exercised for two records form the 

Loma Prieta 1989 and two from Chi-Chi 1999 earthquakes to derive the fragility curves 

for individual RC components. The combination of the joint damage fragility curves and 

the damage index to damage measure curves are used determine the conditional 

probability of exceeding a pre-defined damage measure for a given ground motion 

record. 

6.4 Future work 

The new damage indices in OpenSees provide a framework to use the damage models as 

history parameters to control stiffness/strength degradation. As an example, the damage 

indices have already been used as a degradation factor in the generalized hinge beam-

column elements implemented in OpenSees by Kaul (Kaul and Deierlein 2004). Other 

standard models could similarly make use of the new damage indices and damage 

models. 

Application of the damage indices can also be extended to non-structural components by 

introducing non-structural components to the OpenSees simulation framework. The non-
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structural elements may or may not affect the structural system response, but they 

nevertheless would access to the analysis results (such as nodal displacements or 

accelerations) to calculate and record the damage index for non-structural components. 

The modeling RC beam-column joints can be enhanced in a number of ways. There is 

also need for further calibration studies to refine the joint models. Some possible 

improvements and extensions to the current models are listed as: 

The joint element could be enhanced for: 

o Cases with insufficient anchorage of beam reinforcement within the joint and the 

potential for complete bond loss. The joint model could be modified to transfer a 

portion of unbalanced moment directly from one beam to the opposing one, by 

connecting the nodal rotations of opposing node through an additional rotational 

spring. 

o Using fiber sections instead of uniaxial materials to link the adjacent frame 

elements to the joint for more detailed calibration. 

o Interactive effects of varying axial load on the shear panel and pullout behavior. 

o Three dimensional cases where the beam centerline does not pass through the 

column centroid, i.e. eccentric beam-column joints. 

More information on joint behavior is required for: 

o The interaction of the shear panel damage and bond-slip behavior. 

o Slab-column joints and the effect of the slab width on the outcome. 

o Precast structures with discrete beam/column connections. 

o Detailed laboratory test on the joint response under cyclic loading, with precise 

data collection on the joint deformations and internal forces. 

o  Biaxial bending and torsion transfer mechanism in the space frame joints. 

o Reinforced concrete-steel beam-column joints. 

o Connections with new “engineered” fibers. 
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Detailed damage study on 

o Cyclic performance of both poorly and adequately detailed joints, i.e. joints 

with/without adequate confinement and development length. 

o Most damage indices take into account cumulative damage, but few consider 

loading history (same damage is predicted, regardless of the sequences of the 

loading cycles). A lot more experimental and analytical research is needed to 

develop damage models that take into account the loading history. 

o Damage models and damage calculator for shear damage in frame elements. 
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Appendix A 

Introduction to OpenSees 

OpenSees is created in a C++ Object Oriented environment. A brief explanation of some 

of the commonly used Object Oriented concepts will help understanding the OpenSees 

structure, and its features used in this research to develop analytical models. The 

OpenSees Object Oriented architecture is explained in detail by McKenna (1997). 

Class: Classes are one of the building blocks of object-oriented programming, or in 

technical words, classes are basic units of abstraction in C++. A class is used to 

encapsulate the user-defined data as well as operators to access and manipulate that data. 

A class is a prototype that defines the variables and the methods common to all objects of 

a certain kind.  

Object: An object is a run-time value that belongs to a class, used to store the class state. 

The class defines all the operations for its instances. Since the objects know what class 

they belong to, so they automatically know what operations they are capable of. The 

word "instance" is another term for "object". 

Message and Method: OOP uses "messages" instead of function calls. Sending a 

message to an object causes that object to perform an operation. The receiver knows what 

operations it can perform, because it knows its class, and. The code corresponding to a 

particular message is known as the "method" for that message. A message is just a string, 

while the method is the code in the Stack class which is triggered by the message. The 

C++ specific term for method is "member function". 

Constructors: Methods that are automatically called on behalf of the client whenever a 

new instance, be it statically or dynamically allocated, comes into scope. 

Model Builder: The first step in generating a finite element analysis model is subdividing 

the body being studied into finite element components. A Model Builder object is used to 

create the finite element model in a running program. Each Model Builder object is 
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associated with a single Domain object. The model builder is responsible for generating 

nodes, masses, materials, sections, elements, load patterns, time series, transformations, 

blocks, and constraints.  

Domain: The domain object is responsible for storing the objects created by the model 

builder object and for providing the analysis and recorder objects access to these objects. 

The domain holds the state of the model at time t  and t t+∆ . 

Domain Component: The domain component class is an abstract class. Its subclasses 

include elements, nodes, single point constraints, multipoint constraints, nodal loads, 

elemental loads, etc. Each object of these types is a component of an enclosing Domain 

object. The domain component class provides methods to set and retrieve a pointer to the 

enclosing Domain object. 

Analysis: The Analysis object is responsible for performing the analysis. This may vary 

from a simple static linear analysis to a transient non-linear analysis. In OpenSees each 

Analysis object is composed of several component objects, which define how the analysis 

is performed. The component classes consist of constraint handler, degree of freedom 

number, analysis model, solution algorithm, integrator, linear system of equation, and the 

solver. The analysis performs the calculations and solves the state of the model from state 

at time t  to t t . +∆

Recorders: The recorder object monitors the state of a domain during an Analysis, writes 

this state to a file or to a database at selected intervals during the analysis, or plots and 

monitors user-defined parameters in the model during the analysis. The user defined 

parameter could be the displacement history at a node in a transient analysis, or the entire 

state of the model at each step of the solution procedure. Usually several Recorder 

objects are created by the analyst to monitor the analysis. 

Multipoint constraints: Multi-point constraint equations are a mathematical way to 

impose a relationship between two or more degrees of freedom. 
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Constraint handlers: The Constraint Handler object is responsible for providing an 

initial mapping between the nodal degrees of freedom and equation numbers of the 

analysis. The Constraint Handler object does not handle the constraints as its name 

would suggest and the handling of the constraints is performed by the Analysis object 

where the constraint equations are enforced as relationships between degrees-of-freedom.  

Material models: A general object which represents stress-strain relationships or force-

deformation at integration points of continuum or element components. Material Models 

always belong to an element or a section. 

Uniaxial Materials: A Material Model objects which represent single degree of freedom 

force-deformation (or stress-strain) relationships. 

Damage Model: A general tagged object in OpenSees, which represents the damage 

formulation. Damage Models are always introduced through other Domain Components 

(e.g. elements, sections, or material models) and they do not directly interact with the 

Domain. 
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Appendix B 

OpenSees modeling reference and command lines 

B.1 Element commands 

B.1.1 Joint2D element 

Joint2D represents the beam-column joint element in a two-dimension, three-DOF 

domain. Both of the two-dimensional joint formulations (Joint2D-1SPR and Joint2D-

5SPR as described in Chapter 2) are reached through the Joint2D OpenSees command as 

follows: 

element   Joint2D   tag?   Nd1?   Nd2?   Nd3?   Nd4?   NdC?   [Mat1?   Mat2?   Mat3? 

Mat4?]   MatC?   LrgDspTag? 

tag An integer tag identifying the element in the domain  

Nd1 An integer tag indicating the node 1  

Nd2 An integer tag indicating the node 2  

Nd3 An integer tag indicating the node 3  

Nd4 An integer tag indicating the node 4  

NdC An integer tag indicating the central node. This tag is used for generating 

the internal node and must not exist in the domain or used by any other 

node. 

[Mat1   Mat2   Mat3   Mat4] 

A group of optional integer tags indicating the uniaxial materials for 

interface rotational springs in Joint2D-5SPR model. Use a zero tag to 

indicate the case that a beam-column elements is rigidly framed to the 

joint. 

MatC? An integer tag indicating the uniaxial material for the shear panel behavior 

(required for both Joint2D-1SPR and Joint2D-5SPR). 

LrgDspTag?  An integer indicating the flag for considering large deformations.  For 

small deformations and constant geometry use 0. For large deformations 
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and time varying geometry use 1. For large deformation, time varying 

geometry and length correction use 2. 

The nodes must be located such that the main chords bisect, and the node tags are 

required to be entered in a clockwise or counter-clockwise order. 

The shear panel uniaxial material model is calibrated for shear-equivalent moment versus 

shear distortion. In the calibration formulations the shear-equivalent moment is calculated 

by multiplying the joint average shear stress to the joint panel volume. 

The joint element automatically generates a special central node (with an extra degree of 

freedom), where the user is only required to provide a new (unused) node tag for the 

central node. 

The element connects the external nodes to the central node via multi-point constraints,  

and Joint2D must be used along with either the Penalty, or the Transformation constraint 

handler.  

The LrgDspTag flag activates the geometric nonlinearity option. If the LrgDspTag flag is 

set to zero, the element uses a constant constraint matrix, for small-deformation 

formulation. For large deformation formulation, a non-zero value is used for LrgDspTag. 

In the large-deformation formulation, the constraint matrix is time varying and it is 

updated at every converged time-step. 

Joint2D element has the capability to record the element damage, using Damage Model 

objects. Damage models are introduced to the joint element through the following 

optional command line: 

element   Joint2D   tag?   Nd1?   Nd2?   Nd3?   Nd4?   NdC?   [Mat1?   Mat2?   Mat3? 

Mat4?]   MatC?   LrgDspTag?   [   -damage   [Dmg1? Dmg2? Dmg3? Dmg4?]   DmgC?] 

Joint2D element recorder: Valid inquiries to the joint element include: 

centralNode  The displacement components of the central node  
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deformation  Interface rotations and the shear panel deformation 

force   nodal moments and the joint panel shear-equivalent moment 

size   Length of the main chords (element size) 

stiffness  Joint element stiffness matrix 

defoANDforce            Joint deformation components followed by the nodal moments 

Example input lines: 

element Joint2D   12   1   2   3   4   112   10   0  

Constructs a Joint2D element with tag 12 that is connected to nodes 1, 2, 3 and 4. The 

element will generate a center node with tag 112, and it uses the uniaxial material object 

with tag 10 as the shear panel rotational spring. The joint element introduced here will be 

a joint, without rotational springs at external nodes. The generated multipoint constraint 

matrices will be constant and they do not include large deformations. Use Penalty, or 

Transformation as constraint handler. 

element Joint2D   13   5   6   7   8   113   11   0   11   0   10   2 

Constructs a Joint2D element with tag 13 that is connected to nodes 5, 6, 7 and 8. The 

element will generate a center node with tag 113, and it uses the uniaxial material object 

with tag 11 for nodes 5 and 7, and rigid connections at nodes 6 and 8 to prevent member 

end rotations. The generated multipoint constraint matrices will be time varying to cover 

large deformations and if corrects the nodal positions to maintain the initial joint size. 

 

B.1.2 Joint3D element user information 

Joint3D is defined in a three dimensional domain with six nodal degrees of freedom. 

Joint3D is connected to six nodes, where the nodes are required to be entered in the order 

the main chords are defined (-x’, +x’, -y’, +y’, -z’, +z’). Since the element is developed 

only for symmetric joints, the external nodes must construct a parallelepiped. All six 
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external nodes are required for exterior or corner joints, while some nodes may or may 

not be connected to any beam-column element. 

Three uniaxial material models characterize the three shear-deformation modes of the 

joint block. In most calibration formulations the average shear stress is determined, which 

must be applied in the form of shear-equivalent moment (by multiplying to the joint 

block volume). 

The joint element automatically generates a central node with three extra degrees of 

freedom for shear deformation. The user is only required to provide a new (unused) tag 

number for this central node.  

The element connects the external nodes to this central node via multi-point constraints, 

so the Joint3D must be used along with either Penalty, or Transformation constraint 

handler to allow the multi point constraints work properly.  

Joint3D element is introduced to the model through a command line as: 

element   Joint3D   tag?   Nd1?   Nd2?   Nd3?   Nd4?   Nd5?   Nd6?   NdC?   Mat12? 

Mat34?  Mat56?  LrgDspTag? 

tag  An integer identifying the element tag in the domain 

Nd1  An integer indicating the node 1 tag connected to column at (-x') 

Nd2  An integer indicating the node 2 tag connected to column at (+x')      

Nd3  An integer indicating the node 3 tag connected to column at (-y') 

Nd4  An integer indicating the node 4 tag connected to column at (+y') 

Nd5  An integer indicating the node 5 tag connected to column at (-z') 

Nd6  An integer indicating the node 6 tag connected to column at (+z') 

NdC  An integer tag for internal node (must not exist in the domain). 

Matx'  An integer indicating the uniaxial material for rotational spring along x’ 

Maty'  An integer indicating the uniaxial material for rotational spring along y’ 

Matz'  An integer indicating the uniaxial material for rotational spring along z’ 

LrgDspTag An integer indicating the flag for considering large deformation effects 
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The local x' axis is defined by a vector from Nd1 to Nd2; y' form Nd3 to Nd4; z' from Nd5 

to Nd6. The external nodes must be located such that these vectors bisect each other. 

The valid queries to a Joint3D element when creating an element recorder are 

'internalNode', 'deformation', `plasticDeformation`, 'force', 'deformationANDforce', 'size', 

'stiff' and 'materials ...'.           

Joint3D element recorder: The valid inquiries to a Joint3D element when creating an 

element recorder are: 

internalNode Returns the central node displacements, four degrees of freedom. 

deformation Returns the spring rotation at external nodes and at the block.  

force Returns the spring moment at external nodes and at the block. 

defoANDforce Returns the spring rotation at external nodes and at the block , 

followed by the forces in the same order. 

plasticRotation Returns the spring plastic rotation at external nodes and at the 

block, by reducing the elastic component of the rotation based on 

initial stiffness. 

size Returns the joint size  

stiff Returns the joint stiffness matrix 

 

Example: 

element Joint3D  12  1  2  3  4  5  6  1012  11  12  13  0 

This command line constructs a Joint3D element with tag 12 that is connected to nodes 1, 

2, 3 , 4 ,5 and 6. The element will generate a central node with tag 1012, and it uses the 

uniaxial material objects with tags 11 , 12 , and 13 along x', y' and z' local axes. The 

generated multipoint constraint matrices will not be time variant and they do not include 

large deformations effects. 
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B.2 Damage models 

B.2.1 NormalizedPeak Damage 

damageModel   NormalizedPeak   tag?   ValueU + ?   ValueU − ?   reponseType? 

tag   Integer identifier for the damage model tag 

ValueU +  Ultimate response threshold for positive excursions 

ValueU −  Ultimate response threshold for negative excursions 

responseType A string indicating the response type, chosen from “Force”, 

“Deformation” ,”PlasticDeformation”, “TotalEnergy”, or “PlasticEnergy”. 

Example:  

damageModel   NormalizedPeak   1  5.0  -5.0 

Creates an instance on AbsolutePeak damage model with identifier tag 1. The maximum 

threshold value is 5.0 and the minimum is -5.0 

 

B.2.2 Kratzig Damage 

damageModel   Kratzig   tag?   UE+ ?   UE− ? 

tag   Integer identifier for the damage model tag 

UE+    Maximum energy capacity for positive monotonic loading 

UE−    Maximum energy capacity for negative monotonic loading 

B.2.3 Mehanny Damage 

The Mehanny damage model is a hysteretic damage model that calculates the damage 

model based on the accumulation of following half cycles and the effect of the primary 

half cycle. The damage indices are calculated separately for positive and negative half 
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cycles and they are combined to the overall damage index. Alpha and Beta and Gamma 

are obtained through calibration to test data. This damage model is also dimensionless 

and it can be used for displacement/force/energy based damage analysis problems.  

 

damageModel   Mehanny   tag?   α ?   β ?   γ ?   ?   +
puθ puθ − ?   ?   ?   abstol reltol µ+ ?   

µ− ? 

tag  Integer identifier for the damage model tag 

α   Calibration parameter for primary half cycles contribution 

β   Calibration parameter for summation of follower half cycles contributions 

γ   Calibration parameter for combining positive and negative damage 
+
puθ   Plastic deformation capacity in positive loading 

puθ −   Plastic deformation capacity in negative loading 

abstol  Optional absolute tolerance value for half cycle size to filter any half cycle 

smaller than   abstol

reltol  Optional relative tolerance value for half cycle size to filter any half cycle 

smaller than rel p PHC
tol θ× . 

µ+  Optional weight given to the damage index for the positive half cycles. 

µ+  Optional weight given to the damage index for the negative half cycles, 

when the positive and negative damage indices are reported separately, as 

follows: 

( ) ( ) 1.0DamageIndex DI DI
γ γ γ

µ+ + − −= + ⋅ ≤  

( ) ( ) 1.0DamageIndex DI DI
γ γ γ
µ− + + −= ⋅ + ≤  

Example 

damageModel Combined   1   1.0   1.2   2.0   2100.0   -2100.0 

226 



 

 

B.2.4 Hysteretic energy 

damageModel   HystereticEnergy tag?   ?   c ? UE

tag   An integer identifier for the damage model tag 

UE  Positive value for ultimate energy capacity, normally defined as a 

multiplier of the yield energy U yE F yλ δ= ⋅ ⋅  

c   Calibration parameter  

 

B.2.5 Park-Ang Damage 

damageModel   ParkAng   tag?    Uδ ?   β ?   ?  uF

tag   Integer identifier for the damage model tag 

Uδ   The ultimate deformation capacity 

β   Calibration parameter for cyclic damage 

uF   Calculated yield strength 

 

B.3 Uniaxial material models 

B.3.1 Bilinear material model 

The Bilinear material model is defined by the elastic/unloading stiffness and the 

information for generating the envelope. The envelopes are identified by yield point, 

hardening stiffness, cap displacement, softening stiffness of the cap and a residual factor. 

Three optional damage models could be used to degrade the strength, stiffness and the 
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capping. The damage models must be introduced in advance and the tags to these damage 

models would be passed to the Bilinear material model through the command line: 

uniaxialMaterial   Bilinear   tag?   eK ?    yF + ?   yF − ?   hα ?   capα ?   capδ + ?   capδ − ?   

flagCutEnv?    ?   DmgS?   DmgK?   DmgD? R

tag  Integer identifier used to tag the material model 

eK   Initial elastic stiffness 

yF +   A positive value for the yield strength in positive direction 

yF −   A negative value for the yield strength in negative direction 

hα   Isotropic hardening ratio as a fraction of elastic stiffness 

capα   A negative value for the cap slope ratio as a fraction of stiffness 

capδ +   Positive value for the cap displacement on positive side 

capδ −   Negative value for the cap displacement on negative side 

flagCutEnv A flag to establish a cut-off limit for the force once the cap is reached 

R   Residual stress ratio as a fraction of yield strength 

DmgS  An integer tag to the strength damage model, zero for no damage 

DmgK  An integer tag to the stiffness damage model, zero for no damage 

DmgD  An integer tag to the capping damage model, zero for no damage 

 

B.3.2 Clough material model 

The Clough material model is defined by the same envelope as the Bilinear. The 

envelopes are identified by the elastic stiffness, yield points, hardening stiffness, cap 

displacement, softening stiffness of the cap and a residual factor. The Clough model 

reloading path is peak oriented and targets for the maximum stress point. Four 

deterioration modes are defined for the Clough model, allowing strength, stiffness, 

accelerated stiffness loss and capping deterioration modes. The deterioration is originally 

governed by the hysteretic energy formulation, but it could be also defined by damage 
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models. The damage models must be introduced in advance and the tags to these damage 

models would be passed to the Clough material model through the command line: 

uniaxialMaterial   Clough   tag?   eK ?    yF + ?   yF − ?   hα ?   ?   R capα ?   capδ + ?   capδ − ?   

Sλ ?   Kλ ?   Aλ ?   Dλ ?   ?   Sc Kc ?   ?   ? Ac Dc

uniaxialMaterial CloughDamage   tag?   eK ?    yF + ?   ?   yF −
hα ?   ?   R capα ?   

capδ + ?   capδ − ?   DmgS?   DmgK?   DmgA?   DmgD?    

tag  Integer identifier used to tag the material model 

eK   Initial elastic stiffness 

yF +   A positive value for the yield strength in positive direction 

yF −   A negative value for the yield strength in negative direction 

hα   Isotropic hardening ratio as a fraction of elastic stiffness 

R   Residual stress ratio as a fraction of yield strength 

capα   A negative value for the cap slope ratio as a fraction of stiffness 

capδ +   Positive value for the cap displacement on positive side 

capδ −   Negative value for the cap displacement on negative side 

Sλ  A positive ratio for calculating the ultimate energy in the hysteretic energy 

deterioration model, used for strength deterioration 

Kλ  A positive ratio for calculating the ultimate energy in the hysteretic energy 

deterioration model, used for stiffness deterioration 

Aλ  A positive ratio for calculating the ultimate energy in the hysteretic energy 

deterioration model, used for accelerates stiffness loss deterioration 

Dλ  A positive ratio for calculating the ultimate energy in the hysteretic energy 

deterioration model, used for capping deterioration 

Sc  A positive value used as the calibration exponent in the hysteretic energy 

deterioration model, used for strength deterioration 
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Kc  A positive value used as the calibration exponent in the hysteretic energy 

deterioration model, used for stiffness deterioration 

Ac  A positive value used as the calibration exponent in the hysteretic energy 

deterioration model, used for accelerated stiffness loss deterioration 

Dc  A positive value used as the calibration exponent in the hysteretic energy 

deterioration model, used for capping deterioration 

DmgS  An integer tag to the strength damage model, zero for no damage 

DmgK  An integer tag to the stiffness damage model, zero for no damage 

DmgA An integer tag to the accelerated stiffness loss damage model, zero for no 

damage 

DmgD  An integer tag to the capping damage model, zero for no damage 

 

 

B.3.3 Pinching material model 

The Pinching material model is defined by the same envelope as the Pinching model. The 

envelopes are identified by the elastic stiffness, positive and negative yield stresses, 

hardening stiffness ratio, cap strains, capping softening stiffness ratio, and a stress 

residual factor. The Pinching model unloading path follows the elastic slope, while the 

reloading path is peak oriented and targets for a pinching point. The pinching point is 

determined by a ration of the peak stress and strain point. Four deterioration modes are 

defined for the Pinching model, allowing strength, stiffness, accelerated stiffness loss and 

capping deterioration modes. The deterioration relation is originally governed by the 

hysteretic energy formulation, but the current implementation allows using a different 

damage model for this purpose. The damage models must be introduced in advance and 

the tags to these damage models would be passed to the Pinching material model through 

the command line: 

uniaxialMaterial   Pinching   tag?   eK ?   yF + ?   yF − ?   hα ?   ?   R capα ?   capδ + ?   capδ − ?   

capβ + ?   capβ − ?   pinchα ?   Sλ ?   Kλ ?   Aλ ?   Dλ ?   ?   Sc Kc ?   ?   ? Ac Dc
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uniaxialMaterial   PinchingDamage   tag?   eK ?   yF + ?   yF − ?   hα ?   ?   R capα ?   capδ + ?   

capδ − ?   capβ + ?   capβ − ?   pinchα ?   DmgS?   DmgK?   DmgA?   DmgD? 

tag  Integer identifier used to tag the material model 

eK   Initial elastic stiffness 

yF +   A positive value for the yield strength in positive direction 

yF −   A negative value for the yield strength in negative direction 

hα   Isotropic hardening ratio as a fraction of elastic stiffness 

R   Residual stress ratio as a fraction of yield strength 

capα   A negative value for the cap slope ratio as a fraction of stiffness 

capδ +   Positive value for the cap displacement on positive side 

capδ −   Negative value for the cap displacement on negative side 

capβ +   A positive value for the positive stress pinching ratio 

capβ −   A positive value for the negative stress pinching ratio 

pinchα  A flag to establish a cut-off limit for the force once the cap is reached 

Sλ  A positive ratio for calculating the ultimate energy in the hysteretic energy 

deterioration model, used for strength deterioration 

Kλ  A positive ratio for calculating the ultimate energy in the hysteretic energy 

deterioration model, used for stiffness deterioration 

Aλ  A positive ratio for calculating the ultimate energy in the hysteretic energy 

deterioration model, used for accelerates stiffness loss deterioration 

Dλ  A positive ratio for calculating the ultimate energy in the hysteretic energy 

deterioration model, used for capping deterioration 

Sc  A positive value used as the calibration exponent in the hysteretic energy 

deterioration model, used for strength deterioration 

Kc  A positive value used as the calibration exponent in the hysteretic energy 

deterioration model, used for stiffness deterioration 
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Ac  A positive value used as the calibration exponent in the hysteretic energy 

deterioration model, used for accelerated stiffness loss deterioration 

Dc  A positive value used as the calibration exponent in the hysteretic energy 

deterioration model, used for capping deterioration 

DmgS  An integer tag to the strength damage model, zero for no damage 

DmgK  An integer tag to the stiffness damage model, zero for no damage 

DmgA An integer tag to the accelerated stiffness loss damage model, zero for no 

damage 

DmgD  An integer tag to the capping damage model, zero for no damage 
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