The OpenSees Command Language Manual
Version 1.2
August 20, 2001
Frank McKenna and Gregory L. Fenves
Pacific Earthquake Engineering Research Center
University of California, Berkeley

1 Introduction

This document is intended to outline the rudimentary commands currently available with
the OpenSees interpreter. This interpreter is an an extension of the Tcl/Tk language for
use with OpenSees. OpenSees is an object-oriented framework under construction for finite
element analysis. OpenSees’s intended users are in the research community. A key feature
of OpenSees is the interchangeability of components and the ability to integrate existing
libraries and new components into the framework (not just new element classes) without
the need to change the existing code. Core components, that is the abstract base classes,
define the minimal interface (minimal to make adding new component classes easier but
large enough to ensure all that is required can be accommodated).

OpenSees is comprised of a set of modules to perform creation of the finite element
model, specification of an analysis procedure, selection of quantities to be monitored during
the analysis, and the output of results. In each finite element analysis, an analyst constructs
4 main types of objects, as shown in figure 1:

Program
e A

Figure 1: Main Objects in an Analysis

1. ModelBuilder: As in any finite element analysis, the analyst’s first step is to sub-
divide the body under study into elements and nodes, to define loads acting on the
elements and nodes, and to define constraints acting on the nodes. The ModelBuilder
is the object in the program responsible for building the Element, Node, LoadPattern,
TimeSeries, Load and Constraint objects.

2. Domain: The Domain object is responsible for storing the objects created by the
ModelBuilder object and for providing the Analysis and Recorder objects access to
these objects.

3. Analysis: Once the analyst has defined the model, the next step is to define the
analysis that is to be performed on the model. This may vary from a simple static
linear analysis to a transient non-linear analysis. The Analysis object is responsible
for performing the analysis. In OpenSees each Analysis object is composed of sev-
eral component objects, which define how the analysis is performed. The component
classes consist of the following: SolutionAlgorithm, Integrator, ConstraintHandler,
DOF Numberer, SystemOfEqn, Solver, and AnalysisModel.

4. Recorder: Once the model and analysis objects have been defined, the analyst has
the option of specifying what is to be monitored during the analysis. This, for example,
could be the displacement history at a node in a transient analysis or the entire state of
the model at each step in the solution procedure. Several Recorder objects are created
by the analyst to monitor the analysis.

The main abstractions of OpenSees will be explained using the OpenSees interpreter. The
interpreter is an extension of the Tcl scripting language. Tcl is a string based procedural
command language which allows substitution, loops, mathematical expressions, and proce-
dures. The OpenSees interpreter adds commands to Tcl for finite element analysis. Each
of these commands is associated (bound) with a C++ procedure that is provided. It is this
procedure that is called upon by the interpreter to parse the command. In this document
we outline only those commands which have been added to Tcl by opensees.

2 Tcl Basics

The basic syntax for a Tcl command is
command argl arg2 aropensees ...

where command is the name of the Tcl command or is a user defined procedure and argl arg?2
. are the arguments for the command. Tcl allows any argument to be a nested command:

command [nested command 1] [nested command 2]

where the [] are used to delimit the nested commands. The Tcl interpreter will first evaluate
the nested commands and will evaluate the outer command with the result of the nested
commands.

The most basic command in Tcl is the set command:

set variable value

which takes two arguments, the variables name and the value it is to be assigned. Value
may be a string or number (in Tcl everything is treated as a string). To obtain the value of
a variable the $ operator is used.

To evaluate mathematical expressions the expr command is used:

expr expression

where the expression may be any valid mathematical expression used in the C programming
language. Tcl allows variable substitution in the expression.

Double quotes and braces can be used to group strings into one argument for a command.
The difference is that quotes allow substitution to occur in the group, where as braces do
not, for example:

set a b5

-> 5

puts "a is $a"
-> ais 5

puts {a is $a}
-> a is $a

Procedures are defined using the command proc:
proc name args body

where name is the name of the Tcl procedure created, args is the procedure arguments and
body is the body of the procedure, for example:

set a b

proc sum {argl arg2} {
return [expr $argl + $arg2]
}

sum $a $a

->10

Tcl also allows for loops and conditional evaluation. For more details see 'Practical
Programming in Tcl and Tk’ by Brent B. Welch.

3 Notation

For the rest of this document the following notation will be used. Input values are a string
unless terminated by a ?, in which case an integer or floating point number is to be provided.
Optional values are identified in enclosing < > braces. When specifying a quantity of x values
are required, the command line contains (x values?). An arbitrary number of input values
is indicated with the dotdotdot notation, i.e. valuel? value2?

4 The model Command

model modelBuilderType <specific model builder args>

The model command has at least one argument which identifies the type of ModelBuilder
object to be constructed. Currently there is only one type of ModelBuilder accepted, that
of type BasicBuilder.

model BasicBuilder -ndm ndm? <-ndf ndf?>

The command for constructing a BasicBuilder object contains additional arguments. The
string -ndm followed by an integer defining the dimension of the problem, i.e. 1, 2 or 3-d.
By default the number of degrees-of-freedom at a node (ndf) depend on the value of ndm
(ndm=1, ndf=1; ndm=2, ndf=3; ndm=3, ndf=6). An optional string -ndf followed by an
integer defining the number of degrees associated with each node can also be specified if the
analyst should require degrees of freedom different from the defaults.

The construction of the BasicBuilder object adds additional commands to the opensees
language. These additional commands allow for the construction of Nodes, Elements, Load-
Patterns, TimeSeries, Loads and Constraints. The additional commands are as follows:

4.1 The node Command

node nodeTag? (ndm coordinates?) <-mass (ndf values?)>

The node command is used to construct a Node object. The first argument to the node
command defines the integer tag that uniquely identifies the node object among all other
nodes in the model. Following the tag argument, ndm nodal coordinates must be provided
to define the spatial location of the Node. An optional string -mass accompanied by ndf
mass terms following the specification of the coordinates allows the analyst the option of
associating nodal mass with the Node.

4.2 The mass Command

mass nodeTag? (ndf values?)

The mass command is used to set the mass at a node. The first argument to the node
command defines the integer tag that uniquely identifies the node for which the mass will
be set. Following the tag argument, ndf mass terms are specified, where ndf is the number
of degrees of freedom per node in the model.

4.3 The uniaxialMaterial Command

uniaxialMaterial materialType <specific material args>

The uniaxialMaterial command is used to construct a UniaxialMaterial object. Uniaxi-
alMaterial objects represent uniaxial stress-strain (or force-deformation) relationships. The
command has at least one argument, the string material Type, which identifies the type of
material being constructed. The commands for specifying each type of uniaxial material are
as outlined below.

The valid queries to any uniaxial material when creating an ElementRecorder are ’strain’,
‘stress’, and ’tangent’.

4.3.1 Elastic Material

uniaxialMaterial Elastic matTag? E7 <eta?>

To construct an elastic uniaxial material with a tangent of E and optional damping tangent of
eta. The argument matTag is used to uniquely identify this UniaxialMaterial object among
UniaxialMaterial objects in the BasicBuilder object.

4.3.2 Elastic-Perfectly Plastic Material

uniaxialMaterial ElasticPP matTag? E7 epsyP? <epsyN? epsZero?>

To construct an elastic perfectly plastic uniaxial material with an elastic tangent of E which
reaches the plastic state at a strain of epsyP. There are two optional arguments for this
material. First, epsyN is the yield strain in compression. If not specified, the yield strain in
compression is assumed to be the same as in tension. Second, epsZero is an initial strain,
which is assumed to be zero if not specified. The argument matTag is used to uniquely
identify this UniaxialMaterial object among UniaxialMaterial objects in the BasicBuilder
object.

4.3.3 Elastic-Perfectly Plastic Gap Material

uniaxialMaterial ElasticPPGap matTag? E? fy7? gap?

To construct an elastic perfectly plastic gap uniaxial material with an elastic tangent of E,
which reaches the plastic state at a stress of fy. The initial gap of the model is given by
the argument gap. The argument matTag is used to uniquely identify this UniaxialMaterial
object among UniaxialMaterial objects in the BasicBuilder object.

4.3.4 Parallel Material

uniaxialMaterial Parallel matTag? tagl? tag2? ... <-min min?> <-max max?>

To construct a parallel material model made up of an arbitrary number of previously con-
structed UniaxialMaterial objects, which are identified by the tags tagl tag2 In a parallel
model, strains are equal and stresses and tangents are additive. Specification of minimum
and maximum failure strains through the -min and -max switches is optional. The argument
matTag is used to uniquely identify this UniaxialMaterial object among UniaxialMaterial
objects in the BasicBuilder object.

4.3.5 Series Material

uniaxialMaterial Series matTag? tagl? tag2? ...

To construct a series material model made up of an arbitrary number of previously con-
structed UniaxialMaterial objects, which are identified by the tags tagl tag2 In a series
model, stresses are equal and strains and flexibilities are additive. The argument matTag
is used to uniquely identify this UniaxialMaterial object among UniaxialMaterial objects in
the BasicBuilder object.

4.3.6 Hardening Material

uniaxialMaterial Hardening matTag? E7 sigmaY? H_iso? H_kin?

To construct a uniaxial material model with combined linear kinematic and isotropic hard-
ening. The model contains a yield stress of sigmaY, an elastic modulus of E, an isotropic
hardening modulus of H_iso, and a kinematic hardening modulus of H_kin. The argument
matTag is used to uniquely identify this UniaxialMaterial object among UniaxialMaterial
objects in the BasicBuilder object.

4.3.7 Steel0l Material

uniaxialMaterial SteelO1 matTag? fy7? EO7 b7 <al? a2? a3?7 a47?>

To construct a uniaxial bilinear steel model with kinematic hardening and optional isotropic
hardening described by a non-linear evolution equation. The model contains a yield strength
of fy, an initial elastic tangent of EO, and a hardening ratio of b. Isotropic hardening is
controlled by the parameters al, a2, a3, and a4. For no isotropic hardening, al and a3
should be set to zero, while a2 and a4 should be anything non-zero. The argument matTag
is used to uniquely identify this UniaxialMaterial object among UniaxialMaterial objects in
the BasicBuilder object.

4.3.8 Concrete01 Material

uniaxialMaterial ConcreteOl matTag? fpc? epsc0? fpcu? epscu?

To construct a uniaxial Kent-Scott-Park concrete model with degraded linear unloading/reloading
stiffness according to the work of Karsan-Jirsa and no strength in tension. The model con-
tains a compressive strength of fpc, a strain at the compressive strength of epsc0, a crushing
strength of fpcu, and a strain at the crushing strength of epscu. The initial slope for this
model is (2f!/e,). Compressive concrete parameters should be input as negative values for
this model. The argument matTag is used to uniquely identify this UniaxialMaterial object
among UniaxialMaterial objects in the BasicBuilder object.

4.3.9 Elastic-No Tension Material

uniaxialMaterial ENT matTag? E?

To construct a uniaxial elastic-no tension material model. The model takes a single param-
eter, E, the elastic modulus in compression. In tension, there is zero stress. The argument
matTag is used to uniquely identify this UniaxialMaterial object among UniaxialMaterial
objects in the BasicBuilder object.

4.3.10 Hysteretic Material

uniaxialMaterial Hysteretic matTag? slp? elp? s2p? e2p? <s3p? e3p?>
s1n? eln? s2n7 e2n? <s3n? e3n?> pinchX? pinchY? damagel? damage2? <beta?>

To construct a bilinear hysteretic model with pinching of force and deformation, damage due
to ductility and energy, and degraded unloading stiffness based on ductility. Points on the
backbone are specifed by the arguments slp, elp, etc., where s indicates force, e indicates
deformation, 1 is the first point on the backbone (yield), 2 the second point, and 3 indicates
an optional third point for a trilinear backbone. p indicates positive backbone points, and n
negative backbone points. Note that negative backbone points should be entered as negative
numeric values. The pinching factors pinchX and pinchY indicate the amount of pinching
of deformation and force, respectively, during reloading. The factors damagel and damage2
are for damage due to ductility, D;(x — 1), and energy, DQ(E—E‘;), respectively. The optional
parameter beta is a power used to determine degraded unloading stiffness based on ductility,

pr
4.3.11 Viscous Material

uniaxialMaterial Viscous matTag? C? alpha?

To construct a uniaxial material model with a non-linear elastic stress-strain rate relation
given by 0 = Ce®, where C' and « are constant. The argument matTag is used to uniquely
identify this UniaxialMaterial object among UniaxialMaterial objects in the BasicBuilder
object.

4.3.12 FEDEAS Materials

This section lists the uniaxial material models available from the FEDEAS ML1D library
developed by F.C. Filippou. For more information see the FEDEAS materials webpage:

http://www.ce.berkeley.edu/ "filippou/Research/Fedeas/material.htm

Further information on the Concrete01 and Steel01 materials described earlier in this section
can also be found at this webpage. Currently, each of the following FEDEAS materials are
only available with the Win32 version of OpenSees.

Concrete02 Material
uniaxialMaterial Concrete02 matTag? fpc? epsc0? fpcu? epscu? ratio? ft7? Ets?

To construct a uniaxial concrete model with tensile strength and linear tension softening.
The compressive envelope is defined by the compressive strength, fpc, cracking strain epsc0,
crushing strength, fpcu, and strain at fpcu of epscu. The parameter ratio is the ratio between
unloading slope at epscu and original slope (2f!/e4). Concrete tensile strength is given by
ft, and Ets is the slope of the linear tension softening branch. The argument matTag is
used to uniquely identify this UniaxialMaterial object among UniaxialMaterial objects in
the BasicBuilder object.

Concrete03 Material

uniaxialMaterial Concrete03 matTag? fpc? epsc0? fpcu? epscu? ratio? ft7
epst0? f£t07 beta? epstu?

To construct a uniaxial concrete model with tensile strength and nonlinear tension soft-
ening. The compressive envelope is defined by the compressive strength, fpc, cracking strain
epsc0, crushing strength, fpcu, and strain at fpcu of epscu. The parameter ratio is the ratio
between unloading slope at epscu and original slope (2f!/e.). Concrete tensile strength is
given by ft. epst0 is the tensile strain at the transition from nonlinear to linear softening,
and ft0 is the stress at this transition. The exponent of the tension softening curve is beta
and epstu is the ultimate tensile strain. The argument matTag is used to uniquely identify
this UniaxialMaterial object among UniaxialMaterial objects in the BasicBuilder object.

Steel02 Material
uniaxialMaterial Steel02 matTag? fy? E7? b? RO? cR17? cR27 al? a2? a37 a4”?

To construct a uniaxial Menegotto-Pinto steel model with isotropic strain hardening.
The yield stress is given by fy, the elastic modulus, E, and strain hardening ratio b. The
factors R0, cR1, and cR2 control the transition from elastic to plastic branches. Reasonable
values are RO = 18.5, cR1 = 0.925, and cR2 = 0.15. Isotropic hardening is controlled by the
parameters al, a2, a3, and a4. For no isotropic hardening, al and a3 should be set to zero,
while a2 and a4 should be anything non-zero. The argument matTag is used to uniquely
identify this UniaxialMaterial object among UniaxialMaterial objects in the BasicBuilder
object.

Bond01 Material

uniaxialMaterial BondO1 matTag? ulp? qlp? u2p? u3p? q3p?
uln? gin? u2n? u3n? g3n? s0? bb?

To construct an Eligehausen bond model without damage. The tensile bond-slip back-
bone parameters are given by ulp (slip at first detachment), qlp (bond at first detachment),
u2p (slip at start of degradation), udp (slip at ultimate), and q3p (bond at ultimate). The

corresponding compressive bond-slip backbone parameters are indicated with a suffix of n
(uln, qln, u2n, udn, g3n). The unloading stiffness is given by s0, and the exponent for the
first branch of the backbone (prior to first detachment) is given by bb, i.e., ¢ = u®®. The
argument matTag is used to uniquely identify this UniaxialMaterial object among Uniaxial-
Material objects in the BasicBuilder object.

Bond02 Material

uniaxialMaterial Bond02 matTag? ulp? qlp? u2p? u3p? q3p?
uln? gin? u2n? u3n? g3n? s07 bb? alp? aln?

To construct an Eligehausen bond model with damage. The tensile bond-slip backbone
parameters are given by ulp (slip at first detachment), qlp (bond at first detachment),
u2p (slip at start of degradation), u3p (slip at ultimate), and q3p (bond at ultimate). The
corresponding compressive bond-slip backbone parameters are indicated with a suffix of n
(uln, qln, u2n, u3n, q3n). The unloading stiffness is given by s0, and the exponent for
the first branch of the backbone (prior to first detachment) is given by bb, i.e., ¢ = u®.
The arguments alp and aln are the damage factors in the positive and negative quadrants,
respectively. The argument matTag is used to uniquely identify this UniaxialMaterial object

among UniaxialMaterial objects in the BasicBuilder object.

4.4 The nDMaterial Command

nDMaterial materialType <specific material args>

The nDMaterial command is used to construct an NDMaterial object. NDMaterial ob-
jects represent stress-strain relationships at the integration points of continuum and force-
deformation elements. The command has at least one argument, the material type. The
commands for specifying each type of material are as outlined below.

The valid queries to any ND material when creating an ElementRecorder are ’strain’,
‘stress’, and tangent’.

4.4.1 Elastic Isotropic Material

nDMaterial ElasticIsotropic matTag? E?7 v7

To construct an ElasticIsotropic material object with elastic modulus E and Poisson
ratio v. The argument matTag is used to uniquely identify this NDMaterial object among
NDMaterial objects in the BasicBuilder object.

The material formulations for the Elasticlsotropic object are “ThreeDimensional”, “PlaneS-
train”, “PlaneStress”, “AxiSymmetric”, and “PlateFiber”. These are the valid strings that
can be passed to the continuum elements for the type parameter.

4.4.2 J2 Plasticity Material

nDMaterial J2Plasticity matTag? K7 G7 sig07 sigInf? delta? H?

To construct a J2Plasticity material object with a bulk modulus K, shear modulus G,
initial yield stress sig0, final saturation yield stress sigInf, exponential hardening parameter
delta and the linear hardening parameter H. The argument matTag is used to uniquely
identify this NDMaterial object among NDMaterial objects in the BasicBuilder object.

The material formulations for the J2Plasticity object are “ThreeDimensional”, “PlaneS-
train”, “PlaneStress”, “AxiSymmetric”, and “PlateFiber”. These are the valid strings that
can be passed to the continuum elements for the type parameter.

4.4.3 Plane Stress Material

The plane stress material wrapper converts any three dimensional material into a plane stress
material via static condensation. The syntax is

nDMaterial PlaneStress matTag? threeDTag?

In the above, matTag is the material tag for the plane stress material being constructed
and threeDTag is the material tag for a three dimensional material assumed to have been
previously defined.

4.4.4 Plate Fiber Material

The plate fiber material wrapper converts any three dimensional material into a plate fiber
material (by static condensation) appropiate for shell analysis. The syntax is

nDMaterial PlateFiber matTag? threeDTag?

In the above, matTag is the material tag for the plate fiber material being constructed
and threeDTag is the material tag for a three dimensional material assumed to have been
previously defined.

4.4.5 Bidirectional Material

nDMaterial Bidirectional matTag? E? sigY? Hiso? Hkin?

To construct a Bidirectional material object with an elastic modulus E, yield stress sigY,
isotropic hardening modulus Hiso, and kinematic hardening modulus Hkin. A Bidirectional
material object is the two dimensional generalization of a one dimensional elastoplasitc model
with linear hardening. The argument matTag is used to uniquely identify this NDMaterial
object among NDMaterial objects in the BasicBuilder object.

10

4.5 The section Command

section sectionType <specific section args>

The section command is used to construct a SectionForceDeformation object. Section-
ForceDeformation objects, hereto referred to as Section, represent force-deformation (resul-
tant stress-strain) relationships at beam-column and plate sample points. The command has
at least one argument, the section type. The commands for specifying each type of section
are as outlined below.

The valid queries to any section when creating an ElementRecorder are ’force’ and ’de-
formation’.

4.5.1 Elastic Section

section Elastic secTag? E7 A7 Iz?7 <Iy? G7 J7>

To construct an ElasticSection object with axial stiffness EA and bending stiffness Elz
about the section local z-axis. The values for Ely and GJ, the bending stiffness about the
section local y-axis and the section torsional stiffness, respectively, are optional as needed.
The argument secTag is used to uniquely identify this Section object among Section objects
in the BasicBuilder object.

4.5.2 Genericld Section

section Genericld secTag? matTag? code

To construct a GenericSectionld object which uses a previously defined UniaxialMaterial
object, identifed by the argument matTag, to represent a single section force-deformation
response quantity. The argument code indicates the force-deformation quantity to be mod-
eled by this section object. Values for code are given in the figure 2. The argument secTag
is used to uniquely identify this Section object among Section objects in the BasicBuilder
object.

P || Axial force-deformation
Mz || Moment-curvature about section local z-axis
Vy || Shear force-deformation along section local y-axis
My || Moment-curvature about section local y-axis
Vz || Shear force-deformation along section local z-axis
T || Torsion force-deformation

Figure 2: Section force-deformation codes

11

4.5.3 GenericNd Section

section GenericNd secTag? NDTag? codel code2 ...

To construct a GenericSectionNd object which uses a previously defined NDMaterial
object, identifed by the argument NDTag, to represent a coupled section force-deformation
response quantities. The arguments codel, code2, ... indicate the force-deformation quanti-
ties to be modeled by this section object. The number of code arguments must match the
order of the NDMaterial object. codel is mapped to the first stress-strain relation of the
NDMaterial, code2 to the second, etc. Values for code are given in Figure 2. The argu-
ment secTag is used to uniquely identify this Section object among Section objects in the
BasicBuilder object.

4.5.4 Section Aggregator

section Aggregator secTag? matTagl? codel matTag2? code2 ... <-section sectionTag?>

To construct a SectionAggregator object which groups previously defined UniaxialMate-
rial objects, represented by the arguments matTagl codel matTag2 code2 ..., into a single
section force-deformation model. The optional -section switch is used to specify a previously
defined Section object, identified by the argument sectionTag, to which these UniaxialMate-
rial objects may be added to recursively define a new Section object. The UniaxialMaterial
objects aggregated in this Section object are uncoupled from each other as well as from the
Section object represented by sectionTag, if present. Values for code are given in Figure 2.
The argument secTag is used to uniquely identify this Section object among Section objects
in the BasicBuilder object.

4.5.5 Fiber Section

section Fiber secTag? {
fiber <fiber arguments>
patch <patch arguments>
layer <layer arguments>
b

To construct a FiberSection object composed of Fiber objects. The available Fiber objects
are UniaxialFiber2d/3d, which enforce the Bernoulli beam assumption. The secTag is used
to uniquely identify the section object among section objects in the BasicBuilder object. A
fiber section has a general geometric configuration formed by subregions of simpler, regular
shapes (e.g. quadrilateral, circular and triangular regions) called patches. In addition,
layers of reinforcement bars can also be specified. The subcommands patch and layer are
used to define the discretization of the section into fibers, and are described below. In
these subcommands, the geometric parameters are defined with respect to a planar local
coordinate system (y,z). See figures 3 and 7.

12

The fiber Command
fiber yLoc? zL0c? area? matTag?

The fiber command is used to construct a fiber object and add it to the section. The
arguments consist of the y,z coordinates of the fiber in the section, the area of the fiber and

the material tag of the unixial fiber which is used to represent the stress-strain for the area
of the fiber.

The patch Command
patch patchType <specific patch args>

The patch command is used to construct a Patch object. The command has at least
one argument, the patch type. The fibers generated by the patch commands are Uniaxial-
Fiber2d/3d, depending on the dimension of the problem. The commands for specifying each
type are described below:

patch quad matTag? numSubdivIJ? numSubdivJK? yVertI? zVertI? yVertJ? zVertJ?
yVertK? zVertK? yVertL? zVertL?

To construct a patch with a quadrilateral shape. The argument matTag is an integer used to
identify the associated UniaxialMaterial (which must be defined previously). The geometry
of the patch is defined by four vertices I, J, K and L, as illustrated in figure 3. The arguments
numSubdivlJ and numSubdivJK are integers that specify the number of subdivisions (fibers)
along the IJ and JK directions, respectively. The last arguments yVertl, zVertl, yVertJ,
zVertJ, yVertK, zVertK, yVertL, and zVertL are the coordinates y and z of each of the four
vertices specified in sequence (counter-clockwise).

patch circ matTag? numSubdivCirc? numSubdivRad? yCenter? zCenter?
intRad? extRad? startAng? endAng?

To construct a patch with a circular shape. The argument matTag is an integer used to
identify the associated UniaxialMaterial (which must be defined previously). The arguments
numSubdivCirc and numSubdivRad are integers that specify the number of subdivisions
(fibers) along the circumferential and radial directions, respectively. The geometry of the
patch is defined by its center position (yCenter and zCenter), the internal and external radius
(intRad and extRad), and the starting and ending angle (startAng and endAng), according
to figure 4.

The layer Command

layer layerType <specific patch args>

The layer command is used to construct a Layer object. The command has at least
one argument, the layer type. The fibers generated by the layer commands are Uniaxial-
Fiber2d/3d, depending on the dimension of the problem. The commands for specifying each
type are described below:

13

K (yVertK, zVertK)

L (yVertL, zVertL)

>\Cl\\.¥>0\“5‘mu

N
(a:

J(yVert], zVert))

| (yVertl, zVertl)

Figure 3: Quadrilateral patch

(yCenter, zCenter)

Figure 4: Circular patch

14

layer straight matTag? numReinfBars? reinfBarArea? yStartPt? zStartPt?
yEndPt? zEndPt?

To construct a straight layer of reinforcing bars. The argument matTag is an integer used
to identify the associated UniaxialMaterial (which must be defined previously). The argu-
ment numReinfBars is an integer that specifies the number of reinforcing bars, with area
reinfBarArea, along the layer. The last arguments yStartPt, zStartPt, yEndPt and zEndPt
are the coordinates y and z of the starting and ending points of the reinforcing layer, as
represented in figure 5.

(YEndPt, zEndPY)

(yStartPt,zStartPt)

z

numRenfBars=5

Figure 5: Straight reinforcing layer

layer circ matTag? numReinfBars? reinfBarArea?
yCenter? zCenter? radius? <startAng? endAng?>

To construct a layer with a circular shape. The argument matTag is an integer used to
identify the associated material (which must be defined previously). The argument numRe-
infBars is an integer that specifies the number of reinforcing bars, with area reinfBarArea,
along the layer. The geometry of the patch is defined by its center position (yCenter and
zCenter), its radius, and the optional starting and ending angle (startAng and endAng), as
shown in figure 6. If the starting and ending angles are not specified, a full circle is assumed.

4.5.6 Elastic Membrane Plate Section

The ElasticMembranePlateSection is an isotropic section appropriate for plate and shell
analysis. The syntax is

section ElasticMembranePlateSection secTag? E?7 nu? h? rho?

In the above, secTag is the section tag for the plate section being constructed. Also, F
is the elastic modulus, nu is Poisson’s ratio, h is the thickness of the plate section and rho
is the mass density per unit volume of the material.

15

A

N I numReinfBars=5

(yCenter, zCenter)

Figure 6: Circular reinforcing layer

4.5.7 Plate Fiber Section

The plate fiber section takes any plate fiber material and by thickness integration creates a
plate section appropiate for shell analysis. The syntax is

section PlateFiber secTag? fiberTag? h?

In the above, secTag is the section tag for the plate section being constructed and fiberTag
is the material tag for a plate fiber material assumed to have been previously defined. Finally,
h is the thickness of the plate section.

4.6 The geomTransf Command

geomTransf transfType <specific transf args>

The geomTransf command is used to construct a CrdTransf object. A CrdTransf object
transforms beam element stiffness and resisting force from the basic system to the global

coordinate system. The command has at least one argument, the transformation type. The
commands for specifying each type are as outlined below:

4.6.1 The Linear Transformation

geomTransf Linear transfTag? <-jntOffset dXi? dYi? dXj? dYj?>
geomTransf Linear transfTag? vecxzX? vecxzY? vecxzZ?
<-jntOffset dXi? dYi? dzZi? dXj? dYj? dZj7?>

To construct a LinearCrdTransf object which performs a linear geometric transformation
of beam stiffness and resisting force from the basic system to the global coordinate system.

16

For the three dimensional problem, additional arguments need to be specified. Optional
rigid joint offsets can be specified with the -jntOffset switch. The joint offset values dXi,
dYi, dZi and dXj, dYj, dZj are absolute offsets with respect to the global coordinate system
from element end nodes I and J, respectively. The rigid joint offset arguments depend on
the dimension of the current model. The argument transfTag is used to uniquely identify
this CrdTransf object among CrdTransf objects in the BasicBuilder object.

The element coordinate system is specified, according to figure 7, as follows: the x axis is
the axis connecting the two element nodes; the y and z axis are then defined using a vector
that lies on the local xz plane (the components of this vector, vecxzX, vecxzY, vecxzZ are
specified with respect to the global coordinate system X,Y,Z). The section is attached to the
element such that the (y,z) coordinate system used to specify the section corresponds to the
(y,z) axes of the element.

4.6.2 The P-Delta Transformation

geomTransf PDelta transfTag? <-jntOffset dXi? dYi? dXj? dYj?>
geomTransf PDelta transfTag? vecxzX? vecxzY? vecxzZ?
<-jntOffset dXi? dYi? dZi? dXj? dYj? dzj7>

To construct a PDeltaCrdTransf object which performs a linear geometric transformation
of beam stiffness and resisting force from the basic system to the global coordinate system
considering second order P-Delta effects. The arguments vecxzX, vecxzY, and vecxzZ are
as defined for the Linear transformation above. Optional rigid joint offsets can be specified
with the -jntOffset switch. The joint offset values dXi, dYi, dZi and dXj, dYj, dZj are
absolute offsets with respect to the global coordinate system from element end nodes I and
J, respectively. The rigid joint offset arguments depend on the dimension of the current
model. The argument transfTag is used to uniquely identify this CrdTransf object among
CrdTransf objects in the BasicBuilder object.

4.6.3 The Corotational Transformation

geomTransf Corotational transfTag? <-jntOffset dXi? dY¥i? dXj7 d4dYj7>
geomTransf Corotational transfTag? vecxzX? vecxzY? vecxzZ?
<-jntOffset dXi? dYi? dZi? dXj? dYj? dzj7>

To construct a CorotCrdTransf object which performs an exact geometric transformation
of beam stiffness and resisting force from the basic system to the global coordinate system.
The arguments vecxzX, vecxzY, and vecxzZ are as defined for the Linear transformation
above. Optional rigid joint offsets can be specified with the -jntOffset switch. The joint
offset values dXi, dYi, dZi and dXj, dYj, dZj are absolute offsets with respect to the global
coordinate system from element end nodes I and J, respectively. The rigid joint offset
arguments depend on the dimension of the current model. The argument transfTag is used
to uniquely identify this CrdTransf object among CrdTransf objects in the BasicBuilder
object.

NOTE: The Corotational transformation is only available with the Win32 version of
OpenSees.

17

Figure 7: Definition of the local coordinate system

4.7 The element Command

element eleType <specific element type args>

The element command is used to construct an Element object. The command has at
least one argument, the element type. The commands for specifying each type of element
are as outlined below:

4.7.1 The Truss Element

element truss eleTag? iNode? jNode? A7 matTag?
element truss eleTag? iNode? jNode? secTag?

There are two ways to construct a truss object. One way is to specify an area and a
UniaxialMaterial identifier, the other to specify a Section identifier. To construct a Truss
object with an area and a UniaxialMaterial, the analyst specifies the eleTag, which uniquely
defines this truss element among all other elements in the domain, the two end nodes, iNode
and jNode, the truss bar area A and the tag of the associated UniaxialMaterial, matTag. Note
that the material must have already been added to the BasicBuilder object. To construct a
Truss object with a Section, the analyst specifies the trussTag, the two end nodes, and the
Section tag, secTag. When constructed with a UniaxialMaterial object, the truss element
considers strain rate effects and is thus suitable for use as a damping element.

The valid queries to a truss element when creating an ElementRecorder are ’axialForce’,
’stiff”, ‘material matArgl matArg2 ..., 'section sectArgl sectArg2 There will be more
valid queries after the interface for the methods involved have been further developed.

4.7.2 The Corotational Truss Element

element corotTruss eleTag? iNode? jNode? A7 matTag?
element corotTruss eleTag? iNode? jNode? secTag?

18

Constructs a corotational truss object, which takes into account an exact geometric trans-
formation between local and global frames of reference. There are two ways to construct a
corotational truss object. One way is to specify an area and a UniaxialMaterial identifier,
the other to specify a Section identifier. To construct a CorotTruss object with an area and a
UniaxialMaterial, the analyst specifies the eleTag, which uniquely defines this truss element
among all other elements in the domain, the two end nodes, iNode and jNode, the truss bar
area A and the tag of the associated UniaxialMaterial, matTag. Note that the material must
have already been added to the BasicBuilder object. To construct a CorotTruss object with
a Section, the analyst specifies the trussTag, the two end nodes, and the Section tag, secTag.

The valid queries to a truss element when creating an ElementRecorder are ’axialForce’,
’stiff”, ‘material matArgl matArg2 ..., 'section sectArgl sectArg2 ...".

4.7.3 The Elastic Beam Column Element

element elasticBeamColumn eleTag? iNode? jNode? A? E7 I7 transfTag?
element elasticBeamColumn eleTag? iNode? jNode? A7 E7 G?7 Jx7 Iy? Iz7 transfTag?

The arguments to construct an elastic beam-column element depend on the dimension of the
problem, ndm. For a two dimensional problem the analyst specifies the eleTag, the two end
nodes, the section area, Young’s modulus and second moment of section area. For the three
dimensional problem the analyst specifies additional material and section properties G, Jx,
Iy and Iz. Note that Iz (Iy) is the second moment of area about the beam section local
z-axis (y-axis) (Figure 7). For both two and three dimensional problems, the final argument
to the elasticBeamColumn command is a transfTag, which identifies a previously defined
CrdTransf object.

The valid queries to an elastic beam column element when creating an ElementRecorder
are ’stiffness’ and ’force’.

4.7.4 The Nonlinear Beam Column Element

element nonlinearBeamColumn eleTag? iNode? jNode? numIntgrPts? secTag? transfTag?
<-mass massDens> <-iter maxIters tol>

The nonlinearBeamColumn element is based on the non-iterative force formulation, and
considers the spread of plasticity along the element. The arguments to construct the element
are its tag, eleTag, the two end nodes, iNode and jNode, the number of integration points
along the element, numlntgrPts, the section tag, secTag (must be pre-defined), and the
geometric transformation tag, transfTag (pre-defined). The integration along the element is
based on Gauss-Lobatto quadrature rule (two integration points at the element ends). The
element is prismatic, i.e. the beam is represented by the section model identified by secTag
at each integration point. An element mass density per unit length, massDens, from which a
lumped mass matrix is formed, is specified via the -mass switch. An option is also provided
for the iterative form of the flexibility formulation by the -iter switch. The arguments for
the iterative form are maxIters, the maximum number of iterations to undertake to satisfy
element compatibility; and tol, the tolerance for satisfaction of element compatibility. Note

19

that the iterative form can improve the rate of global convergence at the expense of more
local element computation.

The valid queries to a nonlinearBeamColumn element when creating an ElementRecorder
are 'force’, ’stiffness’, or ’section secNum secArgl secArg? ...".

4.7.5 The Beam With Hinges Element

element beamWithHinges eleTag? iNode? jNode? secTagl? ratiol? secTagJ? ratioJ?
E? A? 17 transfTag? <-mass massDens> <-iter maxIters tol>
element beamWithHinges eleTag? iNode? jNode? secTagl? ratiol? secTagJ? ratioJ?
E? A? I1z7 Iy? G7 J? transfTag? <-mass massDens>
<-iter maxIters tol>

The beamWithHinges element is based on the non-iterative flexibility formulation, and con-
siders plasticity to be concentrated over specified hinge lengths at the element ends. Note
that forces and deformations are sampled at the hinge midpoints. The remaining beam in-
terior is considered to be linear elastic. The arguments to construct the element are its tag,
eleTag, the two end nodes, iNode and jNode, the section at node I, secTagl (pre-defined),
the ratio of hinge length I to total element length, ratiol, the section at node J, secTagJ (pre-
defined), the ratio of hinge length J to total element length, ratiolJ, elastic axial stiffness, EA,
elastic bending stiffness, EI, and the geometric transformation tag, transfTag (pre-defined).
For three-dimensional problems Elz (Ely) is the bending stiffness about the section local
z-axis (y-axis) and GJ is the torsional stiffness (Figure 7). Note that these elastic proper-
ties are only integrated over the beam interior. The integration over the hinge lengths is
mid-point integration. An element mass density per unit length, massDens, from which a
lumped mass matrix is formed, is specified via the -mass switch. An option is also provided
for the iterative form of the flexibility formulation by the -iter switch. The arguments for
the iterative form are maxlIters, the maximum number of iterations to undertake to satisfy
element compatibility; and tol, the tolerance for satisfaction of element compatibility. Note
that the iterative form can improve the rate of global convergence at the expense of more
local element computation.

The valid queries to a beamWithHinges element when creating an ElementRecorder are
"force’, ’stiffness’, 'rotation’ (hinge rotation), or ’section secNum secArgl secArg2 ...".

4.7.6 The Displacement Based Beam Column Element

element dispBeamColumn eleTag? iNode? jNode? numIntgrPts? secTag? transfTag?
<-mass massDens>

The dispBeamColumn element is a distributed plasticity, displacement based beam-column
element. The arguments to construct the element are its tag, eleTag, the two end nodes,
iNode and jNode, the number of integration points along the element, numIntgrPts, the
section tag, secTag (must be pre-defined), and the geometric transformation tag, transfTag
(pre-defined). The integration along the element is based on Gauss-Legendre quadrature
rule. The element is prismatic, i.e. the beam is represented by the section model identified

20

by secTag at each integration point. An element mass density per unit length, massDens,
from which a lumped mass matrix is formed, is specified via the -mass switch.

The valid queries to a dispBeamColumn element when creating an ElementRecorder are
"force’, ’stiffness’; or ’section secNum secArgl secArg2 ...

4.7.7 The Zero Length Element

element zeroLength eleTag? iNode? jNode? -mat matTagl? matTag2? ...
-dir dirl? dir2? ... <-orient x17 x27 x37 ypl? yp2? yp37>

Constructs a zero length element defined by two nodes at the same geometric location. The
nodes are connected by multiple UniaxialMaterial objects to represent the force-deformation
relationship for the element. The zero length element is identified by its tag, eleTag, nodes iN-
ode and jNode, UniaxialMaterial objects (previously defined) identified by matTagl matTag2
..., and material directions dirl dir2 Two optional orientation vectors can be specified
for the element. The vector x defines the local x-axis for the element and the vector yp lies in
the local x-y plane for the element. The local z-axis is the cross product between x and yp,
and the local y-axis is the cross product between the local z-axis and x. If these orientation
vectors are not specified, the local element axes coincide with the global axes. The values for
dir are 1 through 6, where 1,2,3 indicate translation along the local x,y,z axes respectively;
while 4,5,6 indicate rotation about the local x,y,z axes respectively.

The valid queries to a zeroLength element when creating an ElementRecorder are 'force’,
"deformation’, ’stiff’, or 'material matNum matArgl matArg2 ...

4.7.8 The Zero Length Section Element

element zeroLengthSection eleTag? iNode? jNode? secTag?
<-orient x17 x27 x37 ypl? yp2? yp37>

Constructs a ZeroLengthSection element defined by two nodes at the same geometric loca-
tion. The nodes are connected by a single SectionForceDeformation object to represent the
force-deformation relationship for the element. The ZeroLengthSection element is identified
by its tag, eleTag, nodes iNode and jNode, and SectionForceDeformation object (previously
defined) identified by secTag. Two optional orientation vectors can be specified for the el-
ement. The vector x defines the local x-axis for the element and the vector yp lies in the
local x-y plane for the element. The local z-axis is the cross product between x and yp,
and the local y-axis is the cross product between the local z-axis and x. If these orientation
vectors are not specified, the local element axes coincide with the global axes. The section
force-deformation response represented by section code P acts along the element local x-axis,
and the response for code Vy along the local y-axis. The other modes of section response
follow from this orientation.

The valid queries to a ZeroLengthSection element when creating an ElementRecorder are
force’, "deformation’; ’stiff’; or ’section secArgl secArg2 ...".

21

4.7.9 The Zero Length ND Element

element zeroLengthND eleTag? iNode? jNode? matTag? <uniTag?>
<-orient x17 x27 x37 ypl? yp2?7 yp37>

Constructs a ZeroLengthND element defined by two nodes at the same geometric location.
The nodes are connected by a single NDMaterial object to represent the force-deformation
relationship for the element. The ZeroLengthND element is identified by its tag, eleTag,
nodes iNode and jNode, and NDMaterial object (previously defined) identified by matTag.
Two optional orientation vectors can be specified for the element. The vector x defines the
local x-axis for the element and the vector yp lies in the local x-y plane for the element. The
local z-axis is the cross product between x and yp, and the local y-axis is the cross product
between the local z-axis and x. If these orientation vectors are not specified, the local element
axes coincide with the global axes. If the NDMaterial object is of order two, the response
lies in the element local x-y plane, and an optional UniaxialMaterial, represented by the
argument uniTag, may be used to represent uncoupled behavior orthogonal to this plane,
i.e., along the local z-axis. If the NDMaterial is order three, the response is along each of
the element local axes. Note that the ZeroLengthND element only represents translational
response between its nodes.

The valid queries to a ZeroLengthND element when creating an ElementRecorder are
“force’, "deformation’, ’stiff’, or 'material matArgl matArg2 ...".

4.7.10 The Quad Element

element quad eleTag? iNode? jNode? kNode? 1Node? thick? type matTag?
<pressure? rho? bl? b27>

Constructs a FourNodeQuad element which uses the bilinear isoparametric formulation.
The quad element is identified by its tag, eleTag, the four nodes iNode, jNode, kNode, and
INode, the element thickness (constant), a string representing the material behavior, type,
and an NDMaterial object identified by matTag (previously defined). Valid options for the
parameter type depend on the NDMaterial object and its available material formulations.
The type parameter can be either “PlaneStrain” or “PlaneStress”. A uniform element normal
traction can be specified by the pressure argument. Constant body forces bl and b2, defined
in the isoparametric domain, can be specified as well and are optional, as is the element
mass density per unit volume rho, for which a lumped element mass matrix is computed.
Consistent nodal loads are computed for the pressure and body forces. The four nodes i
through | must be input in counter-clockwise order around the element.

The valid queries to a quad element when creating an ElementRecorder are "force’, ’stiff-
ness’, or 'material matNum matArgl matArg2 ..., where matNum represents the material
object at the integration point corresponding to the node numbers in the isoparametric
domain.

4.7.11 The Shell Element

element ShellMITC4 eleTag? iNode? jNode? kNode? 1lNode? matTag?

22

Constructs a shell element which uses a bilinear isoparametric formulation in combination
with a modified shear interpolation to improve thin plate bending performance. The shell
element is identified by its tag, eleTag, the four nodes iNode, jNode, kNode, and 1Node and
a SectionForceDeformation object identified by matTag (previously defined). Typically the
shell element matTag corresponds to some PlateFiberSection, elastic or otherwise. Should
the element be required to compute a mass matrix, a consistent translational element mass
matrix is computed. Rotational inertia terms are ignored. The four nodes i through 1 must
be input in counter-clockwise order around the element.

4.7.12 The Bbar Plane Strain Quadrilateral Element

element bbarQuad eleTag? iNode? jNode? kNode? 1lNode? matTag?

Constructs a four node quad element which uses a bilinear isoparametric formulation along
with a mixed volume/pressure B-bar assumption. The bbarQuad element is identified by
its tag, eleTag, the four nodes iNode, jNode, kNode, and 1INode and an NDMaterial object
identified by matTag (previously defined). Should the element be required to compute a
mass matrix, a consistent translational element mass matrix is computed. The four nodes i
through 1 must be input in counter-clockwise order around the element. This element is for
plane strain problems only.

4.7.13 The Enhanced Stain Quadrilateral Element

element enhancedQuad eleTag? iNode? jNode? kNode? 1lNode? type matTag?

Constructs a four node quad element which uses a bilinear isoparametric formulation with
enhanced strain modes. The enhancedQuad element is identified by its tag, eleTag, the
four nodes iNode, jNode, kNode, and INode, a string representing the material behavior
and an NDMaterial object identified by matTag (previously defined). Valid options for the
parameter type depend on the NDMaterial object and its available material formulations.
See the NDMaterial object documentation for valid types. Typically type is “PlaneStress”
or “PlaneStrain” . Should the element be required to compute a mass matrix, a consistent
translational element mass matrix is computed. The four nodes i through 1 must be input
in counter-clockwise order around the element.

4.7.14 The Standard Brick Element

element stdBrick eleTag? iNode? jNode? kNode? 1Node?
mNode? nNode? pNode? gNode?
matTag?

Constructs an eight node brick element which uses a trilinear isoparametric formulation.
The stdBrick element is identified by its tag, eleTag, the eight nodes iNode, jNode, kNode,
INode, mNode, nNode, pNode, and qNode and an NDMaterial object identified by matTag
(previously defined). Should the element be required to compute a mass matrix, a consistent
translational element mass matrix is computed. The eight nodes i through q must be input
as in Figure 8.

23

0
©

Figure 8: Node Numbering for Eight Node Brick Element

4.7.15 The Bbar Brick Element

element bbarBrick eleTag? iNode? jNode? kNode? 1Node?
mNode? nNode? pNode? gNode?
matTag?

Constructs an eight node mixed volume/pressure brick element which uses a trilinear isopara-
metric formulation. The bbarBrick element is identified by its tag, eleTag, the eight nodes
iNode, jNode, kNode, INode, mNode, nNode, pNode, and qNode and an NDMaterial object
identified by matTag (previously defined). Should the element be required to compute a
mass matrix, a consistent translational element mass matrix is computed. The eight nodes
i through q must be input as in Figure 8.

4.8 Block Commands

The OpenSees block commands are used to generate meshes of quadrilateral or brick finite
elements. The “block2D” command generates meshes of quadrilateral elements in two or
three dimensions. In three dimensions, a two dimensional surface appropriate for shell anal-
ysis is generated. The “block3D” command generates three dimensional meshes of eight
node brick solid elements.

4.8.1 block2D

The “block2D” command syntax is as follows :

block2D nx ny el nl element elementArgs {
1 x1 y1 <zi1>
2 x2 y2 <z2>
3 x3 y3 <z3>

24

4

<5>
<6>
<7>
<8>
<9>

x4

y4
<xb5>
<x6>
<xT7>
<x8>
<x9>

<z4>
<yb>
<y6>
<y7>
<y8>
<y9>

<zb>
<z6>
<z7>
<z8>
<z9>

4 7 3
y
8e QL X e6
1 5 2

Figure 9: Node Numbering for Nine Node Block2D

In the above, nz is the number of elements in the local z-direction of the block and ny is
the number of elements in the local y-direction of the block. The number el is the starting
element number for generation, and the number nl is the starting node number. These are
very often both equal to one(1), but that is not a requirement. The text string element
defines which qudrilateral element is being used. The text string elementArgs is a list of
data parameters for said element. This list may include, but is not limited to, a matTag

number.

The coordinates {z1, ...,29} and {y1, ..., y9} define the coordiates of the block generation
nodes in two dimensions, as seen in Figure 9. For three dimensional problems {z1, ..., 29}
are also used. In all cases, only the first four(4) nodes are mandatory. Nodes 5 — 9 are used
to generate curved meshes. The user may specify any combination of nodes 5 — 9, omitting
some of them if desired.

4.8.2 block3D

The “block3D” command syntax is as follows :

block3D nx ny nz

1

g wN

x1
x2
x3
x4
x5

yi
y2
y3
y4
y5

el ni

z1
z2
z3
z4
z5

element elementArgs {

25

6 x6 y6 z6
A 4 y7 z7
8 x8 y8 z8
<9> <x9> <y9> <z9%
<.> <.> <.> <.>
<.> <.> <> <>
<27> <x27> <y27> <z27>

In the above, nx is the number of elements in the local z-direction of the block, ny is the
number of elements in the local y-direction of the block and nz is the number of elements
in the local z-direction of the block. The number el is the starting element number for
generation, and the number nl is the starting node number. These are very often both equal
to one(1), but that is not a requirement. The text string element defines which brick element
is being used. The text string elementArgs is a list of data parameters for said element. This
list may include, but is not limited to, a matTag number.

The coordinates {z1, ..., 227}, {y1,...,y27} and {z1, ..., 227} define the coordiates of the
block generation nodes in three dimensions. In all cases, only the first eight(8) nodes are
mandatory. Nodes 9 — 27 are used to generate curved meshes. The user may specify any
combination of nodes 9 — 27, omitting some of them if desired.

4.9 The fix Command

fix nodeTag? (ndf values?)

To construct homogeneous single-point boundary constraints, the user specifies the node-
Tag of the node to be constrained and ndf (0,1) values. A 1 specified for the i’th value
indicates that the dof for the i’th degree-of-freedom is to be constrained, a 0 that it is to be
left unconstrained.

4.10 The fixX Command

fixX xCoordinate (ndf values?) <-tol tol?>

To construct multiple homogeneous single-point boundary constraints for all nodes whose
x-coordintae lies within tol of the specified xCoordinate. The user specifies the xCoordinate
of the nodes to be constrained and ndf (0,1) values. A 1 specified for the i’th value indicates
that the dof for the i’th degree-of-freedom is to be constrained, a 0 that it is to be left
unconstrained. The optional flag -tol is followed by the user defined tolerence, a default of
1le-10 is used.

4.11 The fixY Command

fixY yCoordinate (ndf values?) <-tol tol?>

26

To construct multiple homogeneous single-point boundary constraints for all nodes whose
y-coordintae lies within tol of the specified yCoordinate. The user specifies the yCoordinate
of the nodes to be constrained and ndf (0,1) values. A 1 specified for the i’th value indicates
that the dof for the i’th degree-of-freedom is to be constrained, a 0 that it is to be left
unconstrained. The optional flag -tol is followed by the user defined tolerence, a default of
le-10 is used.

4.12 The fixZ Command

fixZ zCoordinate (ndf values?) <-tol tol?>

To construct multiple homogeneous single-point boundary constraints for all nodes whose
z-coordintae lies within tol of the specified zCoordinate. The user specifies the zCoordinate
of the nodes to be constrained and ndf (0,1) values. A 1 specified for the i’th value indicates
that the dof for the i’th degree-of-freedom is to be constrained, a 0 that it is to be left
unconstrained. The optional flag -tol is followed by the user defined tolerence, a default of
le-10 is used.

4.13 Types of TimeSeries and Args used in other commands

seriesType <arguments for series type>

While there is no timeSeries command in the language, a number of commands take as an
argument a list of items which defines the TimeSeries object to be constructed as part of the
command. The first element of the list is a string identifying the type of TimeSeries object
to be constructed. There are a number of of time series objects that can be constructed.
The arguments for creating each type of time series are as follows:

4.13.1 The Constant Time Series

Constant <-factor cFactor?>

To associate with the LoadPattern object a TimeSeries object of type ConstantSeries. A
Constant causes a load factor of cFactor to be applied to the loads and constraints in the
pattern, independent of the time in the domain. The default value of cFactor is 1.0. The
analyst has the option of changing this using the optional arguments -factor and cFactor.

4.13.2 The Linear Time Series

Linear <-factor cFactor?>

To construct a TimeSeries object of type Linear and associate it with the load pattern or
ground motion object being constructed. A Linear causes a load factor of cFactor*time to
be applied to the loads and constraints in a load pattern, or cFactor to be set at the dof in
a ground motion. This value is independent of the time in the domain. The default value
of cFactor is 1.0. The analyst has the option of changing this using the optional arguments
-factor and cFactor.

27

4.13.3 The Rectangular Time Series

Rectangular tStart? tFinish? <-factor cFactor?>

To associate with the LoadPattern object a TimeSeries object of type RectangularSeries.
A RectangularSeries causes a load factor of cFactor * time to be applied to the loads and
constraints in the pattern when the value of time is between tStart and tFinish. The default
value of cFactor is 1.0. The analyst has the option of changing this using the optional
arguments -factor and cFactor.

4.13.4 The Sine Time Series
Sine tStart? tFinish? period? <-shift shift?> <-factor cFactor?>

To associate with the LoadPattern object a TimeSeries object of type TrigSeries. A TrigSeries
is defined by a period, period, and optional phase shift (radians). The TrigSeries causes a
load factor of cFactor * sin(%"‘(m’wT—_tStm) + shift) to be applied to the loads and constraints
in the pattern when the value of time is between tStart and tFinish. The default value of
shift is 0.0 and the default value of cFactor is 1.0. The analyst has the option of changing

these values using the optional switches -shift and -factor.

4.13.5 The Path Time Series

Series -dt dt? -values {list of points} <-factor cFactor?>

Series -time {list of times} -values {list of points} <-factor cFactor?>
Series —dt dt? —-filePath fileName? <-factor cFactor?>

Series —fileTime fileNamel? -filePath fileName2? <-factor cFactor?>

To associate with the LoadPattern object a TimeSeries object of type PathSeries or Path-
TimeSeries (if time increments not constant). A PathSeries causes a load factor of cFactor *
value to be applied to the loads and constraints in the pattern. The value used depends on
the time and a linear interpolation between points on the load path. There are a number of
ways to specify the load path, for a load path where the points are specified at constant time
intervals the ’-dt’ option. Following dt is either the option ’-values’ indicating the points
are in the accompanying list enclosed in braces, or ’-filePath’ indicating that the points are
contained in the file given by fileName. For a load path where the points are specified at
non-constant time intervals the analyst can provide the time increments and points at these
intervals in two strings or two files (not a string and a file). The default value of cFactor is
1.0. The analyst has the option of changing this using the optional arguments -factor and
cFactor.

4.14 The pattern Command

pattern patternType patternTag? <arguments for pattern type>

The pattern command is used to construct a LoadPattern object, its associated Time-
Series object and the Load and Constraint objects for the pattern. There are a number of
valid types of patternType: Plain, UniformExcitation, and MultipleSupport.

28

pattern Plain patternTag? {TimeSeriesType and Args} {
load ...

sp ...
}

The string Plain is used to construct an ordinary LoadPattern object with a unique tag
among load patterns in the Domain of patternTag. The third argument is a list which is
parsed to construct the TimeSeries object associated with the LoadPattern object. The
last argument in the command is a list of commands to create nodal load and single-point
constraints.

4.14.1 The UniformExcitation Pattern

pattern UniformExcitation patternTag? dir? <-accel {SeriesType and args}>
<-velO velO?>

To construct a UniformExcitation load pattern object with a tag, patternTag, unique among
all load patterns. The UniformExcitation acts in the direction dir (1,2, or 3) when formulat-
ing the inertial loads for the transient analysis. The accelerations used in determining the
inertial loads is specified using the -accel flag. The list of arguments after this flag identifies
the TimeSeries object to be constructed for the acceleration record. In addition, the user
has the option of specifying an initial velocity to be assigned to each node using the -vel0
flag.

4.14.2 The MultipleSupport Pattern

pattern MultipleSupport patternTag? {
groundMotion ...
imposedMotion ...

}

To construct a MultipleSupportExcitation load pattern object with a tag, patternTag, unique
among all load patterns. The last argument in the command is a list of commands to create
the GroundMotions and ImposedSupportSP constraint objects that are then added to the
object to define the multiple support excitation that is being imposed on the model.

4.14.3 The load Command

load nodeTag? (ndf values?) <-const> <-pattern patternTag?>

The load command is used to construct a NodalLoad object. The first argument to
the load command, nodeTag, is an integer tag identifying the node on which the load acts.
Following the tag is the ndf reference load values that are to be applied to the node. The
nodal load is added to the LoadPattern being defined in the enclosing scope of the pattern
command. Optional arguments are the string -const, which identifies the load being applied
to the node as being independent of any load factor, and the string -pattern and an integer
patternTag identifying the load pattern to which the load is to be added.

29

4.14.4 The sp Command

sp nodeTag? dofTag? value? <-const> <-pattern patternTag?>

The sp command is used to construct an SP_Constraint object. The first argument to
the sp command, nodeTag, is an integer tag identifying the node on which the single-point
constraint acts. Following this tag is an integer, dofTag, identifying the degree-of-freedom
at the node being constrained, valid range is 1 through ndf. (Note: fortran indexing at the
interpreter, internally OpenSees uses C indexing). The third argument, value, specifies the
reference value of the constraint. The constraint is added to the LoadPattern being defined
in the enclosing scope of the pattern command. Optional arguments are the string -const,
which identifies the constraint being applied to the node as being independent of any load
factor, and the string -pattern with an integer patternTag identifying the load pattern to
which the constraint is to be added.

4.14.5 The groundMotion Command

groundMotion gMotionTag? gMotionType? <type args>

The groundMotion command is used to construct a GroundMotion object used by the
ImposedMotionSP constraints in a MultipleSuuportExcitation object. The first argument
to the groundMotion command, gMotionTag, is an integer tag which uniquely identifies
the GroundMotion in the MultipleSupportExcitation. Folowing the tag is a type identifier,
identifying the type of GroundMotion object to be constructed, and the specific arguments for
each type. At present there are two valid strings for gMotionType: Plain and Interpolated.

The Plain GroundMotion

groundMotion gMotionTag? Plain <-accel {SeriesType and Args}>
<-vel {SeriesType and Args}>
<-disp {SeriesType and Args}>
<-int {IntegratorType and Args}>

This command is used to construct a plain GroundMotion object. Each GroundMotion
object is associated with a number of TimeSeries objects, which define the acceleration
record, the velocity record and the displacement record. These are specified using the -
accel, -vel and -disp flags and the list argument to define the TimeSeries object. If only the
acceleration record is specified, the user has the option of specifying the TimeSeriesIntegrator
that is to be used to integrate the acceleration record in order to determine velocity and
displacement records. The TimeSeriesIntegrator object is specified using the -int flag and
the list argument specifying the TimeSeriesINtegrator object to be constructed.

The Interpolated GroundMotion

groundMotion gMotionTag? Interpolated gmTagl? gmTag2? ... -fact factl? fact2? ...

30

This command is used to construct an InterpoletdGroundMotion. The tags gmTagl,
gmTag?2, ... identify ground motions which have already been added to the MultipleSuppor-
tExcitation. The factors factl, fact2, ... identify the factors that are used in the interpolation
of these ground motions to determine the ground motion for this Interpolated GroundMotion.

4.14.6 The imposedMotion Command
imposedMotion nodeTag? dirn? gMotionTag?

This command is used to construct an ImposedMotionSP constraint which is used to
enforce the response of a dof, dirn, at a node, nodeTag, in the model. The response enforced
at the node at any given time is obtained from the GroundMotion obejct associated with
the constraint. This GroundMotion object is determined from the gMotionTag passed in the
command. NOTE that the GroundMotion must be added to the MultipleSupportExcitation
before the Imposed MotionSP.

4.15 The equalDOF Command
equalDOF rNodeTag? cNodeTag? dofl? dof27 ...

The equal DOF command is used to construct a multi-point constraint between the nodes
identified by rNodeTag and cNodeTag. rNodeTag is the retained, or master node, and
cNodeTag is the constrained, or slave node. dofl dof2 ... represent the nodal degrees of
freedom that are constrained at the cNode to be the same as those at the rNode. The valid
range for dofl dof2 ... is 1 through ndf, the number of nodal degrees of freedom.

4.16 The rigidDiaphragm Command
rigidDiaphragm perpDirn? masterNodeTag? slaveNodeTagl ...

The rigidDiaphragm command is used to construct a number of MP_Constraint objects.
These constraints will constrain certain degrees-of-freedom at the the slave nodes listed to
move as if in a rigid plane with the master node. The rigid plane can be the 12, 13 or 23
planes. The rigid plane is specified by the user providing the perpendicular plane direction,
ie 3 for 12 plane. The constraint object is constructed assuming small rotations. The
rigidDiaphragm command works only for problems in three dimensions with six degrees-of-
freedom at the nodes.

4.17 The rigidLink Command

rigidLink -type? masterNodeTag? slaveNodeTag

The rigidLink command is used to construct a single MP_Constraint object. The type
can be either rod or beam. If rod is specified, the translational degrees-of-freedom will be
constrained to be exactly the same as those at the master node. If beam is specified, a
rigid beam constraint is imposed on the slave node, that is the translational and rotational
degrees of freedom are constrained. The constraint object constructed for the beam option
assumes small rotations.

31

5 The analysis Command
analysis analysisType

The analysis command is used to construct the Analysis object. The valid strings for
analysisType are: Static, Transient.

5.1 Static Analysis

analysis Static

To construct a StaticAnalysis object. The analysis object is constructed with the compo-
nent objects, i.e. SolutionAlgorithm, StaticIntegrator, ConstraintHandler, DOF_Numberer,
LinearSOE, and LinearSolver objects previously created and by the analyst. If none has
been created, default objects are constructed and used. These defaults are a NewtonRaph-
son EquiSolnAlgo with a CTestNormUnbalance with a tolerance of 1e-6 and a maximum of
25 iterations, a PlainHandler ConstraintHandler, an RCM DOF _Numberer, a LoadControl
StaticIntegrator with a constant load increment of 1.0, and a profiled symmetric positive
definite LinearSOE and LinearSolver.

5.2 Transient Analysis

analysis Transient

To construct a DircetIntegration Analysis object. The analysis object is constructed with
the component objects, i.e. SolutionAlgorithm, TransientIntegrator, ConstraintHandler,
DOF _Numberer, LinearSOE, and LinearSolver objects previously created by the analyst.
If none has been created, default objects are constructed and used. These defaults are a
NewtonRaphson EquiSolnAlgo with a CTestNormUnbalance with a tolerance of 1e-6 and a
maximum of 25 iterations, a PlainHandler ConstraintHandler, an RCM DOF Numberer, a
Newmark TransientIntegrator with v = 0.5 and 8 = 0.25, and a profiled symmetric positive
definite LinearSOE and LinearSolver.

analysis VariableTransient

To construct a VariableTimeStepDircetIntegrationAnalysis object. The analysis object
is constructed with the component objects, i.e. SolutionAlgorithm, TransientIntegrator,
ConstraintHandler, DOF_Numberer, LinearSOE, and LinearSolver objects previously cre-
ated by the analyst. If none has been created, default objects are constructed and used.
These defaults are a NewtonRaphson EquiSolnAlgo with a CTestNormUnbalance with a
tolerance of le-6 and a maximum of 25 iterations, a PlainHandler ConstraintHandler, an
RCM DOF_Numberer, a Newmark TransientIntegrator with v = 0.5 and g = 0.25, and a
profiled symmetric positive definite LinearSOE and LinearSolver.

32

6 The constraints Command

constraints constraintHandlerType <args for handler type>

The constraints command is used to construct the ConstraintHandler object. The Con-
straintHandler object determines how the constraint equations are enforced in the analysis.
The valid strings for constraintHandlerType are: Plain, Penalty, Lagrange, and Transforma-
tion.

6.1 Plain Constraints

constraints Plain

This will create a PlainHandler which is only capable of enforcing homogeneous single-point
constraints. If other types of constraints exist in the domain, a different constraint handler
must be specified.

6.2 Penalty Method

constraints Penalty alphaSP? alphaMP?

To construct a PenaltyConstraintHandler which will cause the constraints to be enforced
using the penalty method. The alphaSP and alphaMP values are the factors used when
adding the single-point and multi-point constraints into the system of equations.

6.3 Lagrange Multipliers

constraints Lagrange <alphaSP7> <alphaMP?7>

To construct a LagrangeConstraintHandler which will cause the constraints to be enforced
using the method of Lagrange multipliers. The alphaSP and alphaMP values are the factors
used when adding the single-point and multi-point constraints into the system of equations.
If no values are specified values of 1.0 are assumed. Values other than 1.0 are permited to
offset numerical roundoff problems. It should be noted that the resulting system of equations
are not positive definite due to the introduction of zeroes on the diagonal by the constraint
equations.

6.4 Transformation Method

constraints Transformation

To construct a TransformationConstraintHandler which will cause the constraints to be
enforced using the transformation method. It should be noted that no retained node in an
MP Constraint can also be specified as being a constrained node in another MP_Constraint
with the current implementation.

33

7 The integrator Command

integrator integratorType <args for integrator type>

The integrator command is used to construct the Integrator object. The Integrator object
determines the meaning of the terms in the system of equation object. The valid strings for
integratorType for a static analysis are: LoadControl, DisplacementControl, MinUnbalDisp-
Norm, Arclength, and ArcLengthl. It should be noted that static integrators should
only be used with a Linear TimeSeries object with a factor of 1.0. The valid strings
for integratorType are for dynamic analysis: Newmark, Newmarkl, HHT, and HHT1

7.1 Load Control

integrator LoadControl dlambdal? Jd? minlLambda? maxLambda?

To construct a StaticIntegrator object of type LoadControl. The third argument, dlambdal,
is a floating-point number specifying the first load increment (pseudo-time step) in the next
invocation of the analysis command. The load increment at subsequent iterations i is related
to the load increment at (i-1), dlambda(i-1), and the number of iterations at i-1, J(i-1), by the
following: dLambda(i) = dlambda(i-1)*Jd/J(i-1). The floating-point arguments minLambda
and maxLambda are used to bound the increment.

7.2 Displacement Control

integrator DisplacementControl nodeTag? dofTag? dU1? Jd? minDU? maxDU?

To construct a StaticIntegrator object of type DisplacementControl. The third and fourth
arguments, nodeTag and dofTag, are integers identifying the node and the degree-of-freedom
at the node (1,ndf), whose response controls the solution. The fourth argument dU1, is
a floating-point number specifying the first displacement increment (pseudo-time step) in
the next invocation of the analysis command. The displacement increment at subsequent
iterations ¢ is related to the displacement increment at (i-1), dU(i-1), and the number of
iterations at i-1, J(i-1), by the following: dU(i) = dU(i-1)*Jd/J(i-1). The floating-point
arguments minDU and maxDU are used to bound the increment.

7.3 Minimum Unbalanced Displacement Norm

integrator MinUnbalDispNorm dlambdall? Jd? minLambda? maxLambda?

To construct a StaticIntegrator object of type MinUnbalDispNorm. The third argument,
dlambdall, is a floating-point number specifying the first load increment (pseudo-time step)
at the first iteration in the next invocation of the analysis command. The first load increment
at subsequent iterations ¢ is related to the load increment at (i-1), dlambda(i-1), and the
number of iterations at i—1, J(i-1), by the following: dLambda(1i) = dlambda(i-1)*Jd/J(i-1).
The floating-point arguments minLambda and maxLambda are used to bound the increment.

34

7.4 Arc-Length Control

integrator ArclLength arclength? alpha?
integrator ArcLengthl arclength? alpha?

To construct a StaticIntegrator object of type ArcLength or ArcLengthl. The third and
fourth arguments, are floating-point numbers defining the two arc length parameters to be
used.

7.5 Newmark Method

integrator Newmark gamma? beta? <alphaM? betaK? betaKinit? betaKcomm?>
integrator Newmarkl gamma? beta? <alphaM? betaK? betaKinit? betaKcomm?>

To construct a TransientIntegrator object of type Newmark or Newmarkl, (Newmarkl
predicts displacement and velocity and sets acceleration to 0, whereas Newmark predicts
velocity and acceleration and leaves displacement as is). The third and fourth arguments, are
floating-point numbers defining the two Newmark parameters v and 3. Optional arguments
are provided for Rayleigh damping, where the damping matrix D = alphaM * M + betaK *
Kcurrent + betaKcomm * KlastCommit + betaKinit * Kinit.

7.6 Hilbert-Hughes-Taylor Method

integrator HHT alpha? <alphaM? betaK? betaKinit? betaKcomm?>
integrator HHT1 alpha? <alphaM? betaK? betaKinit? betaKcomm?>

To construct a TransientIntegrator object of type HHT or HHT1, (HHT1 predicts dis-
placement and velocity and sets acceleration to 0, whereas HHT predicts velocity and accel-
eration and leaves displacement as is). The third and fourth arguments, are floating-point
numbers defining the two Newmark parameters . Optional arguments are provided for
Rayleigh damping, where the damping matrix D = alphaM * M + betaK * Kcurrent +
betaKcomm * KlastCommit + betaKinit * Kinit.

8 The algorithm Command

algorithm algorithmType <args for algorithm type>

The algorithm command is used to construct the Algorithm object. The Algorithm object
determines the sequence of steps taken to solve the non-linear equation. The valid strings for
algorithmType are: Linear, Newton, ModifiedNewton, NewtonLineSearch, KrylovNewton,
BFGS, and Broyden.

8.1 Linear Algorithm

algorithm Linear

To construct a Linear algorithm object which takes one iteration to solve the system of
equations.

35

8.2 Newton Algorithm

algorithm Newton

To construct a NewtonRaphson algorithm object which uses the Newton-Raphson method
to advance to the next time step. The tangent is updated at each iteration.

8.3 Newton with Line Search Algorithm

algorithm NewtonLineSearch ratio?

To construct a NewtonLineSearch algorithm object which uses the Newton-Raphson
method with line search to advance to the next time step. If the ratio between the residuals
before and after the incremental update is greater than that specified by ratio, which should
be betweeen 0.5 and 0.8, the line search algorithm ala Crissfield is employed to try to improve
the convergence.

8.4 Modified Newton Algorithm

algorithm ModifiedNewton

To construct a ModifiedNewton algorithm object which uses the modified Newton-Raphson
method to advance to the next time step. The tangent at the first iteration of the current
time step is used to iterate to the next time step.

8.5 Krylov-Newton Algorithm

algorithm KrylovNewton

To construct a KrylovNewton algorithm object which uses a modified Newton method
with Krylov subspace acceleration to advance to the next time step. The accelerator is
described by Carlson and Miller in “Design and Application of a 1D GWMFE Code” from
STIAM Journal of Scientific Computing (Vol. 19, No. 3, pp. 728-765, May 1998).

8.6 BFGS Algorithm
algorithm BFGS <count?>
To construct a BFGS algorithm object for symmetric systems which performs successive

rank-two updates of the tangent at the first iteration of the current time step. The optional
argument count is the number of iterations within a time step until a new tangent is formed.

36

8.7 Broyden Algorithm

algorithm Broyden <count?>

To construct a Broyden algorithm object for general unsymmetric systems which performs
successive rank-one updates of the tangent at the first iteration of the current time step. The
optional argument count is the number of iterations within a time step until a new tangent
is formed.

9 The test Command

test convergenceTestType <args for test type>

Certain SolutionAlgorithm objects require a ConvergenceTest object to determine if con-
vergence has been achieved at the end of an iteration step. The test command is used
to construct ConvergenceTest object. The valid strings for convergenceTestType are Nor-
mUnbalance, NormDispIncr and Energylncr.

9.1 Norm Unbalance Test

test NormUnbalance tol? maxNumIter? <printFlag?>

To construct a CTestNormUnbalance which tests positive for convergence if the 2-norm
of the b vector (the unbalance) in the LinearSOE object is less than tol. A maximum of
maxNumlter iterations will be performed before failure to converge will be returned. The
optional printFlag can be used to print information on convergence, a 1 will print information
on each step, a 2 when convergence has been achieved.

9.2 Norm Displacement Increment Test
test NormDispIncr tol? maxNumIter? <printFlag?>

To construct a CTestNormDispIncr which tests positive for convergence if the 2-norm of the
x vector (the displacement increments) in the LinearSOE object is less than tol. A maximum
of maxNumlter iterations will be performed before failure to converge will be returned. The
optional printFlag can be used to print information on convergence, a 1 will print information
on each step, a 2 when convergence has been achieved.

9.3 Energy Increment Test
test EnergyIncr tol? maxNumIter? <printFlag?>

To construct a CTestEnergylncr which tests positive for convergence if the half the inner-
product of the x and b vectors (displacement increments and unbalance) in the LinearSOE
object is less than tol. A maximum of maxNumlter iterations will be performed before
failure to converge will be returned. The optional printFlag can be used to print information
on convergence, a 1 will print information on each step, a 2 when convergence has been
achieved.

37

10 The numberer Command

numberer numbererType <args for numberer type>

The numberer command is used to construct the DOF_Numberer object. The DOF _Numberer
object determines the mapping between equation numbers and degrees-of-freedom. The valid
strings are: Plain, RCM. None of the present types require additional arguments. As cer-
tain system of equation and solver objects do their own mapping, i.e. SuperLLU, UmfPack,
Kincho’s specifying a numberer other than plain may be a waste of time.

11 The system Command
system systemType <args for system type>

The system command is used to construct the LinearSOE and a LinearSolver objects
to store and solve the system of equations in the analysis. The valid types of systemType
commands are: BandGeneral, BandSPD, ProfileSPD, SparseGeneral, UmfPack, and Spars-
eSPD.

The BandGeneral SOE
system BandGeneral

To construct an un-symmetric banded system of equations object which will be factored and
solved during the analysis using the Lapack band general solver.

The BandSPD SOE
system BandSPD

To construct a symmetric positive definite banded system of equations object which will be
factored and solved during the analysis using the lapack band spd solver.

The ProfileSPD SOE
system ProfileSPD

To construct a symmetric positive definite profile system of equations object which will be
factored and solved during the analysis using a profile solver.

The SparseGeneral SOE
system SparseGeneral <-piv>

To construct a general sparse system of equations object which will be factored and solved
during the analysis using the SuperLU solver. By default no partial pivoting is performed.
The analyst can change this by specifying the -piv option.

38

The UmfPack SOE
system UmfPack

To construct a general sparse system of equations object which will be factored and solved
during the analysis using the UMFPACK solver.

The SparseSPD SOE
system SparseSPD

To construct a sparse symmetic positive definite system of equation object which will be
factored and solved during the analysis using a sparse solver developed at Stanford by Kincho
Law.

12 The recorder Command

recorder recorderType <args for type>

The recorder command is used to construct a Recorder object. A Recorder object is used
to monitor items of interest to the analyst at each commit(). Valid strings for recorderType
are MaxNodeDisp, Element Node, display. Note that display is not yet available on the
Windows version of opensees, this will be fixed shortly.

12.1 The MaxNodeDisp Recorder

recorder MaxNodeDisp dof? nodel? node2? ...

To construct a recorder of type MaxNodeDisp to record the values of the maximum absolute
values of the displacement in the degree-of-freedom direction dof for the nodes nodel, node2,

12.2 The Node Recorder

recorder Node fileName responseType <-time> -node nodel? ... -dof dofl? ...

To construct a recorder of type NodeRecorder to record the responseType in the degree-of-
freedom directions dofl, ..., at the nodes nodel, ... The results are saved in the file given
by the string fileName. Each line of the file contains the result for a committed state of the
domain. An optional argument -time will place the pseudo time of the Domain as the first
entry in the line. The responseType defines the response type to be recorded, limited to one
of the following: disp, vel, accel and incrDisp for displacements, velocities, accelerations and
incremental displacements.

39

12.3 The Element Recorder

recorder Element eleID17 ... <-file fileName> <-time> argl? arg27? ...

To construct a recorder of type ElementRecorder to record the response at a number of
elements with tag eleID1, The response recorded is element dependent and depends on
the arguments argl arg2 ..., which are passed to the setResponse() element method. The
results are printed directly to the screen or are saved in a file fileName if the optional -file
argument is provided. An optional argument -time will place the pseudo time of the Domain
as the first entry in the line. Note on playback, unless the results are stored in a file, nothing
will be printed to the secreen for this type of recorder.

12.4 The Display Recorder

recorder display windowTitle? xLoc? yLoc? xPixels? yPixels? <-file fineName?>

To open a graphical window with the title windowTitle at location xLoc, yLoc which is
xPixels wide by yPixels high for the displaying of graphical information. A TclFeViewer
object is constructed. This constructor adds a number of additional commands to opensees,
similar to the construction of the BasicBuilder. These other commands are used to define the
viewing system for the image that is placed on the screen. These commands are under review
and will be discussed in the next version of this document. If the optional -file argument is
provided, in addition to displaying the model in the window, information is sent to a file so
that the images displayed may be redisplayed at a later time.

12.5 The Plot Recorder

recorder plot fileName? windowTitle? xLoc? yLoc? xPixels? yPixels?
<-columns xCol? yCol?>

To open a graphical window with the title windowTitle at location xLoc, yLoc which is
xPixels wide by yPixels high for the plotting the contents of the file fileName. Unless the
optional -columns flag is passed, the first column of the file is used as the x-axis and the
second column as the y-axis.

13 The analyze Command

analyze numIncr? <dt?> <dtMin?> <dtMax?> <Jd>

To invoke analyze(numlIncr, <dt>, <dtMin>, <dtMax>, <Jd>) on the Analysis object
constructed with the analysis command. Note that dt, the time step increment, is required
if a transient analysis or variable time step transient analysis was specified. dtMin, dtMax
and Jd (the min step, the max step and the number of iterations the user would like to
perform at each time step) are required if a variable time step analysis method is specified.
For both transient and variable time step the model will be moved from it’s current time to
a time ;= numlIncr * dt.
RETURNS 0 if successfull, a negative number if not.

40

14 The eigen Command

eigen numEigenvalues?

To perform a generalized eigenvalue problem to determine the first numEigenvalues eigen-
values and eigenvectors. The eigenvectors are stored at the nodes and can be printed out.
Currently each invocation of this command constructs a new EigenvalueAnalysis object,
each with new component objects: a ConstraintHandler of type Plain, an EigenvalueSOE
and solver of type BandArpackSOE and BandArpackSolver and an algorithm of type Fre-
quencyAlgo. These objects are destroyed when the command has finished. This will change.

15 The database Commands

database databaseType

To construct a FE_Datastore object of type databaseType. Currently there is only one type
of datastore object available, that of type FileDatastore. The invocation of this command
will add the additional commands save and restore to the opensees interpreter to allow
users to save and restore model states.

database File fileName

To construct a datastore object of type FileDatastore. The FileDatastore object will save
the data into a number of files, e.g fileName.id11 for all ID objects of size 11 that sendSelf()
is invoked upon.

15.1 The save Command
save commitTag?

To save the state of the model in the database. The commitTag is the unique identifier that
can be used to restore the state at a latter time.

15.2 The restore Command
restore commitTag?

To restore the state of the model from the information stored in the database. The state of
the model will be the same as when the command save commitTag was invoked.

16 Misc. Commands

The playback Command
playback commitTag?

To invoke playback on all Recorder objects constructed with the recorder command. The
record() method is invoked with the integer commitTag.

41

The print Command

print <fileName>
print <fileName> -node <-flag flag?> <nodel? node2? ..>
print <fileName> -ele <-flag flag?> <elel? ele27 ..>

To cause output to be printed to a file or stderr, if fileName is not specified. If no string
qualifier is used, the print method is invoked on all objects of the domain. If the string
-node or -ele is provided, the print() method is invoked on just the nodes or elements. With
the analyst can send the integer flag to the print() method. The analyst can also limit the
element and nodes on which the print() method is invoked by supplying the objects tags,
elel, ele2, etc. and nodel, node2, etc.

The reset Command
reset

To set the state of the domain to its original state. Invokes revertToStart() on the Domain
object.

The wipe Command
wipe

To destroy all objects constructed, i.e. to start over again without having to exit and restart
the interpreter.

The wipeAnalysis Command
wipeAnalysis

To destroy all objects constructed for the analysis in order to start a new type of analysis.
This command does not destroy elements, nodes, materials, etc.; only the solution strategies,
i.e., the alogrithm, analysis, equation solver, constraint handler, etc. are destroyed.

The loadConst Command
loadConst <-time pseudoTime?>

To invoke setLoadConst() on all LoadPattern objectswhich have been created to this point.
If the optional string -time or is specified, the pseudo time in the domain will be set to
pseudoTime.

The setTime Command
setTime pseudoTime?

To set the pseudo time in the domain to pseudoTime.

42

The getTime Command
getTime

Returns the time in the domain.

The getTime Command
nodeDisp nodeTag? dof?

Return the dof’th displacement at the node nodeTag.

The build Command
build

To invoke build() on the ModelBuilder object. Has no effect on a BasicBuilder object, but
will on other types of ModelBuilder objects.

The video Command
video -file fileName -window windowName?

To construct a TclVideoPlayer object for displaying the images in a file created by the
recorder display command. The images are displayed by invoking the command play.

43

