A User-Friendly Interface for Pile Analysis Using OpenSees

Jinchi Lu
University of California, San Diego

Zhaohui Yang
URS Corporation, Oakland Office

Ahmed Elgamal
University of California, San Diego
Single Pile in a Layered Half-Space

Circular pile in level ground: filled view of ½ mesh due to symmetry
Problems could be Studies by the GUI

- **Seismic Excitation**: Linear and nonlinear (incremental plasticity based) 3D ground seismic response with capabilities for 3 dimensional excitation, and multi-layered soil strata.

- **Pushover Analysis**: Inclusion of a pile or shaft in the 3D ground mesh (circular or square pile in a soil island).

- **Ground Modification**: Various ground modification scenarios may be studied by appropriate specification of the material within the pile zone.
Seismic Excitation

Build-in Library of Input Motions

User-Defined Input Motion

Full Mesh for 3D Seismic Response
Pushover Analysis

- Force Based or Displacement Based
- Monotonic or Cyclic
Pile Element Types

- Linear pile element (elasticBeamColumn)
- Nonlinear pile elements (nonlinearBeamColumn)
 - Aggregator section
 - Fiber section
Soil Materials

- **Elements:** `brickUP, 20_8_BrickUP`
- **Soil materials:**
 - `PressureDependMultiYield`
 - `PressureIndependMultiYield`

Build-in Library of Soil Materials

- 8. Cohesionless medium, sand permeability
- 1. Cohesionless very loose, silt permeability
- 2. Cohesionless very loose, sand permeability
- 3. Cohesionless very loose, gravel permeability
- 4. Cohesionless loose, silt permeability
- 5. Cohesionless loose, sand permeability
- 6. Cohesionless loose, gravel permeability
- 7. Cohesionless medium, silt permeability
- 9. Cohesionless medium, gravel permeability
- 10. Cohesionless medium-dense, silt permeability
- 11. Cohesionless medium-dense, sand permeability
- 12. Cohesionless medium-dense, gravel permeability
- 13. Cohesionless dense, silt permeability
- 14. Cohesionless dense, sand permeability
- 15. Cohesionless dense, gravel permeability
- 16. Cohesive soft
- 17. Cohesive medium
- 18. Cohesive stiff
- 13. U-Sand1...
- 20. U-Sand2...
- 21. U-Clay1...
- 22. U-Clay2...

User-Defined Sand2

User-Defined Clay1

U-Clay1 for Soil Layer #1

- **Soil Elastic Properties**
 - Saturation Mass Density
 - Reference Pressure
 - Pressure Dependence Coefficient
 - Friction Angle
 - Cohesion
 - Bmax

- **Soil Nonlinear Properties**
 - Peak Shear Strain (%)
 - Friction Angle (degrees)
 - Cohesion

- **Fluid Properties**
 - Fluid Mass Density
 - Combined Bulk Modulus
 - Horizontal Permeability
 - Vertical Permeability
Ground Modification Scenarios

- Material within the pile zone (e.g., gravel permeability)
- Materials outside the pile zone (e.g., multi-layered soil strata with sand or silt permeability)
Other Features

Bridge Deck

Pile in Sloping Ground

Straightforward and fast mesh definition/refinement
Output: Deformed Mesh
Output: Excess Pore Pressure Contour
Output: Pile Response Profiles

- Displacement Profile
- Rotation Profile
- Bending Moment Profile
- Shear Force Profile
Output: Pile Response Histories

- Displacement History
- Rotation History
- Bending Moment History
- Shear Force History
Output: Pile Response Relationships

Moment-Curvature Relationship (at Different Locations of Pile)

Load-Displacement Relationship
Output: Soil Acceleration Time Histories
Output: Excess Pore Pressure Time Histories
Output: Shear Stress vs. Strain & Effective Confinement

The two graphs below are evaluated at 5.58m depth.

Longitudinal Shear Stress (kPa) vs. Longitudinal Shear Strain (File: ss_5.58m.txt)

Longitudinal Shear Stress (kPa) vs. Effective Confinement (kPa) (File: sp_5.58m.txt)
Comparison with PLAXIS

<table>
<thead>
<tr>
<th>Soil, linear elastic</th>
<th>E</th>
<th>ν</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>100 MPa</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td>(K/G=3)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Compact elastic concrete pile</th>
<th>E</th>
<th>ν</th>
<th>Diameter</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20 GPa</td>
<td>0.25</td>
<td>1 m</td>
<td>0.049 m^4</td>
</tr>
</tbody>
</table>

The pile is 6m above terrain, 6m into soil. The soil layer is 10m thick. The load is 100kN at pile head.

PLAXIS Mesh (S. Nordal, 2006)
OpenSees Mesh
Deflection Comparison

<table>
<thead>
<tr>
<th>Deflection (mm)</th>
<th>PLAXIS</th>
<th>OpenSees</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pile head</td>
<td>19.47</td>
<td>18.13</td>
<td>7%</td>
</tr>
<tr>
<td>Ground surface</td>
<td>1.99</td>
<td>1.97</td>
<td>1%</td>
</tr>
</tbody>
</table>
Bending Moment Comparison

<table>
<thead>
<tr>
<th></th>
<th>PLAXIS</th>
<th>OpenSees</th>
<th>Difference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Max. Moment (kN-m)</td>
<td>685</td>
<td>600</td>
<td>12%</td>
</tr>
<tr>
<td>Location for Max</td>
<td>0.5 m below surface</td>
<td>Near surface</td>
<td></td>
</tr>
</tbody>
</table>
Summary

- A user interface for pile analysis using OpenSees was developed.
- Analysis options available include seismic excitation, pushover analysis and ground modification.
- Features include automatic meshing of soil and pile configurations, available libraries of already calibrated soil models, and structural models for seismic response.
- Future work includes option for pile group.
- OpenSeesPL can be downloaded from:
 http://cyclic.ucsd.edu/OpenSeesPL/