Performance Modeling Strategies for Modern Reinforced Concrete Bridge Columns

Michael P. Berry Marc O. Eberhard University of Washington

Project funded by the Pacific Earthquake Engineering Research Center (PEER)

UW-PEER Structural Performance Database

- Nearly 500 Columns
 - spiral or circular hoop-reinforced columns (~180)
 - rectangular reinforced columns (~300)
- Column geometry, material properties, reinforcing details, loading
- Digital Force-Displacement Histories
- Observations of column damage
- http://nisee.berkeley.edu/spd
- User's Manual (Berry and Eberhard, 2004)

Objective of Research

Develop, calibrate, and evaluate column modeling strategies that are capable of accurately modeling bridge column behavior under seismic loading.

- -Global deformations
- -Local deformations (strains and rotations)
- -Progression of damage

Advanced Modeling Strategies

Cross-Section Modeling

Cross-Section Modeling Components

- Concrete Material Model
- Reinforcing Steel
 Material Model
- Cross-Section Discretization Strategy

Concrete Material Model

Popovic's Curve with Mander et. al. Constants and Added Tension Component (Concrete04)

Reinforcing Steel Material Models

(Steel02)

(ReinforcingSteel)

Section Fiber Discretization

• Objective: Use as few fibers as possible to eliminate the effects of discretization

Cross-Section Fiber Discretization

Uniform (220 Fibers)

ConfinedUnconfined $n_c^r = 10$ $n_u^r = 1$ $n_c^t = 20$ $n_u^t = 20$

Reduced Fiber Discretization

Cross-Section Fiber Discretization

Uniform (220 Fibers)

ConfinedUnconfined $n_c^r = 10$ $n_u^r = 1$ $n_c^t = 20$ $n_u^t = 20$

$$n_{fine}^r = 5$$

$$n_{fine}^t = 20$$

$$u_{u}^{t} = 20$$

 $n_{\mu}^{r} = 1$

$$n_{coarse}^r = 2$$

 $n_{coarse}^{t} = 10$

Modeling with Distributed-Plasticity Element

Model Components

- Flexure Model (Force-Based Beam-Column)
 - nonlinearBeamColumn
 - Fiber section
 - Popovics Curve (Mander constants)
 - Giufre-Menegotto-Pinto (b)
 - Number of Integration Points (*Np*)

Anchorage-Slip Model

- zeroLengthSection
- Fiber section
- Reinforcement tensile stressdeformation response from Lehman et. al. (1998) bond model (λ)
- Effective depth in compression (d_{comp})
- Shear Model
 - section Aggregator
 - Elastic Shear (γ)

Model Optimization

• Objective: Determine model parameters such that the error between measured and calculated global and local responses are minimized.

$$E_{total} = \mathrm{mean}\left(E_{push}\right) + \frac{\kappa_1}{2}\mathrm{mean}\left(E_{strain}^{(0-D/2)}\right) + \frac{\alpha_2}{2}\mathrm{mean}\left(E_{strain}^{(D/2-D)}\right)$$

Model Evaluation

Optimized Model:

- Strain Hardening Ratio, *b* = 0.01
- Number of Integration Points, $N_p = 5$
- Bond-Strength Ratio, $\lambda = 0.875$
- Bond-Compression Depth,
- $d_{comp} = 1/2$ N.A. Depth at 0.002 comp strain
- 350 OpenSees Measured 300 250 $M_{meas_{4\%}}$ M.R. = $M_{calc_{4\%}}$ $S.R. = \frac{K_{meas}}{K_{meas}}$ N 200 E K 150 Kcale 150 100 50 0 č 5 6 8 2 3 4 7 q drift %

116 Lehman No.415

•	Shear Stiffness	y = 0.4
---	-----------------	---------

	E_{total}	$E_{\it push}$	$E_{strain}^{(0-D/2)}$	$E_{strain}^{(D/2-D)}$	<i>S</i> . <i>R</i> .	<i>M</i> . <i>R</i> .
mean	14.89	6.73	7.78	14.4	1.02	1.03
cov (%)	_	_	_	_	15	8

Modeling with Lumped-Plasticity Element

Lumped-Plasticity Model

Hinge Model Formulation:

- beamwithHinges3
- Force Based Beam Column Element with Integration Scheme Proposed by Scott and Fenves, 2006.
- Fiber Section
- Elastic Section Properties
 - Elastic Area, A
 - Effective Section Stiffness, *El_{eff}*
- Calculated Plastic-Hinge Length

 $-L_{p}$

Section Stiffness Calibration

	Stiffness Ratio Stats			
$EI_{eff} =$	$\pmb{lpha}_{g}^{calc}E_{c}I_{g}$	$\alpha_{ m sec}^{calc} EI_{ m sec}$		
mean	1.00	1.00		
cov (%)	19	16		

$$\alpha_g^{calc} = 0.1 + 0.034 \frac{L}{D} + 1.35 \frac{P}{A_g f_c'} \le 1.0$$

$$\alpha_{sec}^{calc} = 0.45 + 0.087 \frac{L}{D} \le 1.0$$

Plastic-Hinge Length Calibration

$$L_p = 0.05L + 0.1 \frac{f_y d_b}{\sqrt{f'_c}} \le \frac{L}{4}$$

$$\epsilon_{bb}^{calc} = 0.046 + 0.25 \rho_{eff} \le 0.15$$

		Pushover Accuracy		Damage Estimates						
Plastic-Hinge Length	E_{total}	E_{push}	M.R.	D.R.	ϵ_l	Ъb	$\frac{\Delta^{meas}_{bb}}{\Delta^{calc}_{bb}}$	ϵ_s	p	$\frac{\Delta_{sp}^{meas}}{\Delta_{sp}^{mean}}$
	mean	mean	mean	mean	mean	COV	COV	mean	COV	COV
Selected Optimal $0.05L + 0.1 \frac{f_y d_b}{\sqrt{f'_c}} \le L/4$	8.32	8.08	1.05	-1.23	0.082	0.299	0.237	0.008	0.482	0.350
Priestley et al. (1996) $0.08L + 0.022f_yd_b \leq 0.044f_yd_b$	8.87	8.32	1.06	-1.49	0.070	0.349	0.281	0.007	0.465	0.359
Mattock (1967) 0.05L + 0.5D	8.96	8.41	1.07	-1.56	0.058	0.323	0.291	0.006	0.424	0.353

Cyclic Response

Cyclic Material Response

Cyclic response of the fiber-column model depends \bullet on the cyclic response of the material models.

Giufre-Menegotto-Pinto (with Bauschinger Effect) Steel02

Confined and Unconfined Concrete

- **Current Methodologies** ightarrow
 - Do not account for cyclic degradation steel
 - Do not account for imperfect crack closure

Evaluation of Response

	Lumped-Plasticity	Distributed- Plasticity
	E _{force} (%)	E _{force} (%)
mean	16.13	15.66
min	6.63	6.47
max	44.71	46.05

Kunnath and Mohle Steel Material Model

- Cyclic degradation according to Coffin and Manson Fatigue.
- Model parameters:
 - Ductility Constant, C_f
 - Strength Reduction Constant, C_d

Preliminary Study with Kunnath Steel Model

- Ductility Constant, C_f=0.4
- Strength Reduction Constant, C_d=0.4

	Giufre-Menegotto-	Kunnath and			
	Pinto	Mohle			
	E _{force} (%)	E _{force} (%)			
mean	16.13	11.98			
min	6.63	5.15			
max	44.71	29.45			

Continuing Work

Imperfect Crack Closure

Prediction of Flexural Damage

Evaluation of Modeling-Strategies for Complex Loading

Bridge Bent (Purdue, 2006)
Unidirectional and Bi-directional Shake Table (Hachem, 2003)

Thank you