OpenSees Model-Building Commands II

Silvia Mazzoni University of California, Berkeley

OpenSees User Workshop

14 August 2006

Aler

NEESit

Recorder Objects

- Node Recorder
- EnvelopeNode Recorder
- MaxNodeDisp Recorder
- Drift Recorder
- Element Recorder
- EnvelopeElement Recorder
- Display Recorder
- Plot Recorder
- playback Command

recorder Node <-file \$fileName> <-time> <-node (\$node1 \$node2 ...)> <-nodeRange \$startNode \$endNode> <-region \$RegionTag> <-node all> -dof (\$dof1 \$dof2 ...) \$respType

\$fileName	file where results are stored. Each line of the file contains the result for a committed state of the domain <i>(optional, default: screen output)</i>		
-time	this argument will place the pseudo time of the as the first entry in the line. <i>(optional, default: omitted)</i>		
\$node1 \$node2	tags nodes where response is being recorded select nodes in domain <i>(optional, default: all)</i>		
\$startNode \$endNode	tag for start and end nodes where response is being recorded range of nodes in domain <i>(optional, default: all)</i>		
\$RegionTag	tag for previously-defined selection of nodes defined using the Region command. <i>(optional)</i>		
all	where response is being recorded all nodes in domain <i>(optional & default)</i>		
\$dof1	degrees of freedom of response being recorded. Valid range is from 1 through <u>ndf</u> , the number of nodal degrees-of-freedom.		
\$respType	defines response type to be recorded. The following response types are available:		
	disp	displacement	
	vel	velocity	
	accel	acceleration	
	incrDisp	incremental displacement	
	eigen	eigenvector	

OpenSees

recorder EnvelopeNode <-file \$fileName> <-time> <-node (\$node1 \$node2 ...)> <-nodeRange \$startNode \$endNode> <region \$RegionTag> <-node all> -dof (\$dof1 \$dof2 ...) \$respType

records the envelope of displacement, velocity, acceleration and incremental displacement at the nodes (translational & rotational). The envelope consists of the following: minimum, maximum and maximum absolute value of specified response type

\$fileName	file where results are stored. Each line of the file contains the result for a committed state of the domain <i>(optional, default: screen output)</i>	
-time	this argument will place the pseudo time of the as the first entry in the line. <i>(optional, default: omitted)</i>	
\$node1 \$node2	tags nodes where response is being recorded select nodes in domain <i>(optional, default: all)</i>	
\$startNode \$endNode	tag for start and end nodes where response is being recorded range of nodes in domain <i>(optional, default: all)</i>	
\$RegionTag	tag for previously-defined selection of nodes defined using the Region command. <i>(optional)</i>	
all	where response is being recorded all nodes in domain <i>(optional & default)</i>	
\$dof1 \$dof2	degrees of freedom of response being recorded. Valid range is from 1 through <u>ndf</u> , the number of nodal degrees-of- freedom. same arguments as node recorder	

recorder MaxNodeDisp \$dof \$node1 \$node2

records the values of the maximum absolute values of the displacement in the prescribed direction of a prescribed set of nodes

\$dof displacement degree-of-freedom direction. Valid range is from 1 through <u>ndf</u>, the number of nodal degrees-of-freedom.

\$node1nodes\$node2recorded

0 0

recorder Element <-file \$fileName> <-time> <-ele (\$ele1 \$ele2
....)> <-eleRange \$startEle \$endEle> <-region \$regTag> <-ele
all> (\$arg1 \$arg2 ...)

\$fileName	file where results are stored. Each line of the file contains the result for a committed state of the domain <i>(optional, default: screen output)</i>
-time	this argument will place the pseudo time of the as the first entry in the line. <i>(optional, default: omitted)</i>
\$ele1 \$ele2	tags of elements whose response is being recorded selected elements in domain <i>(optional, default: omitted)</i>
\$startEle \$endEle	tag for start and end elements whose response is being recorded range of selected elements in domain <i>(optional, default: all)</i>
\$regTag	previously-defined tag of region of elements whose response is being recorded region of elements in domain <i>(optional)</i>
all	elements whose response is being recorded all elements in domain <i>(optional & default)</i>
\$arg1 \$arg2	arguments which are passed to the setResponse() element method

element recorder (output arguments)

All:

globalForce - element resisting force in global coordinates (does not include inertial forces)

recorder Element -file ele1global.out -time -ele 1 globalForce

localForce - element resisting force in local coordinates (does not include inertial forces)

recorder Element -file ele1local.out -time -ele 1 localForce

Section:

section \$secNum - request response quantities from a specific section along the element length

\$secNum refers to the integration point whose data is to be output

force - section forces

example: recorder Element -file ele1sec1Force.out -time -ele 1 section 1 force **deformation** - section deformations

example: recorder Element -file ele1sec1Force.out -time -ele 1 section 1 deformation **stiffness** - section stiffness

example: recorder Element -file ele1sec1Force.out -time -ele 1 section 1 stiffness stressStrain - record stress-strain response.

example: recorder Element -file ele1sec'1Force.out -time -ele 1 section 1 fiber \$y \$z stressStrain

\$y local y coordinate of fiber to be monitored*
\$z local z coordinate of fiber to be monitored*

output.tcl

Record nodal displacements -NODAL DISPLACEMENTS
ALL displacements at node 1
recorder Node -file Dnode1.out -time -node 1 -dof 1 2 3 disp;

Record vertical-y displacement of ALL nodes
 recorder Node -file DNodeALL.out -time -node all -dof 2 disp;

Record REACTION FORCES - (=forces in element 1) recorder Element -file Fel1.out -time -ele 1 localForce

Loads - pattern command

pattern Plain \$patternTag (*TimeSeriesType arguments*) { load (*load-command arguments*) sp (*sp-command arguments*) eleLoad (*eleLoad-command arguments*)

\$patternTag	unique pattern object tag
TimeSeriesType arguments	list which is parsed to construct the <u>TimeSeries</u> object associated with the LoadPattern object.
load	list of commands to construct nodal loads the <u>NodalLoad</u> object
sp	list of commands to construct single-point constraints the <u>SP_Constraint</u> object
eleLoad	list of commands to construct element loads the <u>eleLoad</u> object

pattern command (cont.)

load \$nodeTag (ndf \$LoadValues)

\$nodeTag	node on which loads act
\$LoadValues	load values that are to be applied to the node. Valid range is from 1 through <u>ndf</u> , the number of
	nodal degrees-of-freedom.

sp \$nodeTag \$DOFtag \$DOFvalue

\$nod	eTag	node on which the single-point constraint acts		
\$DOFtag		degree-of-freedom at the node being constrained. Valid range is from 1 through <u>ndf</u> , the number of nodal degrees-of-freedom.		
\$DOFvalue		reference value of the constraint to be applied to the DOF at the node.		
	pattern Plain	1 Linear {		
	load 3	0.0 -\$Pdl 0.0 0.0 0.0 -\$Mdl		
	load 4	0.0 -\$Pdl 0.0 0.0 0.0 +\$Mdl		
	sp 1 á	2 -0.001		
	eleLoad	-ele 3 -type -beamUniform [expr -\$Weight/LBeam]		
Silvia Mazz	}			

Questions, or statements!

The OpenSees Community Forum: http://opensees.berkeley.edu/community/in dex.php

which can be accessed from: http://opensees.berkeley.edu

thank you!!!

