OpenSees Navigator & Hybrid Simulation

Andreas Schellenberg & Tony Yang

Department of Civil and Environmental Engineering University of California, Berkeley

Introduction

- MATLAB based Graphical User Interface
- Pre- and post-processing for OpenSees
- Integration of Hybrid Simulation into the graphical user interface
- Response Spectra generation
- Integrated AISC data base
- Design toolboxes: NSP, AISC design checks, PBEE, ...
- Self-executable version available

Motivation

- Graphical input is more user-friendly than TCL text input
- Most researchers use MATLAB to do the post-processing, and MATLAB/Simulink is the typical framework for implementing hybrid analyses
- OpenSees Navigator will create the OpenSees (hybrid) model and graphically display results before, during or after a test
- Flexible to use and requires no programming skills

Define Geometry

Define Geometry: Zipper Frame

🛃 Define Zipper Frame Geometry			
Define Z	ipper Frame Geometry		
Dimension (ndm) :	2d 🚽	Generate	
Number of Stories (NOS) :	3		
Number of Bays (NOB) :	1		
Story Height (SH) :	52		
Bay Width (BW) :	80		
Boundary Condition (BC) :	pinned _		
Brace Bay Config (BraceBay) :	BraceBay		
Num Segments in Col (NSC) :	1		
Num Segments in Beam (NSB) :	1		
Num Segments in Brace (NSBR) :	2		
Num Segments in Z-Col (NSZC) :	1		
Brace Offset (BraceOffset) :	None _		
		Mees herkelev	6

View Geometry: Set Display Options

Edit Geometry

Define Material: Uniaxial Materials

Define Steel01 Material: A50

Define SteelO1 Material		
C	efine Steel01 Material	
Material Name :	A50	Add
Yield Stress (Fy) :	50	
Modulus of Elasticity (E) :	29000	
Hardening Ratio (b) :	0.05	
Optional Parameters :		
lso Hardening Parameter (a1) :	0.0	
Iso Hardening Parameter (a2) :	1.0	
lso Hardening Parameter (a3) :	0.0	
Iso Hardening Parameter (a4) :	1.0	
		(mees@berkelev

Define Material: nD Materials

Define Section: Line Sections

Define Fiber Section: 1stFloorBeam

📣 Define Fiber Section			
	Define Fiber Section		
Section Name :	1stFloorBeam	Add	
Add Fiber :	Fiber	*	
Modify Fiber :		*	
Delete Fiber :		*	
Add Patch :	AISC	*	
Modify Patch :		*	
Delete Patch :		*	
Add Layer :	Straight	*	
Modify Layer :		*	
Delete Layer :		*	

mees@berkelev

15

Define Fiber Section: AISC Patch

Jenne Albe Paten		
	efine AISC Patch	
Patch Name :	Patch01	Add
Material Type :	A50	•
AISC Section Name :	W24X68	
Number of Fibers along dw (nfdw) :	10	
Number of Fibers along tw (nftw) :	1	
Number of Fibers along bf (nfbf) :	10	
Number of Fibers along tf (nftf) :	1	
Optional Arguments :		
Counter-Clockwise Rot (Theta) :	0.	

Define Section: Area Sections

Define Experimental Control

Define ExpControl: xPC Target

Define xPC Target Control			
Define xPC Target Control			
Control Name :	BraceExpCtrIXPC	Add	
Number of Setups (numSetups) :	1		
Predictor-Corrector Type (type) :	Osp 🗾		
xPC Target IP Address (ipAddr) :	192.168.2.20		
xPC Target IP Port (ipPort) :	22222		
Application Name (appName) :	HybridControllerPoly3	Browse	
Application Path (appPath) :	TestModels\\c&mCode-xPCTarget-STS\\		

Real-Time xPC Target Sp	V			
Loaded App: Sf_car_xpc 60HB Mode: RT, single Logging: tet StopTime: Inf d StopTime: 0.001 AverageTET: - Execution: stopped	Scope: 3, low Scope: 3, upp Scope: 3, sign Scope: 3, Num Scope: 3, tri Scope: 3, tri Scope: 3, low Scope: 3, low Scope: 3, upp System: initia	er y-axis limi er y-axis limi nal 6 added Samples set to ggerlevel set ggerScope set er y-axis limi er y-axis limi lizing applica	t set to 0.0000 t set to 0.0000 to 0.000000 to 1 t set to 0.0000 t set to 180.00 tion finished	00 00 0000
F1 SC1 5 17		F2 SC2 2		
		<u></u>		
- ¥:-30:10:30	K:1ms	¥:-3	0:10:30 X:1ms	
F3 SC3 6				

mees@berkelev

19

Define Experimental Setup

Define ExpSetup: ChevronBrace

Beine C	nevronBraceSntOn Setup	
Setup Name :	BraceExpSetupJntOff	Add
Experimental Control Type :	BraceExpCtrIXPC	-
Geometry Type (nlGeomFlag) :	nonlinear, horizontal right	
Actuator Length 1 (La1) :	124.5	
Actuator Length 2 (La2) :	176.625	
Actuator Length 3 (La3) :	176.625	
Rigid Link Length 1 (L1) :	53	Actuator 0
Rigid Link Length 2 (L2) :	108	
Rigid Link Length 3 (L3) :	108	
Rigid Link Length 4 (L4) :	53	to T
Rigid Link Length 5 (L5) :	24.625	Actua Actua
Rigid Link Length 6 (L6) :	24.625	A A A A A A A A A A A A A A A A A A A
Optional Parameters :		
Dsp Control Factor (dspCtrlFact) :	[1 1 1]	
Vel Control Factor (velCtrlFact) :	[1 1 1]	
Acc Control Factor (accCtrlFact) :	[1 1 1]	
Dsp Daq Factor (dspDaqFact) :	[1 1 1 1 1]	
Force Daq Factor (frcDaqFact) :	[1 1 1 1 -1 1]	

(nees())

21

Define Experimental Site

Define ExpSite: RFS

Define Local Site		
	Define Local Site	
Site Name :	RFS	Add
Experimental Setup Type :	BraceExpSetupJntOff	•
		I. To find
	4 10-4	See 1
		Terr Id
	A	
	7	

Define Element: Line Element

Define ForceBeamColumn Element

Define ForceBeamColumn Element		
Define F	orceBeamColumn Element	
Element Name :	1stStoryColumn	Add
Number Intergration Points (NIP) :	5	
Section Type :	1stStoryColumn	·
Optional Arguments :		
Mass Density (massDens) :	0.	
Maximum Iterations (maxIters) :	10	
Tolerance (tol) :	1F.8	

Define ExpElement: ChevronBrace

📣 Define ExpChevronBrace Element							
Def	īne Exp	ChevronE	Brace Elen	nent			
Element Name :	ExpCl	nevronBrac	e01			Add)
Experimental Site Type :	RFS				*		
Initial Stiffness (initStif) :		0	0				
	0		0				
	0	0	0				
Optional Arguments :							
l-Modification (iMod) :	no				*		
ls Copy (isCopy) :	no				*		
Mass Density 1 (massDens1) :	0						
Mass Density 2 (massDens2) :	0						

27

Define PathFile TimeSeries: SACNF01

dd

Define Recorder

Define Node Recorder

Define Node Recorder		
	Define Node Recorder	
Recorder Name :	DefoShape	Add
Node Number(s) :	all	Envelope
Deformations :	🗹 Displacements	
	Velocities	
	Accelerations	
	Incremental Displacements	
	📕 Incremental Delta Displacements	
	Eigenvectors	
Forces :	Reaction Forces Without Inertia	
	Reaction Forces Including Inertia	
	📕 Unbalanced Loads Without Inertia	
	📕 Unbalanced Loads Including Inertia	1
		(<i>Mees@berkeley</i>

Define BeamColumn Recorder

Define BeamColumn Element Recor	ler		
Def	ne BeamColumn Element Record	der	
Recorder Name :	ElemForces	Add	
Element Number(s) :	all	Envelope	
Arguments :	🗹 Global Resisting Force	es	
	🗹 Local Resisting Forces	s	
Section Response :	Section		
Section Number(s) :	15		
Arguments :	🗹 Forces 🛛 🗹 De	formations	
	Stiffness		
Fiber Response :	Fiber		
Arguments :	Stress/Strain 0.	Y-Coor 0. Z-Coor	

Define Analysis Options

Define New Analysis Options

📣 Define New Analysis Options

ľ

S

С

D

S

Defin	e New Analysis Options		
nalysis Optn Name :	AnalysisOptn01	Add	
nalysis Type :	Transient 🗾		
onstraint Handler Type :	Plain Constraints 🗾		
tegrator Type :	AlphaOS 🗧 🗾		
olution Algorithm Type :	Linear 🔸 💽		
onvergence Test Type :	Energy Increment 🗾		
OF Numberer Type :	Plain 🗾		
ystem of Equations Type :	BandGeneral 🗾		
Integrator Type:			
For example use AlphaOS	Method for Hybrid Simulation		
Solution Algorithm:			

mees@berkeley

37

The AlphaOS Method requires a Linear solution algorithm

Define Response Spectra

Define From Acceleration File Spectra

Define Response Spectra from Acceleration	File					
Define Respons	se Spect	ra from A	ccelerati	on File		
Response Spectra Name :	LA22Y	Y			Add	
Time Interval (dt) :	0.0081	64				
Acceleration File Name (filePath) :	Zippe	rExpHS\G	roundMoti	ons\la22yy.thf	Browse	
Load Factor (cFactor) :	386.1					
First Period Value :	0.01					
Last Period Value :	3.0					
Number of Period Values :	1000					
Damping Ratio(s) :	0.02	0.05	0.1			
					(mees@b	erkele

Define From Output Spectra

Define Response Spectra from Output				🛛 🔼	
Define	Response Specti	a from Output			
Response Spectra Name :	FirstFloorS	ectra		Add	
Analysis Case :	LA22YY		*		
Recorder :	DefoShape		*		
Node Number :	10		*		
Degree of Freedom :	1		*		
First Period Value :	0.01				
Last Period Value :	3.0				
Number of Period Values :	1000				
Damping Ratio(s) :	0.02 0.0	5 0.1			
				meesmbe	rkelev

Assign Menu

Assign Menu

🛃 Assign Nodal Masses			
Ass	ign Nodal Masses		
Replace/Add/Delete Masses :	Replace Add	Delete	Display
Node Number(s) :	2356		Select
Mass X-dir :	0.5		
Mass Y-dir :	0.5		
Mass Moment of Inertia Z-dir :	0.		

A Select Nodes				
	Select	lodes		
X-Coordinate :	240		Select	
Y-Coordinate :				

Ass	ign Element Types	
Assign Element Types :	Assign	Display
Element Number(s) :	17:24	Select
Element Type :	Brace	
Assign Element Geometric Transformations		
Assign Elemen	t Geometric Transformations	
Assign Geometric Transformations :	Assign	Display
Element Number(s) :	17:24	Select
Geometric Transformation :	Corotational	

Assigned Properties

Define New Analysis Case

Define New Analysis Case		
Defin	e New Analysis Case	
Analysis Case Name :	EigenAfterEQ	Add
Load Pattern Name(s) :	LA22YY LA22YY5nercent	
	None	✓
Recorder Name(s) :	ElemForce	<u> </u>
	EigenVector None	
Analysis Options Name :	EigenAnalysis	Ŧ
User Defined Analysis Script :	None	Browse
Start from Previous Analysis Case :	LA22YY	Ŧ
Num of Eigenvalues (numEigVal) :	5	
Analysis Type (typeEig) :	generalized	Ŧ

For Example: / Periods and Mode Shapes after Time-History Analysis

nees@berkelev

45

OpenSees Navigator 2.1 - ZipperExpHS.mat File Edit View Define Assign Analyze Output Design New Model from Template Ctrl+N Y Y7 Y7 3D 8:::	
Open Model from File Ctrl+O Close Model Save Model Ctrl+S Save Model As Set OpenSees.exe Path Page Setup	Steps: 1. Set OpenSees eve Path (peeds to be done only once)
Print Preview Print Preview Print Preview 1 ZipperExpH5.mat 2 Test.mat 3 Test.mat 4 tenpozan.tcl Quit Ctrl+Q	

OpenSees Navigator 2.1 - ZipperExpHS.ma	Opense	:5			
File Edit View Define Assign Analyze Output	Design Help MATLAB Menu	s: ite OpenSees Input F n OpenSees	iles (writes T	°CL files)	
	running OpenSees analysis, please wait	OK			
recorder(5) with name "EigenVector" has be	een defined/modified successfully			X-45.55 Y171.80 Z0.00	

Post-Processing: Output

OpenSees Navigator 2.1 - Zippe File Edit View Define Assign Analy:	rExpHS.mat		
다. : : : : : : : : : : : : : : : : : : :	XZ YZ 3D 🚟 🐙 🔚 🕨 🛨 🥅 🖬 🖉 🗠		
		First:	
		Load OpenSees Results into Mat	lab
	Joad OpenSees Results		
	Lo	ad OpenSees Results	
	Select Analysis Case(s) :	EigenDefaultCase Coad	
		×	
recorder(5) with name "EigenVec	tor" has been defined/modified successfully	< × ×	X-45.55 Y171.80 Z0.00
			. va. le

Post-Processing: Output

Plot Response

Plot Response Spectra

AISC Design Toolbox

AISC Toolbox: Find Section Prop.

AISC Toolbox: Find Matching Sec.

AISC Toolbox: Bending Capacity

mees@berkelev

58

AISC Bending Capacity		
Bending	Capacity of AISC Section	
Section Shape :	W24x68	Calculate
Unbraced Length (Lb) :	40	[in]
Bending Coefficient (Cb) :	1	Θ
Yield Stress (Fy) :	50	[ksi]
Modulus of Elasticity (E) :	29000	[ksi]
Direction :	strong	Ŧ
	al la substanti la des Alconstitui d'880	

Note: The AISC Bending Capacity check is only applied to AISC rolled W/S/M/HSS sections.

🛃 Output AISC Bending Capacity Bending capacity for section W24x68 : With Lb = 120 in Cb = 1Fy = 50 ksiE = 29000 ksi phi = 0.9Mp = 8850Mr = 6160Lp = 79.2626 Lr = 208.7244Flange Compactness = Compact Web_Compactness = Compact Capacity = 7203.19FailureMode = Lateral torsional buckling ок

AISC Toolbox: Compression Capacity

AISC Compression Capacity		
Compr	ession Capacity of AISC Sect	ion
Section Shape :	W14x68	Calculate
Effective Length (kLx) :	144	[in]
Effective Length (kLy) :	144	[in]
Yield Stress (Fy) :	50	[ksi]
Modulus of Elasticity (E) :	29000	[ksi]
Note: The AISC Compression Ca	acity check only applied to A	ISC rolled W/S/M/HSS sections.

 Image: State of the section W14x68 :

 State of the section W14

AISC Toolbox: Shear Capacity

📣 AISC Shear Capacity		
Shear C	Capacity of AISC Section	
Section Shape :	W24x68	Calculate
Distance between Stiffeners (a) :	24	[in]
Yield Stress (Fy) :	50	[ksi]
Modulus of Elasticity (E) :	29000	[ksi]
Neter The Alco Observation states have	in an hanneling the ALCO will all WICH as	

Note: The AISC Shear Capacity check is only applied to AISC rolled W/S/M sections.

AISC Toolbox: PMM Interaction

AISC PMM Interaction Check		
PMM Interac	tion Check of AISC Section	
Section Shape :	W24x68	Calculate
Yield Stress (Fy) :	50	[ksi]
Modulus of Elasticity (E) :	29000	[ksi]
Demand :		
Applied Axial Force (Pu) :		[kips]
Applied Moment about X axis (Mux) :		[kips - in]
Applied Moment about Y axis (Muy) :		[kips - in]
Compression :		
Effective Length (kLx) :		[in]
Effective Length (kLy) :		[in]
Bending :		
Unbraced Length (Lb) :		[in]
Bending Coefficient (Cb) :	1	E
Note: The AISC P-M interaction check	is only applied to AISC rolled W/S/M/HS	S sections.

mees@berkeley 61

Summary

OpenSees Navigator provides

- Flexible and user friendly graphical user-interface
- Easy way to study material, section, element or system behavior
- Hybrid Simulation interface
- Many built in post processing toolboxes
- Great tool to visualize structural behavior
- Response Spectra generation
- Graphical user interface for AISC steel manual
- Design toolboxes

Website: Home

4

OPENSEES NAVIGATOR

Home>	Search
Introduction	
Manuals	Dear OpenSees Navigator users,
Tutorials	Thanks for your interest in OpenSees Navigator. This program is intended to be self-explanatory,
Presentations	nevertheless a basic user manual will be added to the website shortly. We are very happy to have the opportunity to distribute this software for OpenSees Navigator users. We encourage everyone to try out
Discussion	all of the functions of the program and send us criticism, corrections or suggestions to improve future
Updates	versions we also encourage users to e-mail us at entre and easistic remember group intervention of vangtony2004@gmail.com so that we can add the e-mail addresses to the OpenSees Navigator user
Downloads	list. We will use such list to contact everyone about new releases or major updates. we will try our best to improve the next release.
Links	Thank you.
	Please feel free to visit our websites to discover in what other fun research we are involved:
	Andreas Schellenberg & <u>Tony Yang</u>

mees@berkeley

63

Website: Downloads

OPENSEES NAVIGATOR

MCRInstaller.exe Installation Instructions: OpenSeesNavigator.zip I. Download the two files on the left. 1. Download the two files on the left. Install the Matlab component runtime libraries by executing MCRInstaller.exe and following the on screen instructions (this has only to be done once). 3. Extract OpenSeesNavigator.zip in any folder of your choice and then execute OpenSeesNavigator.exe. OpenSeesNavigator.exe 4. If you like you can create a shortcut to OpenSeesNavigator.exe on your Desktop. I. If you like you can create a shortcut to OpenSeesNavigator.exe on your Desktop.	MCRInstaller.exe Installation Instructions: Imstallation Instructions: 1 Download the two files on the left. Imstallation Instructions (files on screen instructions (files has only to be done once). 3 Extract OpenSeesNavigator zip Imstallation Instructions (files on the left.) 4 If you like you can create a shortcut to OpenSeesNavigator exe on your Desktop.	Home> Downloads> Stand-A		
OpenSeesNavigator.zip Installation Instructions: 1. Download the two files on the left. 1. Download the Matlab component runtime libraries by executing MCRInstaller.exe and following the on screen instructions (this has only to be done once). 3. Extract OpenSeesNavigator.zip in any folder of your choice and then execute OpenSeesNavigator.exe. 4. If you like you can create a shortcut to OpenSeesNavigator.exe on your Desktop. 4. If you like you can create a shortcut to OpenSeesNavigator.exe on your Desktop.	OpenSeesNavigator zip Installation Instructions: 1. Download the two files on the left. 1. Download the two files on the left. 2. Install the Matlab component runtime libraries by executing MCRInstaller.exe and following the on screen instructions (this has only to be done once). 3. Extract OpenSeesNavigator.zip in any folder of your choice and then execute OpenSeesNavigator.exe. 4. If you like you can create a shortcut to OpenSeesNavigator.exe on your Desktop. 1.	MCRInstaller.exe		
		OpenSeesNavigator.zip	Installation Instructions: 1. Download the two files on the left. 2. Install the Matlab component runtime libraries by executing MCRInstaller.exe and following the on screen instructions (this has only to be done once). 3. Extract OpenSeesNavigator.zip in any folder of your choice and then execute OpenSeesNavigator.exe. 4. If you like you can create a shortcut to OpenSeesNavigator.exe on your Desktop.	

74

Thank you!

OpenSees Navigator 2.0 is available at http://peer.berkeley.edu/OpenSeesNavigator

Andreas Schellenberg: andreas.schellenberg@gmail.com Tony Yang: yangtony2004@gmail.com

