Application of Shape Memory Alloys Using OpenSEES

Dr. Reginald DesRoches
School of Civil & Environmental Engineering
Atlanta, GA 30332-0355

OpenSEES Developer Symposium
Wednesday, August 24, 2005
Richmond, CA
Outline of Presentation

- Background on Shape Memory Alloys
- Modeling Methods for SMAs
- Applications
 - Bridge Restrainers
 - Braced-Frame Steel Buildings
 - SMA Beam Column Connections
- OpenSEES Development Work
 - PR Connections
 - SMA Connections
 - Energy Recorders
Shape Memory Alloys

- SMAs were first discovered in 1951
- Further publicized after the discovery of Ni-Ti alloy in 1963
- SMAs have two main phases: Austenite and Martensite
- Austenite phase is symmetric, while martensite phase is less symmetric
- Phase transformation occurs either thermally or mechanically
Shape Memory Alloys

- Four transformation temperatures control the phase transformation
- At temperatures below M_f the alloy is 100% martensite (Shape memory effect)
- At temperatures above A_f the alloy is 100% austenite (Superelasticity effect)
Superelastic SMAs

Superelastic SMAs are characterized by:

1) Excellent recentering capability
2) Controlled level of force at moderate strain levels
3) Strain hardening at large strain levels
4) Hysteretic energy dissipation
5) Excellent corrosion resistance
6) High fatigue strength
Shape Memory Alloys

Mechanical Behavior

<table>
<thead>
<tr>
<th>Property</th>
<th>Austenite</th>
<th>Martensite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modulus of Elasticity</td>
<td>30-83 GPa</td>
<td>21-41 GPa</td>
</tr>
<tr>
<td>Yield Strength</td>
<td>195-690 MPa</td>
<td>70-140 MPa</td>
</tr>
<tr>
<td>Ultimate Tensile Strength</td>
<td>895-1900 MPa</td>
<td>895-1900 MPa</td>
</tr>
<tr>
<td>Elongation at Failure</td>
<td>Approx. 25%</td>
<td>Approx. 25%</td>
</tr>
<tr>
<td>Recoverable Strain</td>
<td>Up to 8%</td>
<td>Up to 8%</td>
</tr>
<tr>
<td>Poisson Ratio</td>
<td>0.33</td>
<td>0.33</td>
</tr>
</tbody>
</table>
Shape Memory Alloys: Modeling

Types of Models

- **Phenomenological models**
 - Reproduce a specific phenomenon w/o describing the microstructural behavior

- **Experimental-based**
 - Built on curve fitting of experimental data
 - Requires few material constants

- **Thermomechanical-based**
 - Built on thermodynamics theory
 - “Internal State Variable” models
 - Requires greater number of material constants

- **Micromechanical models**
 - Based on micromechanics theory
 - The macroscopic behavior of the material is related to its micromechanical state
 - In the case of thermoelastic MT, there are two main mechanisms:
 a) Formulation of martensite variants
 b) Reorientation of martensite variants
 - Requires a great number of material constants
Potential Civil Engineering Applications

- Use of martensitic and/or superelastic shape memory alloys for restrainer cables in multi-span bridge systems
- Use of martensitic shape memory alloys in partially restrained beam-column connections
- Use of superelastic shape memory alloys as bracing systems in steel frame structures
SMA Bridge Restrainers
Smart Bracing System

- **Tension Only**
- **Tension-Compression**
SMA Beam-Column Connection
OpenSees Development for SMA Connections

- Force-Deformation relationships for
 - Partially restrained connections
 - Shape memory alloys: Superelastic effect

- Recorders for
 - Energy calculations: Strain, kinetic and damping energy

- Tcl Scripts for automation of
 - Model generation
 - Analysis procedures
 - Calculation of various response quantities
Force-Deformation Relationships

PR Connections - I

- PR connection model
 - Developed during SAC studies by Maison and Kasai (1998)
- Key features:
 - Backbone envelope curve representing the monotonic loading behavior
 - Slip plateau to model hysteretic pinching
 - Reduced reloading stiffness with increasing rotation history
 - Limited strain hardening leading to a finite ultimate moment capacity
 - Finite ultimate deformation capacity
Force-Deformation Relationships
PR Connections - II

- OpenSees UniaxialMaterial class is extended by implementing a child class for:
 - PRConnection

New Command:
```
uniaxialMaterial PRConnection $matTag $pUA $pMA $pUB $pMB $pShr $pN $pMU $pMApinch <$pMBpinch
$nMA $nUB $nMB $nShr $nN $nMU $nMApinch $nMBpinch>
```
Force-Deformation Relationships
PR Connections - III

- PRConnection uniaxial material is used to model
 - Top & bottom seat angle connections
 - Composite connections
 - T-Stub connections
Force-Deformation Relationships
Superelastic SMAs - I

- Superelastic SMA Model
 - Based on phenomenological model developed by DesRoches and Delemont (2002)
- Key Features
 - Different properties under tension and compression
 - Loading and unloading plateaus where transformation from austenite to martensite and vice versa takes place, leading to flag shaped hysteresis
 - Elastic deformation of fully transformed martensite
Force-Deformation Relationships

Superelastic SMAs - II

- OpenSees
 - UniaxialMaterial class is extended by implementing child classes for:
 - SuperelasticSMA

New Command:

```plaintext
```
Force-Deformation Relationships
SMA Connection - I

- Already built in and newly developed material models are calibrated using experimental data
 - Superelastic SMA uniaxial material model for superelastic effect
 - Hysteretic uniaxial material model for martensitic SMA behavior
A fiber connection model is built to predict the response of SMA connections with superelastic and martensitic SMA connecting elements.

Used in probabilistic seismic demand analysis of steel frames with SMA connections.

Force-Deformation Relationships

SMA Connection - II
Model Buildings and Ground Motions

- Model buildings
 - 3-, 9- and 20-story SAC model buildings
 - Representative of regular SMRFs
 - Pre- and post-Northridge designs available for various locations:
 - Los Angeles
 - Seattle
 - Boston
Recorders
Energy Calculations - I

- Strain Energy Calculations
 - Elastic and plastic deformations are separable at the material level
 - The energy dissipated in a fiber is integrated along the fiber section
 - The energy dissipated in a section is integrated along the length of the element

- Kinetic Energy Calculations
 - Done at the element level with numerical integration

- Damping Energy Calculations
 - Done at the element level with numerical integration
Recorders
Energy Calculations - II

- OpenSees Recorder class is extended by implementing a child class for:
 - EnergyRecorder
- Elements modified to use energy recorder:
 - elasticBeamColumn
 - nonlinearBeamColumn
 - zeroLengthSection

New Command:
```
recorder Energy <-file $fileName> <-time> <-ele ($ele1 $ele2 ...
  ...)> <-node ($node1 $node2 ...)>
  <-eleRange $startEle $endEle>
  <-nodeRange $startNode $endNode>
  <-elementRegion $regTag>
  <-nodeRegion $regTag>
  <-ele all>
  <-node all>
  <-cumulative>
  $eType
```
● Adds the ability to record (during a time history analysis)
 ● Energy dissipated at each (group of) element
 ● Strain (elastic and dissipated), kinetic, damping and total energy quantities
Tcl Script: Adaptive Models & Post-Processing

- Tasks automated using Tcl scripts:
 - Model generation with different types of connection models
 - Determination of constants for Rayleigh damping
 - Determination of PGA and S_a of ground acceleration records
 - Incremental Dynamic Analysis (IDA)
 - Determination of steady state response (residual/permanent forces & deformations) of the model after a time history analysis
 - Post-processing of various response quantities:
 - Response maxima at element (e.g. max moment), floor (e.g. max floor acceleration), and structure (e.g. max interstory drift) during a time history analysis
 - Base shear & fundamental period time histories
 - Normalized hysteretic energy of structural members
Thank you!