PySimple1 Material - OpenSeesWiki

PySimple1 Material

From OpenSeesWiki

Jump to: navigation, search




This command is used to construct a PySimple1 uniaxial material object:

uniaxialMaterial PySimple1 $matTag $soilType $pult $Y50 $Cd <$c>

$matTag integer tag identifying material
$soilType soilType = 1 Backbone of p-y curve approximates Matlock (1970) soft clay relation.

soilType = 2 Backbone of p-y curve approximates API (1993) sand relation.

$pult Ultimate capacity of the p-y material. Note that "p" or "pult" are distributed loads [force per length of pile] in common design equations, but are both loads for this uniaxialMaterial [i.e., distributed load times the tributary length of the pile].
$Y50 Displacement at which 50% of pult is mobilized in monotonic loading.
$Cd Variable that sets the drag resistance within a fully-mobilized gap as Cd*pult.
$c The viscous damping term (dashpot) on the far-field (elastic) component of the displacement rate (velocity). (optional Default = 0.0). Nonzero c values are used to represent radiation damping effects

NOTES:

In general the HHT algorithm is preferred over a Newmark algorithm when using this material. This is due to the numerical oscillations that can develop with viscous damping forces under transient loading with certain solution algorithms and damping ratios.

EQUATIONS and EXAMPLE RESPONSES:

The equations describing PySimple1 behavior are described in Boulanger, R. W., Curras, C. J., Kutter, B. L., Wilson, D. W., and Abghari, A. (1999). "Seismic soil-pile-structure interaction experiments and analyses." Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 125(9): 750-759. Only minor changes have been made in its implementation for OpenSees.

The nonlinear py behavior is conceptualized as consisting of elastic (p-ye), plastic (p-yp), and gap (pyg) components in series. Radiation damping is modeled by a dashpot on the “far-field” elastic component (pye) of the displacement rate. The gap component consists of a nonlinear closure spring (pc-yg) in parallel with a nonlinear drag spring (pdyg). Note that y = ye + yp + yg, and that p = pd + pc.

The plastic component has an initial range of rigid behavior between Crpult < p < Crpult with Cr = the ratio of p / pult when plastic yielding first occurs in virgin loading. The rigid range of p, which is initially 2Crpult, translates with plastic yielding (kinematic hardening). The rigid range of p can be constrained to maintain a minimum size on both the positive and negative loading sides (e.g., 25% of pult), and this is accomplished by allowing the rigid range to expand or contract as necessary. Beyond the rigid range, loading of the plastic (pyp) component is described by:

p = p_{\text{ult}} - (p_{\text{ult}} - p_o) \left [\frac{c y_{50}}{c y_{50} + | z_p - z^p_0|} \right ]^n

where pult = the ultimate resistance of the py material in the current loading direction, po = p at the start of the current plastic loading cycle, y^p_o = y_p at the start of the current plastic loading cycle, c = constant to control the tangent modulus at the start of plastic yielding, and n = an exponent to control sharpness of the pyp curve.

The closure (pcyg) spring is described by:

p^c = 1.8 p_{\text{ult}} \left [\frac{y_{50}}{y_{50} + 50(y_o^\text{+} - y^g)} - \frac{y_{50}}{y_{50} + 50(y_o^\text{-} - y^g)}  \right ]

where y_o^+ = memory term for the positive side of the gap, y_o^-= memory term for the negative side of the gap. The initial values of y_o^+ and y_o^- were set as y50 / 100 and y50 / 100, respectively. The factor of 1.8 brings pc up to pult during virgin loading to y_o^+ (or y_o^-). Gap enlargement follows logic similar to that of Matlock et al. (1978). The gap grows on the positive side when the plastic deformation occurs on the negative loading side. Consequently, the y_o^+ value equals the opposite value of the largest past negative value of, yp + yg + 1.5y50 where the 1.5y50 represents some rebounding of the gap. Similarly, the y_o^- value equals the opposite value of the largest past positive value of yp + yg − 1.5y50. This closure spring allows for a smooth transition in the load displacement behavior as the gap opens or closes.


The nonlinear drag (pdyg) spring is described by:

p^d = C_d p_{\text{ult}} - (C_d p_{\text{ult}} - p^d_o) \left [\frac{y_{50}}{y_{50} + 2| y^g - y^g_o|} \right ]^n


where Cd = ratio of the maximum drag force to the ultimate resistance of the p-y material, d^p_o =p^d at the start of the current loading cycle, and y^g_o = y^g at the start of the current loading cycle.

The flexibility of the above equations can be used to approximate different p-y backbone relations. Matlock’s (1970) recommended backbone for soft clay is closely approximated using c = 10, n = 5, and Cr = 0.35. API’s (1993) recommended backbone for drained sand is closely approximated using c = 0.5, n = 2, and Cr = 0.2. PySimple1 is currently implemented to allow use of these two default sets of values. Values of pult, y50, and Cd must then be specified to define the py material behavior.

Viscous damping on the far-field (elastic) component of the p-y material is included for approximating radiation damping. For implementation in OpenSees the viscous damper is placed across the entire material, but the viscous force is calculated as proportional to the component of velocity (or displacement) that developed in the far-field elastic component of the material. For example, this correctly causes the damper force to become zero during load increments across a fully formed gap. In addition, the total force across the p-y material is restricted to pult in magnitude so that the viscous damper cannot cause the total force to exceed the near-field soil capacity. Users should also be familiar with numerical oscillations that can develop in viscous damper forces under transient loading with certain solution algorithms and damping ratios. In general, an HHT algorithm is preferred over a Newmark algorithm for reducing such oscillations in materials like PySimple1.


PySimple1A.gif


PySimple1B.gif

EXAMPLE:



REFERENCES:

"Seismic Soil-pile-strcture interaction experiments and analysis", Boulanger, R.w., Curras, C.J., Kutter, B.L., Wilson, D.W., and Abghari, A. (1990). Jornal of Geotechnical and Geoenvironmental Engineering, ASCS, 125(9):750-759.


Code Developed by: Ross Boulanger, UC Davis This command is used to construct a PySimple1 uniaxial material object:

Personal tools