Introduction to OpenSees and Tcl/Tk

Frank McKenna
UC Berkeley

OpenSees Days Shanghai 2011

Outline of Presentation

• Overview of OpenSees the FRAMEWORK
• Introduction to Tcl Programming Language and Tcl interpreters
• Introduction to OpenSees.exe the APPLICATION
OpenSees is a Software Framework

- A framework is NOT an executable.
- A framework IS a set of cooperating software components for building applications in a specific domain.
- The OpenSees framework is written primarily in the object-oriented language C++; though other languages namely C and Fortran are also used.
- The abstract classes in the OpenSees framework define the interface. The concrete subclasses that exist in the framework provide the implementations.
- Other classes can be provided to extend the capabilities of the framework by developers using DLL’s or providing the source code to the OpenSees repository.
- Currently over 1000 classes in the OpenSees framework.
Main Abstractions in OpenSees Framework

- **ModelBuilder**: Constructs the objects in the model and adds them to the domain. (5 classes)
- **Domain**: Holds the state of the model at time t and $(t + dt)^t$ (500 classes)
- **Recorder**: Monitors user defined parameters in the model during the analysis (20 classes)
- **Analysis**: Moves the model from state at time t to state at time $t + dt$ (200 classes)

Recorder Options

- **Recorder**
 - ElementRecorder
 - NodeRecorder
 - EnvelopeNodeRecorder
 - EnvelopElementRecorder
 - DatabaseRecorder
- **DataOutputHandler**
 - StandardStream
 - FileStream
 - XML_FileStream
 - TCP_Stream
 - DatabaseHandler
- **Database**
 - File
 - MySQL
 - Oracle
What is in a Domain?

Domain

- **Element**
 - **Node**
 - **MP_Constraint**
 - **SP_Constraint**
 - **LoadPattern**
 - **TimeSeries**

Element

- **ElementalLoad**
 - **NodalLoad**
 - **SP_Constraint**
 - **BeamPointLoad**
 - **BeamUniformLoad**
 - **BeamTempLoad**

MP_Constraint

- **SP_Constraint**

Some Other Classes associated with Elements:

Material

- **Uniaxial**
 - Elastic
 - ElasticPP
 - Hardening
 - Concrete
 - Steel
 - Hysteretic
 - Parallel
 - Series
 - Gap
 - Fatigue
- **nD**
 - Elastic
 - DruckerPrager
 - TemplateElastoPlasto
 - FluidSolidPorous
 - PressureMultiYield (dependent, independent)
- **Section**
 - Elastic
 - Fiber

GeomTransformation

- Linear
- Pdelta
- Corotational

Element in Global System

Element in Basic System
What is an Analysis?

Analysis

StaticAnalysis
TransientAnalysis

CHandler Numberer CTest SolnAlgorithm Integrator SystemOfEqn

Plain Penalty Lagrange Transformation

Plain RCM AMD

NormDispIncr NormUnbalance NormEnergy RelativeNormDispIncr RelativeNormUnbalance RelativeNormEnergy

EquiSolnAlgo

Linear NewtonRaphson ModifiedNewton Broyden BFGS KrylovNewton NewtonLineSearch ...

(25 classes)

StaticIntegrator
LoadControl DispControl AcclLength ...

TransientIntegrator
CentralDifference Newmark HHT GeneralizedAlpha NewmarkExplicit TRBDF2 AlphaOS ...

(35 classes)

BandGeneral BandSPD ProfileSPD SparseGeneral SparseSymmetric

How Do People Use OpenSees Framework?

• Provide their own main() function in C++ and link to framework.

• Use OpenSees interpreterS. These are extensions of the Tcl interpreters, tclsh and wish, for performing finite element analysis.

 1. OpenSees.exe
 2. OpenSeesTk.exe
 3. OpseysesSP.exe
 4. OpenSeesMP.exe
Tcl Interpreters

- **wish** and **tclsh** are Tcl interpreters.
 - Interpreters (Perl, Matlab, Ruby) are programs that execute programs written in a programming language immediately.
 - There is no separate compilation & linking.
 - An interpreted program runs slower than a compiled one.

  ```puts "sum of 2 and 3 is \[expr 2 + 3\]"
  
  sum of 2 and 3 is 5```

What is Tcl

- **Tcl is a dynamic programming language.**
  - It is a string based command language.
  - Variables and variable substitution
  - Expression evaluation
  - Basic control structures (if, while, for, foreach)
  - Procedures
  - File manipulation
  - Sourcing other files.

- Command syntax:
  ```command arg1 arg2 ...```

- Help
Example Tcl

- **variables & variable substitution**
  ```tcl```
  ```
 > set a 1
 1
 > set b a
 a
 > set b $a
 1
  ```
  ```

- **sourcing other files**
  ```tcl```
  ```
 > source Example1.tcl
  ```

- **expression evaluation**
  ```tcl```
  ```
  > expr 2 + 3
  5
  > set b [expr 2 + $b]
  3
  ```
  ```

- **file manipulation**
  ```tcl```
  ```
  > set fileId [open tmp w] ??
  > puts $fileId "hello"
  > close $fileId
  > type tmp
  hello
  ```
  ```

- **lists**
  ```tcl```
  ```
  > set a {1 2 three}
  1 2 three
  > set la [llength $a]
  3
  > set start [lindex $a 0]
  1
  > lappend a four
  1 2 three four
  ```
  ```

- **procedures & control structures**
  ```tcl```
  ```
  > for {set i 1} {i < 10} {incr i 1} {
  puts "i equals $i"
  }
  ...
  > set sum 0
  foreach value {1 2 3 4} {
  set sum [expr $sum + $value]
  }
  > puts $sum
  10
  > proc guess {value} {
  global sum
  if {$value < $sum} {
  puts "too low"
  } else {
  if {$value > $sum} {
  puts "too high"
  } else { puts "you got it!"}
  }
  } guess 9
  too low
  ```
  ```

OpenSees Interpreters

- The OpenSees interpreters are tcl interpreters which have been extended to include commands for finite element analysis:
  1. Modeling – create nodes, elements, loads and constraints
  2. Analysis – specify the analysis procedure.
  3. Output specification – specify what it is you want to monitor during the analysis.

- Being interpreters, this means that the files you create and submit to the OpenSees interpreters are not input files. You are creating and submitting PROGRAMS.
OpenSees.exe

• An interpreter that extends tclsh for FE analysis.

WARNING: There is no GUI!

model Command

*Adds the modeling commands to the interpreter.

• Basic Model Builder

   model Basic –ndm ndm? <-ndf ndf?>

This command now adds the following commands to the interpreter:

  node  mass  element  equalDOF  fix  fixX  fixY  fixZ
  pattern  timeSeries  load  eleLoad  sp
  uniaxialMaterial  nDMaterial  section  geomTransf
  fiber  layer  patch  block2D  block3D
Truss example:

model Basic -ndm 2 -ndf 2
node 1 0.0 0.0
node 2 144.0 0.0
node 3 168.0 0.0
node 4 72.0 96.0
fix 1 1 1
fix 2 1 1
fix 3 1 1
uniaxialMaterial Elastic 1 3000.0
element truss 1 1 4 10.0 1
element truss 2 2 4 5.0 1
element truss 3 3 4 5.0 1
timeSeries Linear 1
pattern Plain 1 1 {
    load 4 100.0 -50.0
}

Analysis

handler type? args...
numberer type? args...
test type? args...
algorithm type? args...
integrator type? args...
system type? args...
analysis type? args...
analyze args ...
Example Analysis:

• Static Nonlinear Analysis with LoadControl
  - constraints Transformation
  - numberer RCM
  - system BandGeneral
  - test NormDispIncr 1.0e-6 6 2
  - algorithm Newton
  - integrator LoadControl 0.1
  - analysis Static
  - analyze 10

• Transient Nonlinear Analysis with Newmark
  - constraints Transformation
  - numberer RCM
  - system BandGeneral
  - test NormDispIncr 1.0e-6 6 2
  - algorithm Newton
  - integrator Newmark 0.5 0.25
  - analysis Transient
  - analyze 2000 0.01

3 Ways to Execute the commands

1. **Interactively** - the commands as we have shown can be input directly at the prompt

   ![Image of OpenSees console](image-url)
3 Ways to Execute the commands

2. Sourced from File- the commands are placed in a text file which is sourced in

3 Ways to Execute the commands

3. Batch Mode- the commands are placed in a text file which are executed at startup.
useful default variables: `argv` & `argc`

OpenSees Resources
http://opensees.berkeley.edu

- Message Board - look for answers, post questions and ANSWERS
  http://opensees.berkeley.edu/community/index.php
- Getting Started Manual - basic how to for getting started
  http://opensees.berkeley.edu/wiki/index.php/Getting_Started
- User Documentation - command documentation & theory!
- User Examples
  http://opensees.berkeley.edu/wiki/index.php/OpenSees_User
- Developers
  http://opensees.berkeley.edu/wiki/index.php/OpenSees_Developer
  http://opensees.berkeley.edu/cgi-bin/cvsweb2.cgi/OpenSees/SRC/

OpenSeesWiki - Editable by all (including YOU!)
There are too many things in the framework to cover them all.

We will not show anything about the ability of OpenSees to do Sensitivity, Reliability or Optimization (over 1/4 of the code!)

Need to conact authors directly:
Armen DerKiuerghian, Terje Haukass, Joel Conte, Michael Scott, KevinMackie, Michele Barbato,
Quan Gu (http://archt.xmu.edu.cn/opensees/opensees.html)

Any Questions?