
Parallel Processing &
Grid Computing
With OpenSees

Frank McKenna
UC Berkeley

http://opensees.berkeley.edu/webinars/parallel/material.zip

The Motivation …

If your desktop represented the
computational resources available to

you today to perform large simulations

then only using your desktop to perform
the simulation is like using your fingers
to perform the computations required.

Outline

• Technology is Changing
• OpenSees & Parallel Processing
• Parallel/Grid Computing on NEEShub

Building Blocks for Simulation

Models
Material, Element

N
um

er
ic

al
 C

om
pu

ta
tio

n
A

lg
or

ith
m

s
&

 S
ol

ve
rs

In
fo

rm
at

io
n

Te
ch

no
lo

gy
D

at
ab

as
e,

 V
is

ua
liz

at
io

n,
 F

ra
m

ew
or

ks
,

Pa
ra

lle
l &

 G
rid

/N
et

w
or

k
lib

ra
rie

s

Hardware has Changed
Intel Processor Speed

XeonE7Server 72Gflop
i7Desktop 55GFlop
i7Mobile 30GFlop
i5Desktop 40GFlop
i5Mobile 22GFlop
Core2 Quad 48GFlop
Core2 Duo 25GFlop
Game consoles (Wii, Xbox Playstation)
have more raw numerical processing
power than your desktop!

 Game Console Speed

Nintendo Wii 61Gflop
Xbox360 355Gflop
Sony PS3 2018Gflop

CHIP/Socket

GPU

What is a Parallel Computer?
• A parallel computer is a collection of processing

elements that cooperate to solve large problems fast.

PU
(CPU/GPU)

communication

Memory Memory

File
System

File
System

PU
(CPU/GPU)

PU
(CPU/GPU)

page 7Source:Jack Dongarra, 2011

Performance Projection

8-10 years

N=500

1 Eflop/s

2019

Speedup & Amdahl’s Law

)(

)1(
)(

pTime

Time
pspeedupPC =

!""
#

+

= nas

n

T
T

T
SpeedupPC

$$
$

1

)1(1
1

1

Portion of sequential # of processors

BEFORE YOU GET ALL EXCITED

9

Improving Real Performance

0.1

1

10

100

1,000

2000 2004
Te

ra
flo

ps
1996

Peak Performance grows exponentially,
a la Moore’s Law
 In 1990’s, peak performance increased 100x;

in 2000’s, it will increase 1000x

But efficiency (the performance relative to
the hardware peak) has declined
 was 40-50% on the vector supercomputers

of 1990s
 now as little as 5-10% on parallel

supercomputers of today

Close the gap through ...
 Mathematical methods and algorithms that

achieve high performance on a single
processor and scale to thousands of
processors

 More efficient programming models and tools
for massively parallel supercomputers

Performance
Gap

Peak Performance

Real Performance

Source: Jim Demmell, CS267
Course Notes

Amdahl’s Law Ignores Data
Movement

• Data Movement is expensive
• Flops are cheap

• Iterative Solvers
• Mixed Precision Arithmetic
• Duplicate Calculations

Data Is Becoming an Even
Greater Bottleneck to Speedup

It’s Not Just the High
Performance Parallel Computers

We Need to Concentrate On

Stand Alone Parallel Machine (i.e. your desktop/device)

Grid Computing

Grid Computing:
• Most distributed form of parallel computing
• Computers communicating over the internet to solve a given problem
• Low bandwidth and extremely high latency, typically only used for
embarrassingly parallel problems, i.e. parameter studies.

OpenSees in the clouds using Open Science Grid

 Perform parametric studies that involve large-scale nonlinear models of structure or soil-
structure systems with large number of parameters and OpenSees runs.

 Motivation

 Application example
 Nonlinear time-history (NLTH) analyses of advanced nonlinear FE model of a building
 Probabilistic seismic demand hazard analysis making use of the “cloud method”

 90 bi-directional historical earthquake records (unscaled and scaled by a factor of two)
 Sensitivity of probabilistic seismic demand to FE model parameters

André R. Barbosa, Joel P. Conte, and José I. Restrepo, UCSD

 Some numbers

Number of NLTH analyses per parameter set
realization

180

Average duration of NLTH analysis 12 hours

Average size of output data 1.5 GB

Parameters considered 6

Perturbations considered 4

Estimated clock time (180x12x[(6x4x2)+1]) 106,800 hours
(12.2 years)

Estimated output data (180x1.5x[(6x4x2)+1]) 12 TB

 30 days on
OSG versus 12

years on
Desktop!

Cloud Computing (according to Steve Jobs WWDC 2011)

“..PC and Mac Demoted to a Device”

Some people think the cloud is just
A hard drive in the sky!

IT’S NOTCloud computing is internet-based computing ,
whereby shared resources, software, and

information are provided to computers and other
devices on demand, like the electricity grid. source:

wikipedia

Industry:

Research: (Earthquake Engineering):

What is OpenSees?

• OpenSees is an Open-Source Software Framework written in
C++ for developing nonlinear Finite Element Applications for
both sequential and PARALLEL environments.

Domain Classes
Domain

MP_ConstraintSP_ConstraintLoadPatternTimeSeries

ElementalLoad NodalLoad SP_Constraint

Element

PartitionedDomain

MovableObject

sendSelf(Channel, ..)
recvSelf(Channel, ..)

Subdomain

DomainPartitionerGraphPartitioner

Metis

NonlinearBeamColumn
BeamWithHinges
Quad (std, bbar,)
Brick (std, bbar)
Shell

LoadBalancer

Analysis Classes
Analysis

AnalysisModel SolnAlgorithmNumberer Integrator

EquiSolnAlgo
Linear
NewtonRaphson
ModifiedNewton
Broyden
BFGS
KrylovNewton

RCM BandGeneral
BandSPD
ProfileSPD
SparseGeneral
SparseSymmetric

SystemOfEqn SolverCHandler

StaticAnalysis
TransientAnalysis

MovableObject

sendSelf(Channel, ..)
recvSelf(Channel, ..)

StaticDDAnalysis TransientDDAnalysis

ParallelNumberer

DistributedSuperLU
Mumps

DistributedSparse

Lapack(Gen, Band, ..)
ProfileSPD
SuperLU
Umfpack
SparseSym

DomainDecompAnalysis

SubstructuringAnalysis

So What are OpenSeesSP.exe
and OpenSeesMP.exe ?

The OpenSees Interpreters

• OpenSees.exe, OpenSeesSP.exe and
OpenSeesMP.exe are applications that
extend the Tcl interpreter for finite element.

Parallel OpenSees Interpreters

– OpenSeesSP: An application for large models which
will parse and execute the exact same script as the
sequential application. The difference being the
element state determination and equation solving are
done in parallel.

– OpenSeesMP: An application for BOTH large
models and parameter studies.

OpenSeesSP:
An application for Large Models

P0

P1

Actor objects sitting on other processes
waiting to receive instructions

Single interpreter running on P0
interpreting the input file

P2 Pn-1

Modified Commands

• System command is modified to accept new
parallel equation solvers
system Mumps
system Diagonal

Domain
Analysis

Mumps

LoadControl
Newton

P0 P1

P2

P3

#build the model
source model.tcl
#build the analysis
system Mumps
constraints Transformation
numberer Plain
test NormDispIncr 1.0e-12 10 3
algorithm Newton
integrator LoadControl
analysis Static

Single interpreter running on P0
Interpreting the input file

Model Built and Analysis Constructed in
P0

P1

=
P3

P0

P2

P1

P3 Analysis

Analysis

#build the model
source modelP.tcl
#build the analysis
system Mumps
constraints Transformation
numberer Plain
test NormDispIncr 1.0e-12 10 3
algorithm Newton
integrator LoadControl
analysis Static
analyze 10

Example Usage:
Humboldt Bay Bridge Model

0

50

100

150

200

250

300

350

0 2 4 6 8 10 12 14 16 18

Number of processors

T
o

ta
l
e
x
e
c
u

ti
o

n
 t

im
e
 (

m
in

u
te

)
100,000+ DOF Model

Implicit Integration
Mumps Direct Solver

OpenSeesMP: An application for
Large Models and Parameter Studies

pid = 0
np = n

pid = 1
np = n

pid = n-1
np = n

Each process is running an
interpreter and can determine it’s
unique process number and the total
number of processes in computation

Based on this script can do different
things

source in the model and analysis procedures
 set pid [getPID]
 set np [getNP]

 # build model based on np and pid
 source modelP.tcl
 doModel {$pid $np}

 # perform gravity analysis
 system Mumps
 constraints Transformation
 numberer Parallel
 test NormDispIncr 1.0e-12 10 3
 algorithm Newton
 integrator LoadControl 0.1

 analysis Static

 set ok [analyze 10]
 return $ok

New Commands added to OpenSeesMP:

• A Number of new commands have been added:

1. getNP returns number of processes in computation.

2. getPID returns unique pocess id {0,1, .. NP-1}

3. send -pid pid? data pid = { 0, 1, .., NP-1}

4. recv -pid pid? variableName pid = {0,1 .., NP-1, ANY}

5. barrier

6. domainChange

• These commands have been added to ALL interpreters
(OpenSees, OpenSeesSP, and OpenSeesMP)

Example
set pid [getPID]
set np [getNP]
if {$pid == 0 } {
 puts ”Random:"
 for {set i 1 } {$i < $np} {incr i 1} {
 recv -pid ANY msg
 puts "$msg"
 }
} else {
 send -pid 0 "Hello from $pid"
}
barrier
if {$pid == 0 } {
 puts "\nOrdered:"
 for {set i 1 } {$i < $np} {incr i 1} {
 recv -pid $i msg
 puts "$msg"
 }
} else {
 send -pid 0 "Hello from $pid"
}

ex2.tcl

Steel Building Study

7200 records
2 min a record
240 hours or 10 days
Ran on 2000 processors
on teragrid in less than 15 min.

set pid [getPID]
set np [getNP]
set recordsFileID [open "peerRecords.txt" r]
set count 0;

foreach gMotion [split [read $recordsFileID] ¥n] {
 if {[expr $count % $np] == $pid} {

 source model.tcl
 source analysis.tcl

 set ok [doGravity]

 loadConst -time 0.0

 set gMotionList [split $gMotion "/"]
 set gMotionDir [lindex $gMotionList end-1]
 set gMotionNameInclAT2 [lindex $gMotionList end]
 set gMotionName [string range $gMotionNameInclAT2 0 end-4]

 set Gaccel "PeerDatabase $gMotionDir $gMotionName -accel 384.4 -dT dT -nPts nPts"
 pattern UniformExcitation 2 1 -accel $Gaccel

 recorder EnvelopeNode -file $gMotionDir$gMotionName.out -node 3 4 -dof 1 2 3 disp

 doDynamic [expr $dT*$nPts] $dT

 wipe
 }

 incr count 1;
}

Concrete Building Study
113 records, 4 intensities
3 hour a record, would have
taken 1356 hours or 56.5 days
Ran on 452 processors of a
Teragrid in less than 5 hours.

set pid [getPID]
set np [getNP]
set count 0;
source parameters.tcl
source ReadSMDFileNewFormat.tcl;
foreach GMfile $iGMFile {
 foreach Factor1248 $iFactor1248 {

 if {[expr $count % $np] == $pid} {

 set inFile $GMdir/$GMfile.AT2
 set outFile $GMdir/$GMfile.g3;
 ReadSMDFileNewFormat $inFile $outFile dt npts;

 wipe
 source GravityAnalysisScript.tcl

 loadConst -time 0.0;
 wipeAnalysis

 source EQ_Recorder.tcl
 source EQAnalysisScript.tcl

 if {$ok == 0} {
 puts "Process $pid $GMfile x $Factor1248 FINISHED OK modelTime [getTime]]"
 } else {
 puts "Process $pid $GMfile x $Factor1248 FINISHED FAIL modeTime [getTime] desiredTime $TmaxAnalysis]"
 }
 incr count 1
 }
 }
}

Modified Commands
• Some existing commands have been modified to allow analysis of

large models in parallel:
1. numberer

2. system

3. integrator

• Use these ONLY IF PARALLEL MODEL

numberer ParallelPlain

numberer ParallelRCM

system Mumps <-ICNTL14 %?>

integrator ParallelDisplacementControl node? Dof? dU?

Example Parallel Model:

E A
3000
3000
3000

10
 5
 5

1
2
3

6’ 6’ 2’

2 3

50 100

(1) (2) (3)

1

4

8’

set pid [getPID]
set np [getNP]
if {$np != 2} exit

model BasicBuilder -ndm 2 -ndf 2
uniaxialMaterial Elastic 1 3000
if {$pid == 0} {
 node 1 0.0 0.0
 node 4 72.0 96.0
 fix 1 1 1
 element truss 1 1 4 10.0 1
 pattern Plain 1 "Linear" {
 load 4 100 -50
 }
} else {
 node 2 144.0 0.0
 node 3 168.0 0.0
 node 4 72.0 96.0
 fix 2 1 1
 fix 3 1 1
 element truss 2 2 4 5.0 1
 element truss 3 3 4 5.0 1
}

ex4.tcl

Example Parallel Analysis:
#create the recorder
recorder Node -file node4.out.$pid -node 4 -dof 1 2 disp

#create the analysis
constraints Transformation
numberer ParallelPlain
system Mumps
test NormDispIncr 1.0e-6 6 2
algorithm Newton
integrator LoadControl 0.1
analysis Static

#perform the analysis
analyze 10

print to screen node 4
print node 4

Parallel Displacement Control and
domainChange!

source ex4.tcl

loadConst - time 0.0

if {$pid == 0} {
 pattern Plain 2 "Linear" {
 load 4 1 0
 }
}

domainChange

integrator ParallelDisplacementControl 4 1 0.1
analyze 10

ex5.tcl

Things to Watch For

1. Deadlock (program hangs)
– send/recv messages
– Opening files for writing & not closing them

2. Race Conditions (different results every
time run problem)
– parallel file system.

3. Load Imbalance
– poor initial task assignment.

Watch out for Deadlock

• Match every send with a recv
• Watch the order

Deadlock Example
set pid [getPID]
set np [getNP]
if {$pid == 0 } {
 puts ”Random:"
 for {set i 1 } {$i < $np} {incr i 1} {
 recv -pid ANY msg
 puts "$msg"
 }
} else {
 send -pid 0 "Hello from $pid"
}

#barrier
if {$pid == 0 } {
 puts "\nOrdered:"
 for {set i 1 } {$i < $np} {incr i 1} {
 recv -pid $i msg
 puts "$msg"
 }
} else {
 send -pid 0 "Hello from $pid"
}

ex3.tcl

Race Conditions and the File
System

• Remember all processes can be reading/writing to
the same files. If same file is opened for reading
and writing, e.g. using a global file system to
handle shared variable (opening as r+ will do what
you want).

• This can also happen if you are modifying the
directory structure in your script.

Watch out for Load Imbalance

• Load imbalance can greatly reduce the
performance.

• Dynamic load balancing solutions can
always be considered if performance is an
issue.

 P
ar

am
et

er
 S

tu
dy

set np [getNP]
set pid [getPID]
set count 0

source model.tcl
source analysis.tcl

set tStart [clock seconds]

set recordsFile [open motionList r]
set lines [split [read $recordFile] \n]
foreach line $line {
 if {[expr $count % $np] == $pid} {

 doModel

 doGravityAnalysis;

 loadConst -time 0.0
 set record [lindex $line 0]
 set npts [lindex $line 1]
 set dt [lindex $line 2]
 set accelSeries "Path -filePath $record -dt $dt -factor 386.4"
 pattern UniformExcitation 2 1 -accel $accelSeries

 set ok [doDynamicAnalysis $npts $dt]
 wipe
 }
 incr count 1
}
set tFinish [clock seconds]
barrier
puts "Duration Process $pid [expr $tFinish - $tStart]"

ex6.tcl

Si
m

pl
e

 L
oa

d
B

al
an

ci
ng

set np [getNP]
set pid [getPID]
set count 0

source model.tcl
source analysis.tcl

set tStart [clock seconds]
if {$pid == 0} {

 # Coordinator

 set recordsFile [open motionList r]
 set lines [split [read $recordsFile] \n]
 set numLines [llength $lines]
 foreach line $lines {
 recv -pid ANY pidWorker
 send -pid $pidWorker $line
 }

 for {set i 1} {$i < $np} {incr i 1} {
 send -pid $i "DONE"
 }

}

else {

 # Worker

 set done NOT_DONE;
 while {$done != "DONE"} {
 send -pid 0 $pid
 recv -pid 0 line
 set record [lindex $line 0]

 if {$record == "DONE"} {
 break;
 }

 set npts [lindex $line 1]
 set dt [lindex $line 2]

 doModel;

 doGravityAnalysis;

 loadConst -time 0.0

 set accelSeries "Path -filePath $record -dt $dt -factor 386.4"
 pattern UniformExcitation 2 1 -accel $accelSeries

 doRecorders $record $npts $dt
 set ok [doDynamicAnalysis $npts $dt]
 wipe
 }
}
set tFinish [clock seconds]
barrier
puts "Duration Process $pid [expr $tFinish - $tStart]"

else

ex7.tcl

The OpenSeesLab tool:
http://nees.org/resources/tools/openseeslab

Is a suite of Simulation Tools powered by OpnSees for:
1. Submitting OpenSees scripts to NEEShub resources
2. Educating students and practicing engineers

OpenSees Interpreter Tool

ht
tp

://
op

en
se

es
.b

er
ke

le
y.

ed
u/

w
ik

i/i
nd

ex
.p

hp
/L

at
er

al
ly

-L
oa

de
d_

Pi
le

_F
ou

nd
at

io
n

C
hr

is
 M

cG
an

n
U

. W
as

hi
ng

to
n

Lateral Pile Analysis

Parallel Script Submission Tool

OpenSees Parameter Study Tool

WARNING: Don’t use a file in home directory as main script

Workflows in the Cloud
OpenSees cannot do it all!
Software exists (pegasus, …) for creating scientific workflows that can
take advantage of computational resources in the cloud! A scientific
workflow allows engineers to compose and execute a series of
computational or data manipulation steps in a scientific application.

1

9

4

83
7

10

13

12

15

4

85

10

9

13

12

15

Original workflow: 15 compute nodes
devoid of resource assignment

60 tasks

mapping

Moment Frame Reliability Analysis

OpenSees Challenge 2012

At next years OpenSees Days Workshop (August 15-16), We
will award 2 iPod’s:

1) One to the person (anyone other than myself) who submits
the best OpenSees powered app to NEEShub.

2) The other to the person who submits best new code
module.

 All code submitted between last years workshop and this
years workshop will be considered. Winner will be judged
by Workshop participants.

Thank You

