
Introduction to OpenSees
Parallel Classes and Applications

Frank McKenna
UC Berkeley

OpenSees Parallel Workshop
Berkeley, CA

What is OpenSees?

• OpenSees is an Open-Source Software Framework written in
C++ for developing nonlinear Finite Element Applications for
both sequential and PARALLEL environments.

• The OpenSees framework provides classes for the Actor
programming model.

The Actor Model

• It does not preclude message passing or thread programming
within the objects.

• It is a parallel version of the object-oriented model.
• In response to an incoming message, Actors can perform local

work, create more Actors to perform the work, and can send
return messages.

• A Shadow object represents a remote actor object locally,
methods from the local process intended for a remote Actor go
through the local Shadow object.

Classes for Parallel Processing
• The OpenSees framework was designed for parallel and

distributed processing from the outset.
• Classes are provided for the Actor Model.
• This does not rule out the use of message passing or

threads within the objects of an Actor.
Channel

send/recvVector()
send/recvMatrix()
send/recvID

MPI_Channel
TCP_Socket

ObjectBroker

getElement()
getAlgorithm()

Actor

send/recv…()
run()

Shadow

send/recv…()

MPI_Machine
TCP_Machine

Machine

startActor()
getPID()
getNP()

Domain Classes
Domain

MP_ConstraintSP_ConstraintLoadPatternTimeSeries

ElementalLoad NodalLoad SP_Constraint

Element

PartitionedDomain

MovableObject

sendSelf(Channel, ..)
recvSelf(Channel, ..)

Subdomain

DomainPartitionerGraphPartitioner

Metis

NonlinearBeamColumn
BeamWithHinges
Quad (std, bbar,)
Brick (std, bbar)
Shell

LoadBalancer

Analysis Classes
Analysis

AnalysisModel SolnAlgorithmNumberer Integrator

EquiSolnAlgo
Linear
NewtonRaphson
ModifiedNewton
Broyden
BFGS
KrylovNewton

RCM BandGeneral
BandSPD
ProfileSPD
SparseGeneral
SparseSymmetric

SystemOfEqn SolverCHandler

StaticAnalysis
TransientAnalysis

MovableObject

sendSelf(Channel, ..)
recvSelf(Channel, ..)

StaticDDAnalysis TransientDDAnalysis

ParallelNumberer

DistributedSuperLU
Mumps

DistributedSparse

Lapack(Gen, Band, ..)
ProfileSPD
SuperLU
Umfpack
SparseSym

DomainDecompAnalysis

SubstructuringAnalysis

Example Parallel Applications

Parallel OpenSees Interpreters
• Two Interpreters have been created for users:

– OpenSeesSP: An application for large models which
will parse and execute the exact same script as the
sequential application. The difference being the
element state determination and equation solving are
done in parallel.

– OpenSeesMP: An application for BOTH large
models and parameter studies.

OpenSeesSP:
An application for Large Models

P0

P1

Actor objects sitting on other processes
waiting to receive instructions

Single interpreter running on P0
interpreting the input file

P2 Pn-1

Example Usage:
Humboldt Bay Bridge Model

0

50

100

150

200

250

300

350

0 2 4 6 8 10 12 14 16 18

Number of processors

T
o

ta
l
e
x
e
c
u

ti
o

n
 t

im
e
 (

m
in

u
te

)

OpenSeesMP: An application for
Large Models and Parameter Studies

pid = 0
np = n

pid = 1
np = n

pid = n-1
np = n

Each process is running an
interpreter and can determine it’s
unique process number and the total
number of processes in computation

Based on this script can do different
things

source in the model and analysis procedures
 set pid [getPID]
 set np [getNP]

 # build model based on np and pid
 source modelP.tcl
 doModel {$pid $np}

 # perform gravity analysis
 system ParallelMumps
 constraints Transformation
 numberer ParallelPlain
 test NormDispIncr 1.0e-12 10 3
 algorithm Newton
 integrator LoadControl 0.1

 analysis Static

 set ok [analyze 10]
 return $ok

Steel Building Study

7200 records
2 min a record
240 hours or 10 days
Ran on 2000 processors
on teragrid in less than 15 min.

set pid [getPID]
set np [getNP]
set recordsFileID [open "peerRecords.txt" r]
set count 0;

foreach gMotion [split [read $recordsFileID] ¥n] {
 if {[expr $count % $np] == $pid} {

 source model.tcl
 source analysis.tcl

 set ok [doGravity]

 loadConst -time 0.0

 set gMotionList [split $gMotion "/"]
 set gMotionDir [lindex $gMotionList end-1]
 set gMotionNameInclAT2 [lindex $gMotionList end]
 set gMotionName [string range $gMotionNameInclAT2 0 end-4]

 set Gaccel "PeerDatabase $gMotionDir $gMotionName -accel 384.4 -dT dT -nPts nPts"
 pattern UniformExcitation 2 1 -accel $Gaccel

 recorder EnvelopeNode -file $gMotionDir$gMotionName.out -node 3 4 -dof 1 2 3 disp

 doDynamic [expr $dT*$nPts] $dT

 wipe
 }

 incr count 1;
}

Documentation

Any Questions?

