OpenSeesMP

Frank McKenna
UC Berkeley

OpenSees Parallel Workshop
Berkeley, CA
OpenSeesMP

- OpenSeesMP was created for performing parameter studies AND for analyzing large models on parallel machines.
- OpenSeesMP requires the user have an understanding of parallel processing and requires that the user WRITE parallel scripts.
- It is more difficult of the two to use BUT it is the more powerful.
What is Running on the Processors?

Each process is running an interpreter. The interpreter can provide its unique process number and the total number of processes in computation.

Based on this script can do different things

source in the model and analysis procedures
set pid [getPID]
set np [getNP]

build model based on np and pid
source modelP.tcl
doModel {$pid $np}

perform gravity analysis
system ParallelMumps
constraints Transformation
numberer ParallelPlain
test NormDispIncr 1.0e-12 10 3
algorithm Newton
integrator LoadControl 0.1

analysis Static
set ok [analyze 10]
return $ok
New Commands added:

- A Number of new commands have been added:
 1. **getNP** returns number of processes in computation.
 2. **getPID** returns unique process id \(\{0, 1, \ldots, \text{NP}-1\} \)
 3. **send -pid pid? data** \(\text{pid} = \{0, 1, \ldots, \text{NP}-1\} \)
 4. **recv -pid pid? variableName** \(\text{pid} = \{0, 1, \ldots, \text{NP}-1, \text{ANY} \} \)
 5. **barrier**
 6. **domainChange**

- These commands have been added to ALL interpreters (OpenSees, OpenSeesSP, and OpenSeesMP)
Example

`ex1.tcl`

set pid [getPID]
set np [getNP]

puts "Hello World Process: $pid"
Another Example

ex2.tcl

```tcl
set pid [getPID]
set np [getNP]
if {$pid == 0} {
    puts "Random:"
    for {set i 1} {$i < $np} {incr i 1} {
        recv -pid ANY msg
        puts "$msg"
    }
} else {
    send -pid 0 "Hello from $pid"
}

barrier
if {$pid == 0} {
    puts "\nOrdered:"
    for {set i 1} {$i < $np} {incr i 1} {
        recv -pid $i msg
        puts "$msg"
    }
} else {
    send -pid 0 "Hello from $pid"
}
```

Terminal output:

```
bin> mpirun -np 10 OpenSeesMP ex2.tcl

OpenSees -- Open System For Earthquake Engineering Si
Pacific Earthquake Engineering Research Center -- 1.7.
(c) Copyright 1999,2000 The Regents of the Univers
All Rights Reserved
(Copyright and Disclaimer @ http://www.berkeley.edu/OpenSe

Random:
Hello from 1
Hello from 3
Hello from 5
Hello from 6
Hello from 8
Hello from 2
Hello from 4
Hello from 7
Hello from 9
Ordered:
Hello from 1
Hello from 2
Hello from 3
Hello from 4
Hello from 5
Hello from 6
Hello from 7
Hello from 8
Hello from 9
```
Modified Commands

- Some existing commands have been modified to allow analysis of large models in parallel:
 1. numberer
 - `numberer ParallelPlain`
 - `numberer ParallelRCM`
 2. system
 - `system Mumps <-ICNTL14 %?>`
 3. integrator
 - `integrator ParallelDisplacementControl node? Dof? dU?`

- Use these ONLY IF PARALLEL MODEL
Example Parallel Model:

```
set pid [getPID]
set np [getNP]
if {$np != 2} exit

model BasicBuilder -ndm 2 -ndf 2
uniaxialMaterial Elastic 1 3000
if {$pid == 0} {
    node 1 0.0 0.0
    node 4 72.0 96.0
    fix 1 1 1
    element truss 1 1 4 10.0 1
    pattern Plain 1 "Linear" {
        load 4 100 -50
    }
}
else {
    node 2 144.0 0.0
    node 3 168.0 0.0
    node 4 72.0 96.0
    fix 2 1 1
    fix 3 1 1
    element truss 2 2 4 5.0 1
    element truss 3 3 4 5.0 1
}
```
Example Parallel Analysis:

create the recorder
recorder Node -file node4.out.$pid -node 4 -dof 1 2 disp

create the analysis
constraints Transformation
numberer ParallelPlain
system Mumps
test NormDispIncr 1.0e-6 6 2
algorithm Newton
integrator LoadControl 0.1
analysis Static

perform the analysis
analyze 10

print to screen node 4
print node 4

bin> mpirun -np 2 OpenSeesMP ex4.tcl

bin> diff node4.out.0 node4.out.1
bin> []
source ex4.tcl
loadConst - time 0.0
if {$pid == 0} {
 pattern Plain 2 "Linear" {
 load 4 1 0
 }
}
-domainChange
integrator ParallelDisplacementControl 4 1 0.1
analyze 10
Things to Watch For

1. Deadlock
 - send/recv messages
 - Opening files for writing & not closing them

2. Race Conditions
 - parallel file system.

3. Load Imbalance
 - poor initial task assignment.
Watch out for Deadlock

- Match every send with a recv
- Watch the order
Deadlock Example

```tcl
set pid [getPID]
set np [getNP]
if {$pid == 0} {
    puts "Random:"
    for {set i 1} {$i <$np} {incr i 1} {
        recv -pid ANY msg
        puts "$msg"
    }
} else {
    send -pid 0 "Hello from $pid"
}

#barrier
if {$pid == 0} {
    puts "\nOrdered:"
    for {set i 1} {$i <$np} {incr i 1} {
        recv -pid $i msg
        puts "$msg"
    }
} else {
    send -pid 0 "Hello from $pid"
}
```

Terminal — bash — 84x36

```
bin> mpirun -np 10 OpenSeesMP ex2.tcl

OpenSees -- Open System For Earthquake Engineering Simulation
Pacific Earthquake Engineering Research Center -- 1.7.5

(c) Copyright 1999,2000 The Regents of the University of Cali
All Rights Reserved
(Copyright and Disclaimer @ http://www.berkeley.edu/OpenSees/copyrigh

Random:
Hello from 2
Hello from 5
Hello from 2
Hello from 5
Hello from 3
Hello from 4
Hello from 6
Hello from 3
Hello from 4
Ordered:
Hello from 1
^Cmpirun: killing job...

WARNING: mpirun is in the process of killing a job, but has detected an
interruption (probably control-C).
It is dangerous to interrupt mpirun while it is killing a job (proper
termination may not be guaranteed). Hit control-C again within 1
second if you really want to kill mpirun immediately.
```
Race Conditions and the File System

- Remember all processes can be reading/writing to the same files. If same file is opened for reading and writing, e.g. using a global file system to handle shared variable (opening as r+ will do what you want).

- This can also happen if you are modifying the directory structure in your script.
Watch out for Load Imbalance

- Load imbalance can greatly reduce the performance.
- Dynamic load balancing solutions can always be considered if performance is an issue.
Parameter Study

```tcl
set np [getNP]
set pid [getPID]
set count 0

source model.tcl
source analysis.tcl

set tStart [clock seconds]

set recordsFile [open motionList r]
set lines [split [read $recordFile] \n]
foreach line $line {
    if {[expr $count % $np] == $pid} {
        doModel

        doGravityAnalysis;

        loadConst -time 0.0
        set record [lindex $line 0]
        set npts [lindex $line 1]
        set dt [lindex $line 2]
        set accelSeries "Path -filePath $record -dt $dt -factor 386.4"
        pattern UniformExcitation 2 1 -accel $accelSeries

        set ok [doDynamicAnalysis $npts $dt]
wipe
    }
}
incr count 1
}

set tFinish [clock seconds]
barrier
puts "Duration Process $pid [expr $tFinish - $tStart]"
```

bin> mpirun -np 2 OpenSeesMP ex6.tcl

OpenSees -- Open System For Earthquake Engineer
Pacific Earthquake Engineering Research Center --

(c) Copyright 1999,2000 The Regents of the Univeristy
All Rights Reserved

Copyright and Disclaimer @ http://www.berkeley.edu/

Duration Process 0 14
Process Terminating 0
Duration Process 1 6
Process Terminating 1
bin> []
Simple Load Balancing

```tcl
set np [getNP]
set pid [getPID]
set count 0

source model.tcl
source analysis.tcl

set tStart [clock seconds]
if {$pid == 0} {

    # Coordinator
    set recordsFile [open motionList r]
    set lines [split [read $recordsFile] \n]
    set numLines [llength $lines]
    foreach line $lines {
        recv -pid ANY pidWorker
        send -pid $pidWorker $line
    }

    for {set i 1} {$i < $np} {incr i 1} {
        send -pid $i "DONE"
    }

} else {

    # Worker

    set done NOT_DONE;
    while {$done != "DONE"} {
        send -pid 0 $pid
        recv -pid 0 line
        set record [lindex $line 0]

        if {$record == "DONE"} {
            break;
        }

        set npts [lindex $line 1]
        set dt [lindex $line 2]

        doModel;

        doGravityAnalysis;

        loadConst -time 0.0

        set accelSeries "Path -filePath $record -dt $dt -factor 386.4"
        pattern UniformExcitation 2 1 -accel $accelSeries

        doRecorders $record $npts $dt
        set ok [doDynamicAnalysis $npts $dt]
        wipe
    }

} else {

    # Coordinator

    set tFinish [clock seconds]
    barrier
    puts "Duration Process $pid [expr $tFinish - $tStart]"
}
```
bin> mpirun -np 3 OpenSeesMP ex7.tcl

OpenSees -- Open System For Earthquake Engineering Simulation
Pacific Earthquake Engineering Research Center -- 2.0.0

(c) Copyright 1999,2000 The Regents of the University of California
All Rights Reserved
(Copyright and Disclaimer @ http://www.berkeley.edu/OpenSees/copyright.html)

Duration Process 0 9
Duration Process 1 10
Process Terminating 0
Duration Process 2 10
Process Terminating 1
Process Terminating 2
bin>
Using the OpenSees Interpreter on Parallel Computers

Frank McKenna ¹
Gregory L. Fenves ¹

¹University of California, Berkeley
Any Questions?