

Modeling Steel Moment Resisting Frames with OpenSees

DIMITRIOS G. LIGNOS ASSISTANT PROFESSOR MCGILL UNIVERSITY, MONTREAL CANADA

With Contributions By: Ahmed Elkady* and Samantha Walker* *Graduate Students at McGill University

OpenSees Workshop, University of California, Berkeley September 26th 2014

D. G. Lignos – Modeling Steel Moment-Resisting Frames with OpenSees

Agenda

Nonlinear Modeling of Steel MRFs

♦ Steel Components for Nonlinear Modeling

♦ Distributed and Concentrated Plasticity

♦ Nonlinear Force-Based Elements

♦ Background on Available Steel Materials in OpenSees

 \diamond Examples and Applications

♦ Summary Remarks

Steel Components for Nonlinear Modeling in MRFs

(Images courtesy of Prof. M. Engelhardt)

Steel Components for Nonlinear Modeling in MRFs

(Image courtesy of Prof. M. Engelhardt)

Steel Components for Nonlinear Modeling in MRFs -Beam Plastic Hinging

(Images courtesy of Prof. M. Engelhardt)

D. G. Lignos – Modeling Steel Moment-Resisting Frames with OpenSees

Steel Components for Nonlinear Modeling in MRFs -Panel Zone Shear Yielding

(Image courtesy of Prof. M. Engelhardt)

Steel Components for Nonlinear Modeling in MRFs -Column Plastic Hinging

(Image from Suzuki and Lignos 2014)

Simulation Approach

Image Source: NIST GSR 10-917-5

Concentrated Plasticity Models

Advantages

- ♦ Fairly simple
- ♦ Effective for interface effects
- ♦ Computationally efficient

Disadvantages

- ♦ Require the moment rotation relationship
- (as opposed to engineering stress-strain)
- ♦ They don't capture P-M interaction

(critical for columns)

Distributed Plasticity Models

Advantages

- Force- and displacement-based element permits spread of plasticity along the element
- \diamond P-M interaction can be captured

Disadvantages

Image Source: NIST GSR 10-917-5

- ♦ Localization
- Requires fiber section discretization (# fibers matters)
- Deteriorating phenomena (local buckling)
 difficult to capture with available engineering

stress-strain models in OpenSees

- \diamond 4-story building with perimeter steel special moment frames (SMFs)
- ♦ Design location Bulk Center Los Angeles, CA
- ♦ Design provisions: ASCE 7-10, AISC 2010
- ♦ First mode period: 1.51sec

(Source: Elkady and Lignos 2014)

Modeling with Distributed Plasticity

D. G. Lignos – Modeling Steel Moment-Resisting Frames with OpenSees

Steel Material Models Available in OpenSees

Steel01-Simple Bilinear

Steel02-Giuffre Menegotto-Pinto Model with Isotropic Strain Hardening

Steel Material Models Available in OpenSees Utilization of Steel01 for Modeling of Steel Components

uniaxialMaterial Steel01 \$matTag \$Fy \$E0 \$b <\$a1 \$a2 \$a3 \$a4>

\$matTag	integer tag identifying material
\$Fy	yield strength
\$E0	initial elastic tangent
\$b	strain-hardening ratio (ratio between post-yield tangent and initial elastic tangent)
\$a1	isotropic hardening parameter, increase of compression yield envelope as proportion of yield strength after a plastic strain of \$a2*(\$Fy/E0). (optional)
\$a2	isotropic hardening parameter (see explanation under \$a1). (optional).
\$a3	isotropic hardening parameter, increase of tension yield envelope as proportion of yield strength after a plastic strain of \$a4*(\$Fy/E0). (optional)
\$a4	isotropic hardening parameter (see explanation under \$a3). (optional)

Steel Material Models Available in OpenSees Utilization of Steel02 for Modeling of Steel Components

Number of Fibers for Cross Section Discretization

 \rightarrow Follow the recommendations by Kostic & Filippou (2012)

Fig. 1. Discretization of wide-flange cross section with midpoint integration rule (MP): (a) 12MP scheme; (b) 24MP scheme; (c) 40MP scheme, and (d) 108MP scheme

W-Shapes: 12 MP gives remarkable accuracy in terms of local response estimates

Biaxial bending and failures associated with weak axis bending: (40MP) 2x8 fibers (Flange) 1x8 fibers (Web)

Steel2.tcl – FiberSteelWsection2d

```
proc FiberSteelWSection2d {sectTag sectType matTag nFlange nWeb args} {
    dlobal Wsection
    global in
    set Orient "XX"
    if {[lsearch $args "YY"] != -1} {
         set Orient "YY"
     }
    set found 0
    foreach {section prop} [array get WSection $sectType] {
    set propList [split $prop]
    set d [expr [lindex $propList 1]*$in]
    set bf [expr [lindex $propList 2]*$in]
    set tw [expr [lindex $propList 3]*$in]
    set tf [expr [lindex $propList 4]*$in]
    Wsection $sectTag $matTag $d $bf $tf $tw $nFlange 1 1 $nWeb $Orient
    set found 1
     r
    if {$found == 0} {
    puts "FiberSteelWSection2d sectType: $sectType not found for sectTag: $sectTag"
}
```


Nonlinear Beam-Column Elements in OpenSees

-Use of forceBeamColumn element

(Neuenhofer and Filippou 1997) \rightarrow good discussion why you may want to consider using force based elements over displacement-based ones.

- Only one element is adequate
- 5 integration points along the member length are sufficient most of the times for modeling of steel MRFs

Recommendations by Kostic & Filippou (2012)

model Basic –ndm 2 –ndf 3 source Steel2d.tcl

set some lists containing floor and column line locations and nodal masses set floorLocs {0. 204. 384. 564.}; # floor locations in inches set colLocs {0. 360. 720. 1080. 1440. 1800.}; #column line locations in inches set massesX {0. 0.419 0.419 0.430}; # mass at nodes on each floor in x dirn set massesY{0. 0.105 0.105 0.096}; # " " " " " " in y dirn MRF1.tcl Same Model in 35 lines (Tcl Code by F. McKenna)

add nodes at each floor at each column line location & fix nodes if at floor 1

foreach floor {1 2 3 4 5} floorLoc \$floorLocs massX \$massesX massY \$massesY { foreach colLine {1 2 3 4} colLoc \$colLocs { node \$colLine\$floor \$colLoc \$floorLoc -mass \$massX \$massY 0. if $\{$ floor == 1 $\}$ {fix \$colLine\$floor 1 1 1 $\}$ Selection of material model #uniaxialMaterial Steel02 \$tag \$Fy \$E \$b \$R0 \$cr1 \$cr2 \$a1 \$a2 \$a3 \$a4 uniaxialMaterial Steel02 1 55.0 29000. 0.02 19.0 0.925 0.15 0.12 0.90 0.18 0.90; # material to be used for steel elements # set some list for col and beam sizes set colSizes {W24x103 W24x103 W24X103 W24x64}; #col sizes stories 1, 2, 3 and 4 set beamSizes {W21x73 W21X73 W21X57 W21x57}; #beams sizes floor 1, 2, 3 and 4 # add columns at each column line between floors geomTransf PDelta 1 foreach colLine {1 2 3 4} Selection of nonlinear force beamColumn element foreach floor1 {1 2 3 } floor2 { 2 3 4 5 } { set theSection [lindex \$colSizes [expr \$floor1 -1]]; # obtain section size for column ForceBeamWSection2d \$colLine\$floor1\$colLine\$floor2 \$colLine\$floor1 \$colLine\$floor2 \$theSection 1 1 -nip 5

}
#add beams between column lines at each floor
geomTransf Linear 2
foreach colLine1 {1 2 3} colLine2 {2 3 4} {
foreach floor {2 3 4 5} {
 set theSection [lindex \$beamSizes [expr \$floor -2]]; # obtain section size for floor
ForceBeamWSection2d \$colLine1\$floor\$colLine2\$floor \$colLine1\$floor \$colLine2\$floor \$theSection 1 2

Panel Zone Modeling

D. G. Lignos - Modeling Steel Moment-Resisting Frames with OpenSees

Procedure for Modeling Panel Zones

-Available from OpenSees Examples Posted by Dr. L. Eads

<pre>proc elemPanelZone2D {eleID nodef</pre>	R E A_PZ I_PZ trans	fTag} {				
<pre>proc elemPanelZone2D {eleID nodef # de fine_nonel_mote_nedec set node_xy01 \$nodeR; set node_xy02 [expr \$node_xy0 set node_xy03 [expr \$node_xy0 set node_xy04 [expr \$node_xy0 set node_xy05 [expr \$node_xy0 set node_xy06 [expr \$node_xy0 set node_xy07 [expr \$node_xy0 set node_xy09 [expr \$node_xy0 set node_xy09 [expr \$node_xy0 set node_xy10 [expr \$node_xy0 set node_xy10 [expr \$node_xy0 set node_xy10 [expr \$node_xy0 set node_xy0 [expr \$node_xy0 set node_xy10 [expr \$node_xy0 set node_xy10 [expr \$node_xy0 set node_xy10 [expr \$node_xy0 set node_xy10 [expr \$node_xy0 set node_xy07 [expr \$node_xy0 set node_xy10 [expr \$node_xy0 set node_xy10 [expr \$node_xy0 set node_xy07 [expr \$node_xy0 set node_xy0 set node_xy07 [expr \$node_xy0 set node_xy0 set node_xy07 [expr \$node_xy0 set node_xy0 set node_xy07 [expr \$node_xy0 set node_x0 set node_x0</pre>	R E A_PZ I_PZ trans # top l 01 + 1]; # top l 01 + 2]; # top r 01 + 3]; # top r 01 + 3]; # top r 01 + 4]; # middl 01 + 5]; # btm r 01 + 6]; # btm l 01 + 7]; # btm l 01 + 8]; # btm l 01 + 9]; # middl y01-1)/10 + 6]; # b y01-1)/10 + 7]; # t	fTag} { eft of joint eft of joint ight of joint ight of joint ight of joint ight of joint eft of joint e left of joint tm center of jo op center of jo	nt (vertic t (vertice oint oint	cal mid al midd	dle, horiz	zontal right) ontal left)
<pre># create element IDs as a function set x1 \$eleID;</pre>	on of first input e ft element on top o ght element on top o element on right n element on right ght element on btm ft element on btm o n element on left s o element on left s	leID (8 per par f panel zone of panel zone side of panel z side of panel zone f panel zone ide of panel zone ide of panel zo	nel zone) zone zone one one			
<pre># create panel zone elements # element elasticBeamColumn element elasticBeamColumn</pre>	tag ndI \$x1 \$node_xy02 \$x2 \$node_xy7 \$x3 \$node_xy05 \$x4 \$node_xy06 \$x5 \$node_xy6 \$x6 \$node_xy08 \$x7 \$node_xy09 \$x8 \$node_xy10	ndJ \$node_xy7 \$node_xy03 \$node_xy04 \$node_xy05 \$node_xy07 \$node_xy6 \$node_xy10 \$node_xy01	A_PZ \$A_PZ \$A_PZ \$A_PZ \$A_PZ \$A_PZ \$A_PZ \$A_PZ \$A_PZ \$A_PZ	E \$E \$E \$E \$E \$E \$E \$E \$E	I_PZ \$I_PZ \$I_PZ \$I_PZ \$I_PZ \$I_PZ \$I_PZ \$I_PZ \$I_PZ	transfTag; \$transfTag; \$transfTag; \$transfTag; \$transfTag; \$transfTag; \$transfTag; \$transfTag; \$transfTag; \$transfTag; \$transfTag;

4-Story SMF – Distributed Plasticity Approach

Basic Results – Nonlinear Static Procedure First Mode Lateral Load Pattern

4-Story SMF – Distributed Plasticity Approach Basic Results – Nonlinear Response History Analysis

4-Story SMF – Concentrated Plasticity Approach


```
4-Story SMF – Concentrated Plasticity Approach
From Steel2d.tcl: Procedure to Create Elastic Beam-Column Element
  proc ElasticBeamWSection2d {eleTag iNode jNode sectType E transfTag args} {
                                                                      \rightarrowLook for Procedure
     global WSection
     global in
     set found 0
                                                                       ElasticBeamSection2d
     set Orient "XX"
     if {[lsearch $args "YY"] != -1} {
         set Orient "YY"
     }
     if {[lsearch $args "-release1"] != -1} {
     set hingeEnd1 1
     node $eleTag$hingeEnd1 [nodeCoord $iNode 1] [nodeCoord $iNode 2]
     equalDOF $iNode $eleTag$hingeEnd1 1 2
     set iNode $eleTag$hingeEnd1
     }
     if {[lsearch $args "-release2"] != -1} {
     set hingeEnd2 2
     node $eleTag$hingeEnd2 [nodeCoord $jNode 1] [nodeCoord $jNode 2]
     equalDOF $jNode $eleTag$hingeEnd2 1 2
     set jNode $eleTag$hingeEnd2
     }
     foreach {section prop} [array get WSection $sectType] {
     set propList [split $prop]
     set A [expr [lindex $propList 0]*$in*$in]
     set Ixx [expr [lindex $propList 5]*$in*$in*$in*$in
     set Iyy [expr [lindex $propList 6]*$in*$in*$in*$in
     if {$0rient == "YY" } {
         element elasticBeamColumn $eleTag $iNode $jNode $A $E $Iyy $transfTag
     } else {
         element elasticBeamColumn $eleTag $iNode $jNode $A $E $Ixx $transfTag
     7
     set found 1
     }
     if {$found == 0} {
     puts "ElasticBeamWSection2d sectType: $sectType not found for ee: $eleTag"
```


Available Steel Material Models for Modeling the Moment – Rotation Relationship of a Steel Component

- ♦ Steel01 (Basic Bilinear)
- Steel02 (Giuffre Menegotto-Pinto Model with Isotropic Strain Hardening)
- ♦ Modified Ibarra-Medina-Krawinkler (IMK) Deterioration Model with
 Bilinear Hysteretic Response (or Bilin in OpenSees) → Considers
 Strength and Stiffness Deterioration of Steel Components

The Modified IMK Deterioration Model -Input Model Parameters

(Image Source: Lignos and Krawinkler 2012)

The deduced moment rotation relationship of the component under consideration is needed for input parameter identification

The Modified IMK Deterioration Model -Considering Slab Effects (see Elkady and Lignos 2014)

The deduced moment rotation relationship of the component under consideration is needed for input parameter identification

D. G. Lignos – Modeling Steel Moment-Resisting Frames with OpenSees

Utilizing the Modified IMK Model in OpenSees

Visit: dimitrios.lignos.research.mcgill.ca/databases/steel/

	ive Too 😣 💭				
C 🗋 dimitrios-lign	os.research.mcgill.ca/	databases/steel/			• ک
HON	IE STEEL Dat	W-SHAPE COMPON Abase compon	IENT MODEL FRAGIL	ITY CURVES	ABOUT
SEARCH OUR DAT	ABASE!				It is sufficient to only fill in one fie
In this page, you will pleasure	be able to search t	hrough all of the value	es we have collected	and provided for you	r exclusive researching
TEXT FIELDS		CO e	experimen	ts from s	teel beams
Publication	n:		-		
SELECT FIELD	S nvestigator:		Beam Size:		
Search A	II		W30x99		
Test Config Search A	guration: II	\$	Connection Ty Search all	/ре:	\$
	ridge?		Slab Present?		
Pre-North		•	Search all		

Utilizing the Modified IMK Model in OpenSees Sample Model Calibrations

(Sources: Lignos and Krawinkler 2011, 2013)

D. G. Lignos – Modeling Steel Moment-Resisting Frames with OpenSees

Utilizing the Modified IMK Model in OpenSees

Visit: dimitrios.lignos.research.mcgill.ca/databases/component/

Pre-capping plastic rotation, θ_p , for beams with non-RBS connections:

$$\theta_{p} = 0.087 \cdot \left(\frac{h}{t_{w}}\right)^{-0.365} \cdot \left(\frac{b_{f}}{2 \cdot t_{f}}\right)^{-0.14} \cdot \left(\frac{L}{d}\right)^{0.34} \cdot \left(\frac{d}{c_{unit}^{1} \cdot 21''}\right)^{-0.721} \cdot \left(\frac{c_{unit}^{2} \cdot F_{y}}{50}\right)^{-0.23}$$

Pre-capping plastic rotation, θ_p , for beams with RBS connections:

$$\theta_{p} = 0.19 \cdot \left(\frac{h}{t_{w}}\right)^{-0.314} \cdot \left(\frac{b_{f}}{2 \cdot t_{f}}\right)^{-0.10} \cdot \left(\frac{L_{b}}{r_{y}}\right)^{-0.1185} \cdot \left(\frac{L}{d}\right)^{0.113} \cdot \left(\frac{d}{c_{unit}^{1} \cdot 21''}\right)^{-0.76} \cdot \left(\frac{c_{unit}^{2} \cdot F_{y}}{50}\right)^{-0.07}$$

Post-capping rotation, θ_{pc} , for beams with non-RBS connections:

$$\theta_{pc} = 5.70 \cdot \left(\frac{h}{t_w}\right)^{-0.565} \cdot \left(\frac{b_f}{2 \cdot t_f}\right)^{-0.80} \cdot \left(\frac{d}{c_{unit}^1 \cdot 21''}\right)^{-0.28} \cdot \left(\frac{c_{unit}^2 \cdot F_y}{50}\right)^{-0.43}$$

Post-capping rotation, θ_{pc} , for beams with RBS connections:

$$\theta_{pc} = 9.62 \cdot \left(\frac{h}{t_{w}}\right)^{-0.513} \cdot \left(\frac{b_{f}}{2 \cdot t_{f}}\right)^{-0.863} \cdot \left(\frac{L_{b}}{r_{y}}\right)^{-0.108} \cdot \left(\frac{c_{unit}^{2} \cdot F_{y}}{50}\right)^{-0.36}$$

Reference cumulative plastic rotation, Λ , for beams with non-RBS connections:

$$\Lambda = \frac{\mathrm{E}_t}{M_y} = 500 \left(\frac{h}{t_w}\right)^{-1.34} \cdot \left(\frac{b_f}{2 \cdot t_f}\right)^{-0.595} \cdot \left(\frac{c_{unit}^2 \cdot F_y}{50}\right)^{-0.36}$$

(Sources: Lignos and Krawinkler 2011, 2013)

Utilizing the Modified IMK Model in OpenSees

Visit: dimitrios.lignos.research.mcgill.ca/databases/component/

4-Story – Concentrated Plasticity Approach

Steel2d.tcl: Rotational Spring with SteelWsectionMR

<pre>proc SteelWSectionMR {matTag E Fy Ix Zx H L d tw bf tf Lb ry Com_Type Comp_Action args} {</pre>
######################################
The input parameters for bare steel components (beams, columns) are based on the following papers:
<pre># # # 1. Lignos, D.G., Krawinkler, H. (2011). "Deterioration Modeling of Steel Components in Support of</pre>
<pre># Collapse Prediction of Steel Moment Frames under Earthquake Loading", # ASCE, Journal of Structural Engineering, Vol. 137 (11), 1291-1302. #</pre>
<pre># 2. Lignos, D.G., Krawinkler, H. (2013). "Development and Utilization of Structural # Component Databases for Performance-Based Earthquake Engineering",</pre>
<pre># ASCE, Journal of Structural Engineering, Vol. 139 (NEES 2), 1382-1394. # #</pre>
\rightarrow Look for SteelWSectionMR
$\frac{a}{a}$ Uses the multivariate-regression equations and utilizes the \cdot
modified IMK model in OpenSees

4-Story SMF – Concentrated Plasticity- Deterioration <u>Nonlinear Static Analysis</u> – First Mode Lateral Load Pattern Comparisons with Distributed Plasticity Model

4-Story SMF – Concentrated Plasticity- Deterioration <u>Nonlinear Response History Analysis</u> with Canoga Park Record Comparisons with Distributed Plasticity Model

4-Story SMF – Concentrated Plasticity- Deterioration <u>Nonlinear Response History Analysis</u> with Canoga Park Record Comparisons with Distributed Plasticity Model

Collapse Assessment of Steel SMFs

Using Concentrated Plasticity Approach

Case studies: Archetype office steel buildings with perimeter steel special moment frames designed in Urban California (ASCE 7-10, AISC-2010)

Example: Collapse Risk of 4-Story Steel SMF

Incremental Dynamic Analysis – Utilization of 44 Ground Motions

Source: Elkady and Lignos (2014)

Concluding Remarks

Modeling Steel Moment Resisting Frames in OpenSees

You can use a number of readily available tools (procedures in tcl, examples, web-based tools, etc)

Steel Components to Consider

 $\checkmark\,$ Steel Beams, Columns and Panel Zones

Oistributed Versus Concentrated Plasticity Approach

✓ For low rise code-compliant steel buildings with perimeter MRFs the differences should not be large for "design level earthquakes" – Distributed plasticity models capture cyclic hardening, P-M interaction

\diamond If Performance Evaluation at Large Deformations is the

Objective: <u>Component Deterioration</u> Must be Considered

✓ Concentrated Plasticity with Degrading Phenomenological Models will do reasonably well <u>for low- to mid-rise</u> steel MRFs.

Thank you for your kind attention!

For more information visit: dimitrios-lignos.research.mcgill.ca

References:

- 1. Elkady, A., Lignos, D.G. (2014). "Modeling of the Composite Action in Fully Restrained Beam-to-Column Connections: Implications in the Seismic Design and Collapse Capacity of Steel Special Moment Frames", Earthquake Engineering and Structural Dynamics, EESD, doi: 10.1002/eqe.2430 (available in early view).
- Lignos, D.G., Krawinkler, H. (2013). "Development and Utilization of Structural Component Databases for Performance-Based Earthquake Engineering", ASCE, Journal of Structural Engineering, Vol. 139 (NEES 2), pp. 1382-1394, doi:10/1061/(ASCE)ST.1943-541X.0000646.
- Lignos, D.G., Krawinkler, H. (2011). "Deterioration Modeling of Steel Components in Support to Collapse Prediction of Steel Moment Frames", ASCE Journal of Structural Engineering, Vol. 137 (11), pp. 1291-1302, doi: 10.1061/(ASCE)ST.1943-541X.0000376.
- 4. Lignos, D.G., Krawinkler, H. (2012). "Sidesway Collapse of Deteriorating Structural Systems under Seismic Excitations," Report No. TB 177, The John A. Blume Earthquake Engineering Center, Stanford, CA.
- 5. Ibarra, L., Medina, R., Krawinkler, H. (2005). "Hysteretic Models that Incorate Strength and Stiffness Deterioration", Earthquake Engineering and Structural Dynamics, EESD, Vol. 34(12), pp. 1489-1511.

