Modelling Seismic Isolation and Viscous Damping

Andreas Schellenberg, Ph.D., P.E.

Open System for Earthquake Engineering Simulation

Pacific Earthquake Engineering Research Center

Outline of Presentation

- 1. Motivation
- 2. Friction Based Isolators
- 3. Elastomer Based Isolators
- 4. Comparison of Modelling Capabilities
- 5. Viscous Energy Dissipation Devices
- 6. Example Applications
- 7. Summary & Conclusions

Motivation

 Research and practice is moving towards Performance-Based Seismic Engineering, which is used as a means of selecting and designing structural systems to resist seismic excitations.

 This creates a need for innovative seismic systems whose response is both robust and optimized to minimize damage in accordance with the defined multi-level performance objectives

Motivation: Isolation

- Seismic Isolation is an attractive and efficient approach to enhance structural performance and reduce risks associated with seismic hazards.
- SI provides a means of controlling the demands imposed by an earthquake.
- Concentrate seismic deformation and energy dissipation to one or a few locations
- The uncertainty associated with their behavior is generally low relative to conventional structural elements

Motivation: Damping

Motivation: Damping

- Supplemental viscous dampers can also enhance structural performance and reduce risks associated with seismic hazards.
- Supplemental damping provides a means of absorbing energy imposed by an earthquake.
- Concentrate seismic energy dissipation at predetermined fuse locations
- The uncertainty associated with their behavior is generally low relative to conventional structural elements

OpenSees Days 2014 September 25-26

Friction Based Isolators

The Friction Model

flatSliderBearing singleFPBearing TripleFrictionPendulum RJWatsonEqsBearing

Element

Coulomb VelDependent VelNormalFrcDep VelPressureDep VelDepMultiLinear

FrictionModel

1 *

frictionModel frnMdIType? arg1? ...

Some period of the sector o

Coulomb (Constant) Friction

frictionModel Coulomb \$frnTag \$mu

VelDependent Friction

frictionModel VelDependent \$frnTag \$muSlow \$muFast \$transRate

\$frnTag \$muSlow \$muFast \$transRate unique friction model object tag coefficient of friction at low velocity coefficient of friction at high velocity transition rate from low to high velocity

VelNormalFrcDep Friction

frictionModel VelNormalFrcDep \$frnTag \$aSlow \$nSlow \$aFast \$nFast \$alpha0 \$alpha1 \$alpha2 \$maxMuFact

\$frnTag unique friction model object tag \$aSlow constant for coefficient of friction at low velocity \$nSlow exponent for coefficient of friction at low velocity \$aFast constant for coefficient of friction at high velocity \$nFast exponent for coefficient of friction at high velocity \$alpha0 constant rate parameter coefficient \$alpha1 linear rate parameter coefficient \$alpha2 quadratic rate parameter coefficient factor for determining the maximum coefficient of friction. This value prevents the

uEast, for example $\mu \leq \text{SmaxMuEa}$

\$maxMuFact

friction coefficient from exceeding force becomes very small. The ma

$$\mu_{Slow} = a_{Slow} \cdot N^{(n_{Slow}-1)}$$

$$\mu_{Fast} = a_{Fast} \cdot N^{(n_{Fast}-1)}$$

$$a = \alpha_0 + \alpha_1 \cdot N + \alpha_2 \cdot N^2$$

$$\mu = \mu_{Fast} - (\mu_{Fast} - \mu_{Slow}) \cdot e^{-a \cdot V}$$

OpenSees Days 2014 September 25-26

Figure 3: Friction coefficient vs. vertical force

VelNormalFrcDep Friction

frictionModel VelDepMultiLinear \$frnTag -vel \$velocityPoints -frn \$frictionPoints

OpenSees Days 2014 September 25-26

The Friction Based Elements

flatSliderBearing singleFPBearing TripleFrictionPendulum RJWatsonEqsBearing

Element

Coulomb VelDependent VelNormalFrcDep VelPressureDep VelDepMultiLinear

FrictionModel

element eleType? arg1? ...

flatSliderBearing Element

For a two-dimensional problem:

element flatSliderBearing \$eleTag \$iNode \$jNode \$frnMdlTag \$kInit -P \$matTag -Mz \$matTag <-orient \$x1 \$x2 \$x3 \$y1 \$y2 \$y3> <-shearDist \$sDratio> <-doRayleigh> <-mass \$m> <-iter \$maxIter \$toI>

For a three-dimensional problem:

element flatSliderBearing \$eleTag \$iNode \$jNode \$frnMdlTag \$kInit -P \$matTag -T \$matTag -My \$matTag -Mz \$matTag <-orient <\$x1 \$x2 \$x3> \$y1 \$y2 \$y3> <-shearDist \$sDratio> <-doRayleigh> <-mass \$m> <-iter \$maxIter \$tol>

unique element object tag
end nodes
tag associated with previously-defined FrictionModel &
initial elastic stiffness in local shear direction
tag associated with previously-defined UniaxialMaterial in axial direction
tag associated with previously-defined UniaxialMaterial in torsional direction
tag associated with previously-defined UniaxialMaterial in moment direction around local y-axis
tag associated with previously-defined UniaxialMaterial in moment direction around local z-axis
vector components in global coordinates defining local x-axis (optional)
vector components in global coordinates defining local y-axis (optional)
shear distance from iNode as a fraction of the element length (optional, default = 0.0)
to include Rayleigh damping from the bearing (optional, default = no Rayleigh damping contribution)
element mass (optional, default = 0.0)
maximum number of iterations to undertake to satisfy element equilibrium (optional, default = 20)
convergence tolerance to satisfy element equilibrium (optional, default = 1E-8)

singleFPBearing Element

For a two-dimensional problem:

element singleFPBearing \$eleTag \$iNode \$jNode \$frnMdlTag \$Reff \$kInit -P \$matTag -Mz \$matTag <-orient \$x1 \$x2 \$x3 \$y1 \$y2 \$y3> <-shearDist \$sDratio> <-doRayleigh> <-mass \$m> <-iter \$maxIter \$tol>

For a three-dimensional problem:

element singleFPBearing \$eleTag \$iNode \$jNode \$frnMdlTag \$Reff \$kInit -P \$matTag -T \$matTag -My \$matTag -Mz \$matTag <-orient <\$x1 \$x2 \$x3> \$y1 \$y2 \$y3> <-shearDist \$sDratio> <-doRayleigh> <-mass \$m> <-iter \$maxIter \$tol>

\$eleTag	unique element object tag						
\$iNode \$jNode	end nodes						
\$frnMdITag	tag associated with previously-defined FrictionModel &						
\$Reff	effective radius of concave sliding surface						
\$klnit	initial elastic stiffness in local shear direction						
-P \$matTag	tag associated with previously-defined UniaxialMaterial in axial direction						
-T \$matTag	tag associated with previously-defined UniaxialMaterial in torsional direction						
-My \$matTag	tag associated with previously-defined UniaxialMaterial in moment direction around local y-axis						
-Mz \$matTag	tag associated with previously-defined UniaxialMaterial in moment direction around local z-axis						
\$x1 \$x2 \$x3	vector components in global coordinates defining local x-axis (optional)						
\$y1 \$y2 \$y3	vector components in global coordinates defining local y-axis (optional)						
\$sDratio	shear distance from iNode as a fraction of the element length (optional, default = 0.0)						
-doRayleigh	to include Rayleigh damping from the bearing (optional, default = no Rayleigh damping contribution)						
\$m	element mass (optional, default = 0.0)						
\$maxIter	maximum number of iterations to undertake to satisfy element equilibrium (optional, default = 20)						
\$tol	convergence tolerance to satisfy element equilibrium (optional, default = 1E-8)						

Some period of the sector o

singleFPBearing Element

TripleFrictionPendulum Element

For a three-dimensional problem:

element TripleFrictionPendulum \$ \$uy \$kvc \$kvt \$minFv \$tol	\$eleTag \$iNode \$jNode \$frnTag1 \$frnTag2 \$frnTag3 \$L1 \$L2 \$L3 \$d1 \$d2 \$d3 \$W
\$eleTag	= unique element object tag
\$iNode \$jNode	= end nodes
\$frnTag1, \$frnTag2, \$frnTag2	= tags associated with previously-defined FrictionModels & at the three sliding interfaces
\$L1, \$L2, \$L3	= effective radii. Li = R_i - h_i (see Figure 1)
\$d1, \$d2, \$d3	= displacement limits of pendulums (Figure 1). Displacement limit of the bearing is 2\$d1+\$d2+\$d3+\$L1.\$d3/\$L3-\$L1.\$d2/\$L2
\$W	= axial force used for the first trial of the first analysis step.
\$uy	 = lateral displacement where sliding of the bearing starts. Recommended value = 0.25 to 1 mm. A smaller value may cause convergence problem.
\$kvc, \$kvt	= compression k_vc and tension stiffness k_vt of the bearing.
\$minFv (>=0)	= minimum vertical compression force in the bearing used for computing the horizontal tangent stiffness matrix from the normalized tangent stiffness matrix of the element. \$minFv is substituted for the actual compressive force when it is less than \$minFv, and prevents the element from using a negative stiffness matrix in the horizontal direction when uplift occurs. The vertical nodal force returned to nodes is always computed from \$kvc (or \$kvt) and vertical deformation, and thus is not affected by \$minFv.
\$tol	= relative tolerance for checking the convergence of the element. Recommended value = 1.e-10 to 1.e-3.

Some period of the sector o

TripleFrictionPendulum Element

TripleFrictionPendulum Test

RJWatsonEqsBearing Element

For a two-dimensional problem:

element RJWatsonEqsBearing \$eleTag \$iNode \$jNode \$frnMdITag \$kInit \$k2 \$k3 \$eta -P \$matTag -Mz \$matTag <-orient \$x1 \$x2 \$x3 \$y1 \$y2 \$y3> <-shearDist \$sDratio> <-doRayleigh> <-mass \$m> <-iter \$maxIter \$tol>

For a three-dimensional problem:

element RJWatsonEqsBearing \$eleTag \$iNode \$jNode \$frnMdITag \$kInit \$k2 \$k3 \$eta -P \$matTag -T \$matTag -My \$matTag -Mz \$matTag <-orient <\$x1 \$x2 \$x3> \$y1 \$y2 \$y3> <-shearDist \$sDratio> <-doRayleigh> <-mass \$m> <-iter \$maxIter \$tol>

\$eleTag	unique element object tag				
\$iNode \$jNode	end nodes				
\$frnMdITag	tag associated with previously-defined FrictionModel 🚱				
\$kInit	initial elastic stiffness in local shear direction				
\$k2	post yield stiffness of linear hardening component (MER spring)				
\$k3	post yield stiffness of non-linear hardening component (MER spring)				
\$eta	exponent of non-linear hardening component				
-P \$matTag	tag associated with previously-defined UniaxialMaterial in axial direction				
-T \$matTag	tag associated with previously-defined UniaxialMaterial in torsional direction				
-My \$matTag	tag associated with previously-defined UniaxialMaterial in moment direction around local y-axis				
-Mz \$matTag	tag associated with previously-defined UniaxialMaterial in moment direction around local z-axis				
\$x1 \$x2 \$x3	vector components in global coordinates defining local x-axis (optional)				
\$y1 \$y2 \$y3	vector components in global coordinates defining local y-axis (optional)				
\$sDratio	shear distance from iNode as a fraction of the element length (optional, default = 0.0)				
-doRayleigh	to include Rayleigh damping from the bearing (optional, default = no Rayleigh damping contribution)				
\$m	element mass (optional, default = 0.0)				
\$maxIter	maximum number of iterations to undertake to satisfy element equilibrium (optional, default = 20)				
\$tol	convergence tolerance to satisfy element equilibrium (optional, default = 1E-8)				

OpenSees Days 2014 September 25-26

RJWatsonEqsBearing Element

ERADIQUAKE ISOLATION & FORCE CONTROL BEARING DEVICES

Slide Plate • • •

PTFE/Stainless Interface • • • •

MER Spring • •

Polytron Disc

Masonry Plate • • • • •

RJWatsonEqsBearing Element

RJWatsonEqsBearing Test

Important Modelling Considerations

- All the friction based elements need an axial load on them to be able to provide shear resistance -> apply gravity loads
- Due to the vertical-horizontal coupling it is very important to -> provide realistic axial stiffness (not just some large value)
- Shear forces are affected by axial loads and slip rate (for velocity dependent friction models) -> use smaller time step size for dynamic analyses

Important Modelling Considerations

- If there is uplift (and therefore impact) in the friction based bearing elements-> consider using an integration method that provides numerical damping
- If possible (depends on element) ->
 provide some viscous damping in the axial bearing direction
- avoid the introduction of artificial viscous damping in the isolation system (i.e. damping leakage) -> avoid using Rayleigh damping in the bearing elements

Elastomer Based Isolators

OpenSees Days 2014 September 25-26

elastomericBearingPlasticity Elem.

For a two-dimensional problem:

element elastomericBearingPlasticity \$eleTag \$iNode \$jNode \$kInit \$fy \$alpha1 \$alpha2 \$mu -P \$matTag -Mz \$matTag <-orient \$x1 \$x2 \$x3 \$y1 \$y2 \$y3> <-shearDist \$sDratio> <-doRayleigh> <-mass \$m>

For a three-dimensional problem:

element elastomericBearingPlasticity \$eleTag \$iNode \$jNode \$kInit \$fy \$alpha1 \$alpha2 \$mu -P \$matTag -T \$matTag \$matTag -Mz \$matTag <-orient <\$x1 \$x2 \$x3> \$y1 \$y2 \$y3> <-shearDist \$sDratio> <-doRayleigh> <-mass \$m>

\$eleTag	unique element object tag
\$iNode \$jNode	end nodes
\$klnit	initial elastic stiffness in local shear direction
\$fy	yield strength
\$alpha1	post yield stiffness ratio of linear hardening component
\$alpha2	post yield stiffness ratio of non-linear hardening component
\$mu	exponent of non-linear hardening component
-P \$matTag	tag associated with previously-defined UniaxialMaterial in axial direction
-T \$matTag	tag associated with previously-defined UniaxialMaterial in torsional direction
-My \$matTag	tag associated with previously-defined UniaxialMaterial in moment direction around local y-axis
-Mz \$matTag	tag associated with previously-defined UniaxialMaterial in moment direction around local z-axis
\$x1 \$x2 \$x3	vector components in global coordinates defining local x-axis (optional)
\$y1 \$y2 \$y3	vector components in global coordinates defining local y-axis (optional)
\$sDratio	shear distance from iNode as a fraction of the element length (optional, default = 0.5)
-doRayleigh	to include Rayleigh damping from the bearing (optional, default = no Rayleigh damping contribution)
\$m	element mass (optional, default = 0.0)

elastomericBearingBoucWen Elem.

For a two-dimensional problem:

element elastomericBearingBoucWen \$eleTag \$iNode \$jNode \$kInit \$fy \$alpha1 \$alpha2 \$mu \$eta \$beta \$gamma -P \$matTag -Mz \$matTag <-orient \$x1 \$x2 \$x3 \$y1 \$y2 \$y3> <-shearDist \$sDratio> <-doRayleigh> <-mass \$m>

For a three-dimensional problem:

element elastomericBearingBoucWen \$eleTag \$iNode \$jNode \$kInit \$fy \$alpha1 \$alpha2 \$mu \$eta \$beat \$gamma -P \$matTag -T \$matTag -My \$matTag -Mz \$matTag <-orient <\$x1 \$x2 \$x3> \$y1 \$y2 \$y3> <-shearDist \$sDratio> <-doRayleigh> <-mass \$m>

\$eleTag	unique element object tag
\$iNode \$jNode	end nodes
\$klnit	initial elastic stiffness in local shear direction
\$fy	yield strength
\$alpha1	post yield stiffness ratio of linear hardening component
\$alpha2	post yield stiffness ratio of non-linear hardening component
\$mu	exponent of non-linear hardening component
\$eta	yielding exponent (sharpness of hysteresis loop corners) (default = 1.0)
\$beta	first hysteretic shape parameter (default = 0.5)
\$gamma	second hysteretic shape parameter (default = 0.5)
-P \$matTag	tag associated with previously-defined UniaxialMaterial in axial direction
-T \$matTag	tag associated with previously-defined UniaxialMaterial in torsional direction
-My \$matTag	tag associated with previously-defined UniaxialMaterial in moment direction around local y-axis
-Mz \$matTag	tag associated with previously-defined UniaxialMaterial in moment direction around local z-axis
\$x1 \$x2 \$x3	vector components in global coordinates defining local x-axis (optional)
\$y1 \$y2 \$y3	vector components in global coordinates defining local y-axis (optional)
\$sDratio	shear distance from iNode as a fraction of the element length (optional, default = 0.5)
-doRayleigh	to include Rayleigh damping from the bearing (optional, default = no Rayleigh damping contribution
\$m	element mass (optional, default = 0.0)

OpenSees Days 2014 September 25-26

Solution September 25-26

elastomericBearingBoucWen Elem.

 $(\alpha_{Wen} = \beta_{OPS}, \beta_{Wen} = \gamma_{OPS})$ from Wen, 1976

elastomericX Element

For a 3D problem:

(+

element ElastomericX \$eleTag \$Nd1 \$Nd2 \$qRubber \$uh \$Gr \$Kbulk \$D1 \$D2 \$ts \$tr \$n <<\$x1 \$x2 \$x3> \$y1 \$y2 \$y3> <\$kc> <\$PhiM> <\$ac> <\$sDratio> <\$m> <\$cd> <\$tc>

\$eleTag	unique element object tag
\$Nd1 \$Nd2	end nodes
\$qRubber	yield strength
\$uh	yield deformation
\$Gr	shear modulus of elastomeric bearing
\$Kbulk	bulk modulus of rubber
\$D1	internal diameter
\$D2	outer diameter (excluding cover thickness)
\$ts	single steel shim layer thickness
\$tr	single rubber layer thickness
\$n	number of rubber layers
\$x1 \$x2 \$x3	vector components in global coordinates defining local x-axis (optional)
\$y1 \$y2 \$y3	vector components in global coordinates defining local y-axis (optional)
\$kc	cavitation parameter (optional, default = 10.0)
\$PhiM	damage parameter (optional, default = 0.5)
\$ac	strength reduction parameter (optional, default = 1.0)
\$sDratio	shear distance from iNode as a fraction of the element length (optional, default = 0.5)
\$m	element mass (optional, default = 0.0)
\$cd	viscous damping parameter (optional, default = 0.0)
\$tc	cover thickness (optional, default = 0.0)

elastomericX Element

- Coupled bidirectional motion in horizontal directions
- Coupling of vertical and horizontal motion
- Cavitation and postcavitation behavior in tension
- Strength degradation in cyclic tensile loading due to cavitation
- Variation in critical buckling load capacity due to lateral displacement

penSees Days 2014 September 25-26

LeadRubberX Element

element LeadRubberX \$eleTag \$Nd1 \$Nd2 \$qLead \$uh \$Gr \$Kbulk \$D1 \$D2 \$ts \$tr \$n <<\$x1 \$x2 \$x3> \$y1 \$y2 \$y3> <\$kc> <\$PhiM> <\$ac> <\$sDratio> <\$m> <\$cd> <\$tc> <\$qL> <\$cL> <\$kS> <\$aS>

\$eleTag	unique element object tag							
\$Nd1 \$Nd2	end nodes							
\$qLead	yield strength							
\$uh	yield deformation							
\$Gr	shear modulus of elastomeric bearing							
\$Kbulk	bulk modulus of rubber							
\$D1	internal diameter							
\$D2	outer diameter (excluding cover thickness)							
\$ts	single steel shim layer thickness							
\$tr	single rubber layer thickness							
\$n	number of rubber layers							
\$x1 \$x2 \$x3	vector components in global coordinates defining local x-axis (optional)							
\$y1 \$y2 \$y3	vector components in global coordinates defining local y-axis (optional)							
\$kc	cavitation parameter (optional, default = 10.0)							
\$PhiM	damage parameter (optional, default = 0.5)							
\$ac	strength reduction parameter (optional, default = 1.0)							
\$sDratio	shear distance from iNode as a fraction of the element length (optional, default = 0.5)							
\$m	element mass (optional, default = 0.0)							
\$cd	viscous damping parameter (optional, default = 0.0)							
\$tc	cover thickness (optional, default = 0.0)							
\$qL	density of lead (optional, default = 11200 kg/m3)							
\$cL	specific head of lead (optional, default = 130 N-m/kg oC)							
\$kS	thermal conductivity of steel (optional, default = 50 W/m oC)							
\$aS	thermal diffusivity of steel (optional, default = 1.41e-05 m2/s)							

LeadRubberX Element

- Strength degradation in cyclic shear loading due to heating of lead core
- Coupled bidirectional motion in horizontal directions
- Coupling of vertical and horizontal motion
- Cavitation and post-cavitation behavior in tension
- Strength degradation in cyclic tensile loading due to cavitation
- Variation in critical buckling load capacity due to lateral displacement

penSees Days 2014 September 25-26

Lead Rubber Bearing Test

HDR Element

-

element ElastomericX \$eleTag \$Nd1 \$Nd2 \$qRubber \$uh \$Gr \$Kbulk \$D1 \$D2 \$ts \$tr \$n \$a1 \$a2 \$a3 \$b1 \$b2 \$b3 \$c1 \$c2 \$c3 \$c4 <<\$x1 \$x2 \$x3> \$y1 \$y2 \$y3> <\$kc> <\$PhiM> <\$ac> <\$sDratio> <\$m> <\$cd> <\$tc>

\$eleTag	unique element object tag						
\$Nd1 \$Nd2	end nodes						
\$qRubber	yield strength						
\$uh	yield deformation						
\$Gr	shear modulus of elastomeric bearing						
\$Kbulk	bulk modulus of rubber						
\$D1	internal diameter						
\$D2	outer diameter (excluding cover thickness)						
\$ts	single steel shim layer thickness						
\$tr	single rubber layer thickness						
\$n	number of rubber layers						
\$a1 \$a2 \$a3 \$b1 \$b2 \$b3 \$c1 \$c2 \$c3 \$c4	parameters of the Grant model						
\$x1 \$x2 \$x3	vector components in global coordinates defining local x-axis (optional)						
\$y1 \$y2 \$y3	vector components in global coordinates defining local y-axis (optional)						
\$kc	cavitation parameter (optional, default = 10.0)						
\$PhiM	damage parameter (optional, default = 0.5)						
\$ac	strength reduction parameter (optional, default = 1.0)						
\$sDratio	shear distance from iNode as a fraction of the element length (optional, default = 0.5)						
\$m	element mass (optional, default = 0.0)						
\$cd	viscous damping parameter (optional, default = 0.0)						
\$tc	cover thickness (optional, default = 0.0)						

Some period of the sector o

HDR Element

- Coupled bidirectional motion in horizontal directions
- Degradation of bearing stiffness and damping due to scragging effects in shear
- Coupling of vertical and horizontal motion
- Cavitation and post-cavitation
 behavior in tension
- Strength degradation in cyclic tensile loading due to cavitation
- Variation in critical buckling
 load capacity due to lateral
 displacement

OpenSees Days 2014 September 25-26

KikuchiBearing Element

element KikuchiBearing \$eleTag \$iNode \$jNode -shape \$shape -size \$size \$totalRubber <-totalHeight \$totalHeight> -nMSS \$nMSS -matMSS \$matMSSTag <-limDisp \$limDisp> -nMNS \$nMNS -matMNS \$matMNSTag <-lambda \$lambda> <-orient <\$x1 \$x2 \$x3> \$yp1 \$yp2 \$yp3> <-mass \$m> <-noPDInput> <-noTilt> <-adjustPDOutput \$ci \$cj> <-doBalance \$limFo \$limFi \$nlter>

\$eleTag	unique element object tag						
\$inode \$jnode	end nodes						
\$shape	following shapes are available: round, square						
\$size	diameter (round shape), length of edge (square shape)						
\$totalRubber	total rubber thickness						
\$totalHeight	total height of the bearing (defaulut: distance between iNode and jNode)						
\$nMSS	number of springs in MSS = nMSS						
\$matMSSTag	matTag for MSS						
\$limDisp	minimum deformation to calculate equivalent coefficient of MSS (see note 1)						
\$nMNS	number of springs in MNS = nMNS*nMNS (for round and square shape)						
\$matMNSTag	matTag for MNS						
\$lambda	parameter to calculate compression modulus distribution on MNS (see note 2)						
\$x1 \$x2 \$x3	vector components in global coordinates defining local x-axis						
\$yp1 \$yp2 \$yp3	vector components in global coordinates defining vector yp which lies in the local x-y plane for the element						
\$m	element mass						
-noPDInput	not consider P-Delta moment						
-noTilt	not consider tilt of rigid link						
\$ci \$cj	P-Delta moment adjustment for reaction force (default: \$ci= 0.5, \$cj= 0.5)						
\$limFo \$limFi \$nlter	tolerance of external unbalanced force (\$limFo), tolorance of internal unbalanced force (\$limFi), number of iterations to get rid of internal unbalanced force (\$nIter)						

OpenSees Days 2014 September 25-26

Some period of the sector o

KikuchiBearing Element

Lead Rubber Bearing Tests

Figure 7. Lead–rubber bearing ($S_2 = 5$) shear force–displacement hysteresis loops for cyclic shear tests with different vertical loads: (a) $\sigma = 0$ MPa; (b) $\sigma = 5$ MPa; (c) $\sigma = 10$ MPa; (d) $\sigma = 20$ MPa; and (e) $\sigma = 30$ MPa.

September 25-26 September 25-26

Yamamoto, Kikuchi, Ueda and Aiken, EESD 2009

Important Modelling Considerations

- The simpler the element the better the convergence that can be achieved. For the more complex elements that capture axial load effects, temperature
 - dependence or scragging -> use smaller time step size for dynamic analyses
- Some of the elastomer based elements need an axial load on them to capture effects on shear forces and P-Delta effects -> apply gravity loads

Important Modelling Considerations

- For all isolators it is very important to -> provide realistic axial stiffness (not just some large value)
- If possible (depends on element) ->
 provide some viscous damping in the axial bearing direction
- Avoid the introduction of artificial viscous damping in the isolation system (i.e. damping leakage) -> avoid using Rayleigh damping in the bearing elements

Comparison of Isolator Capabilities

Shear Behavior	Shear Coupling	Axial Behavior	Shear and Axial Coupling	Coupled H-V defo	Moment Behavior
bouc-wen	yes, circular	any OPS material	under development	no	any OPS material
bilinear	yes, circular	any OPS material	no	no	any OPS material
bouc-wen	yes, circular	special tension mat	yes	no	elastic
bouc-wen	yes, circular	special tension mat	yes	no	elastic
Grant et al.	yes, circular	special tension mat	yes	no	elastic
multi-shear-spring	yes, circular	multi-normal-spring	yes	no	multi-normal spring
bilinear	no, 2D only	elastic	yes	yes	no, fixed required
EPP	yes, circular	any OPS material + gap	yes	no	any OPS material
bilinear	yes, circular	any OPS material + gap	yes	no	any OPS material
multi-linear plastic	yes, circular	elastic + gap	yes	no	from geometry
multi-linear plastic	yes, circular	elastic T and C	yes	no	from geometry
	Shear Behavior bouc-wen bilinear bouc-wen bouc-wen Grant et al. Grant et al. multi-shear-spring bilinear EPP bilinear multi-linear plastic	Shear BehaviorShear Couplingbouc-wenyes, circularbilinearyes, circularbouc-wenyes, circularbouc-wenyes, circularbouc-wenyes, circularGrant et al.yes, circularmulti-shear-springyes, circularbilinearno, 2D onlyEPPyes, circularbilinearyes, circularbilinearyes, circularmulti-linear plasticyes, circular	Shear BehaviorShear CouplingAxial Behaviorbouc-wenyes, circularany OPS materialbilinearyes, circularany OPS materialbouc-wenyes, circularspecial tension matbouc-wenyes, circularspecial tension matGrant et al.yes, circularspecial tension matmulti-shear-springyes, circularmulti-normal-springbilinearno, 2D onlyelasticEPPyes, circularany OPS material + gapbilinearyes, circularany OPS material + gapmulti-linear plasticyes, circularelastic + gapmulti-linear plasticyes, circularelastic T and C	Shear BehaviorShear CouplingAxial BehaviorShear and Axial Couplingbouc-wenyes, circularany OPS materialunder developmentbilinearyes, circularany OPS materialnobouc-wenyes, circularspecial tension matyesbouc-wenyes, circularspecial tension matyesGrant et al.yes, circularspecial tension matyesmulti-shear-springyes, circularmulti-normal-springyesbilinearno, 2D onlyelasticyesEPPyes, circularany OPS material + gapyesbilinearyes, circularelastic + gapyesmulti-linear plasticyes, circularelastic T and Cyes	Shear BehaviorShear CouplingAxial BehaviorShear and Axial CouplingCoupled H-V defobouc-wenyes, circularany OPS materialunder developmentnobilinearyes, circularany OPS materialnonobouc-wenyes, circularspecial tension matyesnobouc-wenyes, circularspecial tension matyesnobouc-wenyes, circularspecial tension matyesnoGrant et al.yes, circularspecial tension matyesnomulti-shear-springyes, circularmulti-normal-springyesnobilinearno, 2D onlyelasticyesyesnobilinearyes, circularany OPS material + gapyesnobilinearyes, circularelastic + gapyesnomulti-linear plasticyes, circularelastic T and Cyesno

Element	Rayleigh Damping	P-Delta Effects	Nonlinear Hardening	Scragging Effects	Rate Effects	Temp. Effects
Elastomeric Bearing BW	off, optional	yes	yes	no	no	under dev.
Elastomeric Bearing P	off, optional	yes	yes	no	no	no
ElastomericX Bearing	on	no	no	no	no	no
LeadRubberX Bearing	on	no	no	no	yes	yes
HDR Bearing	on	no	yes	yes	no	no
Kikuchi Bearing	on	yes	yes	yes	no	maybe
Isolator 2-Spring	off, optional	yes	no	no	no	no
Flat Slider Bearing	off, optional	yes	n/a	n/a	yes	no
Single FP Bearing	off, optional	yes	n/a	n/a	yes	no
Triple FP Bearing 1	on	no	yes	n/a	no	no
Triple FP Bearing 2	on	yes	yes	n/a	yes	no

September 25-26

Fluid Viscous Dampers

September 25-26

OpenSees Days 2014 September 25-26

Elastic Uniaxial Material

uniaxialMaterial Elastic \$matTag \$E <\$eta> <\$Eneg>

\$matTag	integer tag identifying material
\$E	tangent
\$eta	damping tangent (optional, default=0.0)
\$Eneg	tangent in compression (optional, default=E)

OpenSees Days 2014 September 25-26

Viscous Uniaxial Material

uniaxialMaterial Viscous \$matTag \$C \$alpha

\$matTaginteger tag iden\$Cdamping coefici\$alphapower factor (=*

integer tag identifying material damping coeficient power factor (=1 means linear damping)

 $\sigma(t) = C \cdot \dot{\varepsilon}(t)^{alpha}$

ViscousDamper Uniaxial Material

uniaxialMaterial ViscousDamper \$matTag \$K \$Cd \$alpha

\$matTag	integer tag identifying material
\$K	Elastic stiffness of linear spring (to model the axial flexibility of a viscous damper (brace and damper portion)
\$Cd	Viscous parameter of damper
\$alpha	Viscous damper exponent

The ViscousDamper material is based on:

1

Maxwell material model

$$\frac{\dot{F}_{d}(t)}{K_{d}} + \operatorname{sign}(F_{d}(t)) \left(\frac{\left|F_{d}(t)\right|}{C_{d}}\right)^{\frac{1}{\alpha}} = \dot{u}_{m}(t)$$

ViscousDamper Uniaxial Material

OpenSees Days 2014 September 25-26

Damper Configurations

flatSliderBearing: constant COF 13%

singleFPBearing: constant COF 13%

TripleFrictionPendulum: constant COF 4%, 10%, 13%

RJWatsonEQSBearing: constant COF 13%

elastomericBearingPlasticity: fy = 1.84 kip

elastomericBearingBoucWen: fy = 1.84 kip

elastomericX: fy = 1.84 kip

LeadRubberX: qd = 1.66 kip

Conclusions

- OpenSees already provides a fairly large library of elements and materials that can be used to model isolators and viscous dampers.
- However, isolator capabilities need to be further improved to include important effects such as the coupled vertical-horizontal deformation effects.
- Additional models for capturing temperature effects should be developed.
- Modeling of isolator failures and moat impact needs to be investigated.

Questions? Thank you!

Open System for Earthquake Engineering Simulation

Pacific Earthquake Engineering Research Center