Nonlinear Frame Finite Elements in OpenSees

Michael H. Scott Associate Professor School of Civil and Construction Engineering

OpenSeesDays Users Workshop Richmond, CA September 26, 2014

- Two sources of nonlinear frame element response:
 - Material yielding, strain hardening, crushing of concrete, etc.
 - **Geometry** loss of stability due to loads acting through large displacements
- An analysis can account for each source of nonlinearity separately, giving four possible approaches

	Geometry Linear (GL)	Geometry Nonlinear (GN)
Material Linear (ML)	ML, GL	ML, GN
Material Nonlinear (MN)	MN, GL	MN, GN

• Simple steel frame model analyzed under four approahces

 Relatively large column axial loads will intensify both material and geometric nonlinear response for demonstration purposes

M.H. Scott (OSU)

OpenSees Frame Elements

We observe the following:

- Material nonlinearity kicks in well before geometric nonlinearity
- Geometric nonlinearity allows for prediction of loss of stability for increasing displacement

M.H. Scott (OSU)

OpenSees Frame Elements

Section Force-Deformation Response

- At each cross-section along a frame element, we must determine the section forces for any given section deformations
- Material nonlinearity eminates from the stress-strain response in each frame element
 - Heuristic approach through stress-resultant section models, e.g., moment-curvature; or
 - Integrate stress-strain response via "fiber section" approach

uniaxialMaterial modelName \$tag ...

- Define uniaxial stress-strain models for use in Bernoulli beam elements
- Elastic, Steel01, Steel02, Concrete01, Concrete02, etc.

nDMaterial modelName \$tag ...

- Define multiaxial stress-strain models for use in Timoshenko beam elements
- Elasticlsotropic, J2Plasticity, ConcreteMCFT, etc.

Commands for Section Definition

 General definition of Bernoulli cross-section using patches and layers of fibers whose stress-strain response is defined by uniaxialMaterial objects section Fiber \$tag { patch \$type \$matTag ... layer \$type \$matTag ... fiber \$matTag

Use NDFiber with nDMaterial objects instead of Fiber with uniaxialMaterial objects for Timoshenko beams

• Specific cross-sections obtained with "canned" models section WFSection2d \$tag \$matTag ... section RCSection2d \$tag \$matTag ...

Rectangular Steel Section

- Rectangular section with EPP uniaxial stress-strain response
- Compute moment-curvature response for increasing number of fibers
- Exact solution for $M_y = f_y b d^2/6$ and $M_p = b d^2/4$

8 / 40

Rectangular Steel Section

Reinforced Concrete Section

- EPP steel and Concrete01 concrete
- Using "canned" RCSection2d command
- Confined and unconfined concrete

Reinforced Concrete Section

- Moment-curvature response for increasing levels of axial load
- With and without confining effects of transverse reinforcement
- Modify the Concrete01 input parameters for confined concrete

Numerical Integration of Element Response

- For most material nonlinear element formulations, cross-section response is integrated numerically along the frame element length in order to determine element force-deformation response
- Sections located at discrete points along the element length, each with a prescribed weight
- Highly accurate Gauss-based quadrature commonly used

element dispBeamColumn \$tag \$ndI \$ndJ \$transfTag Legendre \$secTag 2

- Strict compatibility
 - Linear axial and cubic Hermitian transverse displacement fields
 - Constant axial deformation and linear curvature along element length
- Weak equilibrium
 - Equilibrium satisfied only at the nodes, not at every section along the element
 - Two-point Gauss-Legendre integration along element length
- Improve numerical solution by using more elements per member (mesh- or *h*-refinement)

Propped Cantilever

M.H

- Constant axial load and increasing moment applied at propped end
- Fiber-discretized section response with strain-hardening stress-strain
- Two Gauss-points per element
- Investigate refinement for increasing number of elements

Global Response

M.H. Scott (OSU)

OpenSeesDays 2014 15 / 40

Local Flexural Response

Local Axial Response

M.H. Scott (OSU)

OpenSees Frame Elements

 Investigate refinement of load-displacement response for increasing number of displacement-based elements per member

- Coarse mesh over-predicts strength unconservative
- Improved solution with refined mesh

Force-Based Frame Element

element forceBeamColumn \$tag \$ndI \$ndJ \$transfTag Lobatto \$secTag \$Np

- Average compatibility
 - Nodal displacements are balanced by weighted integral of section deformations
 - Complex state determination
 - Use Gauss-Lobatto integration so that extreme flexural response captured at element ends
- Strong equilibrium
 - Equilibrum of nodal and section forces satisfied at all points along element
 - Constant axial force and linear bending moment in absence of member loads
 - Straightforward to include member loads
- Improve numerical solution by using more integration points per element while maintaining mesh of one element per member

Propped Cantilever

- Constant axial load and increasing moment applied at propped end
- Fiber-discretized section response with strain-hardening stress-strain
- Investigate refinement for increasing number of Gauss-Lobatto point using one element

Global Response

M.H. Scott (OSU)

OpenSeesDays 2014 22 / 40

Local Flexural Response

Local Axial Response

M.H. Scott (OSU

OpenSees Frame Elements

OpenSeesDays 2014 24 / 40

- Investigate refinement of load-displacement response for increasing number of Gauss-Lobatto integration points per element
- Maintain one element per member

- Same yield point predicted in all cases
- Post-yield stiffness more flexible with fewer integration points

Force-Based Plastic Hinge Frame Element

element forceBeamColumn \$tag \$ndI \$ndJ \$transfTag HingeRadau \$secTagI \$lpI \$secTagJ \$lpJ \$secTagE

or

element beamWithHinges \$tag \$ndI \$ndJ \$secTagI \$lpI \$secTagJ \$lpJ \$E \$A \$I
\$transfTag

- Control integration weights at element ends
- Important for strain-softening section response

Reinforced Concrete Bridge Pier

550mm x 550mm square 12 bars, $d_b = 20$ mm 40 mm clear cover

Tanaka and Park (1990) Specimen 7

Displacement-Based Elements

- Post-peak response is mesh-dependent
- Function of element length

Force-Based Element

- Post-peak response depends on number of integration points
- Function of integration weight at base of column

Force-Based Plastic Hinge Element

Post-peak response controlled by plastic hinge length
 I_p = 0.22L from empirical equation

Drawback to Force-Based Plastic Hinge Element

 For strain-hardening section behavior, post-peak response is too flexible

There's no silver bullet

Strain-Hardening Section Response

- Use mesh of displacement-based elements
- Use one force-based elements with 4 to 6 Gauss-Lobatto points
- Plastic hinge element not recommended because post-peak response will be too flexible

Strain-Softening Section Response

- Use force-based plastic hinge element
- Response with displacement-based elements is mesh dependent
- Response with Gauss-Lobatto force-based element depends on number of integration points

Geometric Transformation of Element Response

- Element formulation of material nonlinearity *inside* the basic system (free or rigid body displacement modes)
- Element formulation of geometric nonlinearity *outside* the basic system

geomTransf Linear \$tag

- Small displacement assumptions in local to basic transformation
- Linear transformation of forces and displacements

geomTransf PDelta \$tag

- Small displacement assumption transformation of displacements
- Account for transverse displacement of axial load in equilibrium relationship

geomTransf Corotational \$tag

- Fully nonlinear transformation of displacements and forces
- Exact in 2D but some approximations in 3D

• Examine pushover response for different levels of gravity load

• $P-\Delta$ and Corotational – similar results for lateral displacement

"Exact" Corotational predicts change in vertical displacement
Important for collapse prediction and post-buckling capacity

OpenSees Frame Elements

Elastic Buckling

- Use mesh of corotational frame elements to simulate buckling
- Simply-supported W14x90, L=100 in, P_{cr}=29579 kip
- L/r=16.26: short column, but demonstrates point
- Imperfection applied to nodes, $u(t) = 0.1 \sin(\pi x/L)$ in

Concept works well for inelastic buckling too

- Material and geometric nonlinearity treated separately for frame finite elements in OpenSees
- Only scratching the surface other element formulations and models of nonlinear stress-strain response
- Other Resources
 - OpenSees wiki
 - OpenSees message board
 - OpenSees YouTube videos
 - Course assignments