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@ Two sources of nonlinear frame element response:

o Material - yielding, strain hardening, crushing of concrete, etc.
o Geometry — loss of stability due to loads acting through large
displacements

@ An analysis can account for each source of nonlinearity
separately, giving four possible approaches

| Geometry Linear (GL) Geometry Nonlinear (GN)
Material Linear (ML) ML, GL ML, GN
Material Nonlinear (MN) MN, GL MN, GN
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@ Simple steel frame model analyzed under four approahces

@ Relatively large column axial loads will intensify both material
and geometric nonlinear response for demonstration purposes
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We observe the following:
@ Material nonlinearity kicks in well before geometric nonlinearity

@ Geometric nonlinearity allows for prediction of loss of stability for
increasing displacement



@ At each cross-section along a frame element, we must determine
the section forces for any given section deformations

@ Material nonlinearity eminates from the stress-strain response in
each frame element

@ Heuristic approach through stress-resultant section models, e.g.,
moment-curvature; or

@ Integrate stress-strain response via “fiber section” approach
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uniaxialMaterial modelName $tag ...

@ Define uniaxial stress-strain models for use in Bernoulli beam
elements

@ Elastic, Steel01, Steel02, Concrete01, Concrete02, etc.
nDMaterial modelName $tag ...

@ Define multiaxial stress-strain models for use in Timoshenko
beam elements

@ Elasticlsotropic, J2Plasticity, ConcreteMCFT, etc.



@ General definition of Bernoulli cross-section using patches and
layers of fibers whose stress-strain response is defined by
uniaxialMaterial objects
section Fiber $tag {

patch $type $matTag ...
layer $type $matTag ...
fiber $matTag ...

Vo

Use NDFiber with nDMaterial objects instead of Fiber with
uniaxialMaterial objects for Timoshenko beams

@ Specific cross-sections obtained with “canned” models
section WFSection2d $tag $matTag ...
section RCSection2d $tag $matTag ...



@ Rectangular section with EPP uniaxial stress-strain response
@ Compute moment-curvature response for increasing number of

fibers
o Exact solution for M, = f,bd?/6 and M, = bd?/4
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@ EPP steel and Concrete01 concrete
@ Using “canned” RCSection2d command

@ Confined and unconfined concrete

24in

e o o
° °
e o o

IZin

24in

Strain, e




@ Moment-curvature response for increasing levels of axial load

@ With and without confining effects of transverse reinforcement

@ Modify the Concrete0Q1 input parameters for confined concrete
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@ For most material nonlinear element formulations, cross-section
response is integrated numerically along the frame element
length in order to determine element force-deformation response

@ Sections located at discrete points along the element length,
each with a prescribed weight

@ Highly accurate Gauss-based quadrature commonly used

X1 X2 X3 Xy X5
| | | | |
| | | | |
. . . . .
| | | | |
| | ‘ | ‘ | |
% Wy Wh ‘ w3 ‘ Wy 4 Ws
L \




element dispBeamColumn $tag $ndI $ndJ $transfTag Legendre $secTag 2

@ Strict compatibility
@ Linear axial and cubic Hermitian transverse displacement fields
o Constant axial deformation and linear curvature along element
length
@ Weak equilibrium
o Equilibrium satisfied only at the nodes, not at every section
along the element
@ Two-point Gauss-Legendre integration along element length
@ Improve numerical solution by using more elements per member
(mesh- or h-refinement)



@ Constant axial load and increasing moment applied at propped
end

@ Fiber-discretized section response with strain-hardening
stress-strain

@ Two Gauss-points per element

@ Investigate refinement for increasing number of elements
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@ Investigate refinement of load-displacement response for
increasing number of displacement-based elements per member
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@ Coarse mesh over-predicts strength — unconservative
@ Improved solution with refined mesh
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element forceBeamColumn $tag $ndI $ndJ $transfTag Lobatto $secTag $Np

@ Average compatibility
o Nodal displacements are balanced by weighted integral of
section deformations
o Complex state determination
o Use Gauss-Lobatto integration so that extreme flexural response

captured at element ends
@ Strong equilibrium
o Equilibrum of nodal and section forces satisfied at all points

along element
o Constant axial force and linear bending moment in absence of

member loads
o Straightforward to include member loads
@ Improve numerical solution by using more integration points per
element while maintaining mesh of one element per member



@ Constant axial load and increasing moment applied at propped
end

@ Fiber-discretized section response with strain-hardening
stress-strain

@ Investigate refinement for increasing number of Gauss-Lobatto
point using one element
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@ Investigate refinement of load-displacement response for
increasing number of Gauss-Lobatto integration points per

element
@ Maintain one element per member
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@ Same yield point predicted in all cases
@ Post-yield stiffness more flexible with fewer integration points
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element forceBeamColumn $tag $ndI $ndJ $transfTag HingeRadau $secTagl $1pl

$secTag] $1pJ $secTagE
or
element beamWithHinges $tag $ndI $ndJ $secTagl $1pl $secTag] $1pJ $E $A $I
$transfTag
@ Control integration weights at element ends
@ Important for strain-softening section response
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, 550mm x 550mm square
P =03fA, 12 bars, dp, = 20 mm
40 mm clear cover
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@ Post-peak response is mesh-dependent
@ Function of element length
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@ Post-peak response depends on number of integration points
@ Function of integration weight at base of column
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@ Post-peak response controlled by plastic hinge length
@ [, =0.22L from empirical equation
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@ For strain-hardening section behavior, post-peak response is too
flexible
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There's no silver bullet

Strain-Hardening Section Response
@ Use mesh of displacement-based elements
@ Use one force-based elements with 4 to 6 Gauss-Lobatto points

@ Plastic hinge element not recommended because post-peak
response will be too flexible

Strain-Softening Section Response
@ Use force-based plastic hinge element
@ Response with displacement-based elements is mesh dependent
@ Response with Gauss-Lobatto force-based element depends on
number of integration points



@ Element formulation of material nonlinearity inside the basic
system (free or rigid body displacement modes)
@ Element formulation of geometric nonlinearity outside the basic

system

Basic System
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geomTransf Linear $tag

@ Small displacement assumptions in local to basic transformation
@ Linear transformation of forces and displacements

geomTransf PDelta $tag
@ Small displacement assumption transformation of displacements

@ Account for transverse displacement of axial load in equilibrium
relationship

geomTransf Corotational $tag
@ Fully nonlinear transformation of displacements and forces

@ Exact in 2D but some approximations in 3D



@ Examine pushover response for different levels of gravity load
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@ P — A and Corotational — similar results for lateral displacement
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@ “Exact” Corotational predicts change in vertical displacement
@ Important for collapse prediction and post-buckling capacity
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@ Use mesh of corotational frame elements to simulate buckling
@ Simply-supported W14x90, L=100 in, P.=29579 kip

@ L/r=16.26: short column, but demonstrates point

@ Imperfection applied to nodes, u(t) = 0.1sin(mx/L) in
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Concept works well for inelastic buckling too




@ Material and geometric nonlinearity treated separately for frame
finite elements in OpenSees

@ Only scratching the surface — other element formulations and
models of nonlinear stress-strain response
@ Other Resources

OpenSees wiki

OpenSees message board
OpenSees YouTube videos
Course assignments

[

e ¢ ¢



