Using Opensees for the seismic assessment of existing reinforced concrete buildings

Panos H. Galanis PhD Candidate University of California, Berkeley

Supervised by Professor Jack P. Moehle University of California, Berkeley

Outline

- 1. Introduction
- 2. Methodology Overview
- 3. Using Opensees for seismic assessment
- 4. Example Application
- 5. Conclusions / Summary

Introduction

Limitations of Current Seismic Evaluation

- Current Codes incapable of determining collapse risk
- **Relative importance** of common **deficiencies** not addressed
- High Conservatism in selection of modeling parameters
- Building deficient if single component fails to satisfy the code requirements

Introduction

ATC-78 Project

Assessment of Collapse Risk of non-ductile RC structures representative of buildings constructed between 1950-1975

Scope of Study

- Understand the relative importance of common deficiencies
- Introduce a systematic probabilistic framework in determining the response of old buildings
- Reduce Conservatism in assessment and retrofit of old structures

Methodology Overview

Methodology Overview

Challenges of the Methodology

- Simulation of structural collapse
 - a) Explicit modeling of deterioration of structural members

b) Modeling of brittle type of failures (for example shear or axial failure)

c) Large displacement - non-linear geometric effects taken into account

- Many dynamic analyses are required for proper assessment of seismic behavior
- Introduce a **probabilistic framework** to evaluate collapse risk

Modeling assumptions

- *Earthquake mass* is assumed to be *equally distributed* to the seismic *frames* in x and y direction (lumped mass approach incorporated)
- *Two-dimensional dynamic analysis* is performed
- *Lumped-plasticity approach* to model non-linear material behavior
- *P-Delta effects* are employed in column members to take into account *non-linear geometry*
- The *elastic stiffness* of structural members is *modified* according to the ASCE-41 to implicitly take into account *concrete cracking* and bar slip
- *Joints* assumed to be *rigid* according to ASCE-41

Modeling structural collapse (controlled by flexure)

Modeling structural collapse(controlled by shear)Sheiat Spring behavior

(developed by Elwood et al.)

Dynamic Analysis

- Set of 44 ground motions selected far field records (distance from epicenter > 10 km)
- To avoid event bias no more than 2 records taken from any earthquake
- *Ground motions* are *scaled* to increasing earthquake intensity *until collapse*
- Collapse is defined as :

 a) *sidesway collapse* (interstory drift > 10%)
 b) *vertical collapse* (more than 50% of the columns in one story have reached axial failure)
- Probability of collapse (exceedance) is calculated for different S_a(T₁) levels

Dynamic Analysis

- **Opensees** structural analysis suite is utilized for the dynamic simultation
- Matlab software is utilized to modify Opensees script during analysis, so that:
 - a) *Scaling of G.M.* is performed
 - b) *Collapse* is tracked in *real-time*
 - c) *Modify solution algorithm* appropriately in real-time
 - d) *Post-processing* of *results* is performed

Ground Motion Scaling

- *Ground motion intensity*: the *Spectral acceleration* of the individual record at the *fundamental period* of the studied building
- The *intensity of G.M.* is scaled in specified increments until *collapse* is detected
- After collapse is detected the record is scaled down in smaller increment to detect the "exact" failure intensity

Solution Algorithm

- Dynamic Analysis of a structure under extreme earthquake loads can lead to convergence problems in the application of the solution
- Matlab enables modification of Opensees code during analysis:

Post-Processing of Results

Modify collapse risk using the shape factor

Example Application

Effect of transverse reinforcement ratio

Conclusions / Summary

Opensees is a powerful tool for simulation of existing buildings because:

- 1. Includes a wide range of elements and materials
- 2. Open source software allows user to modify materials
- 3. Cooperates with other software (Matlab) for pre and post processing of the analyses

Conclusions / Summary

Thank you!