

OpenSees in Practice: Soil Structure Interaction

Arash Khosravifar Fugro Consultants, Inc. August 16, 2012

Examples

- 1.Piles in Liquefied Soils 2D Approach (UC Davis with Professor Ross Boulanger)
- **2.Piles in Liquefied Soils 3D Approach** (UC Davis)
- 3.Soil-Pile-Interaction for a Suspension Bridge (Fugro)
- 4.Seismic Retrofit of an Immersed Tunnel (Fugro)

5.OpenSees Components and Calibration Process

Example 1. Piles in Liquefied Soils – 2D Approach

• Large diameter extended pile shafts (2 to 3 m) can be an effective choice in areas of potential lateral spreading.

Piles in Liquefied Soils – 2D Approach

FE model

- OpenSees FE framework
- Soil elements
 <u>9-4 Quad UP</u>

PDMY02 and PIMY

- Pile elements Disp-based beam column Fiber section
- Interface elements
 PYSimple and PYLiq1

Piles in Liquefied Soils – 2D Approach

Animation

Example 2. Piles in Liquefied Soils – 3D Approach

Piles in Liquefied Soils – 3D Approach

- Modeled in OpenSeesPL
- No interface element
- Pile occupies a space

Piles in Liquefied Soils – 3D Approach

Animation

Example 3. Soil-Pile-Interaction for a Suspension Bridge

Arash Khosravifar, Thaleia Travasarou, Jose Ugalde and Weiyu Chen, Fugro

Foundation

Site Investigation

Site Response Analyses Results (no pile)

• Comparison with FLAC3D and Deepsoil

Soil-Pile-Interaction (single pile pushover)

Without using interface springs

With using interface springs

Example 4. Seismic Retrofit of an Immersed Tunnel

Lanka Ilankatharan and Thaleia Travasarou, Fugro

Seismic Retrofit of An Immersed Tunnel

Lanka Ilankatharan and Thaleia Travasarou, Fugro

Seismic Retrofit of An Immersed Tunnel

Lanka Ilankatharan and Thaleia Travasarou, Fugro

Seismic Retrofit of An Immersed Tunnel

Lanka Ilankatharan and Thaleia Travasarou, Fugro

Horizontal displacement contours (OpenSees) 11-16 ft ~3 ft X-Disp 16.542 14.137 11.715 9.2924 6.8702 4.448 2.0258 -0.39646 -2.8187 Horizontal displacement contours (FLAC-2D) -5.2409 10-14 ft ~3 ft

fugro

Example 5. OpenSees Components and Calibration

OpenSees Components and Calibration

Soil models

9-4 Quad UP, Quad UP, Brick UP elements PDMY02 and PIMY

• Pile elements

Disp-based beam column, Flexibility-based beam column Fiber section

• Interface elements

PYSimple1, TZSimple1, QZSimple1 PYLiq1, TZLiq1 (for liquefaction)

Undrained Monotonic Direct-Simple-Shear Test (DSS)

www.fugro.com

www.fugro.com

Structural Elements

- Fiber sections
- Displacement-based nonlinear beam column elements

Soil Springs

- Update properties based on PWP
- Allow gap formation

THANK YOU akhosravifar@fugro.com