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Degenkolb New Technologies Group

• Current Activities:
• Tools for generating ASCE 41 hysteretic properties for 

Perform 3D, OpenSees, etc
• Ground Motion Selection and Scaling
• SFSI: Soil Foundation Structure Interaction Modeling
• Degenkolb Design Database: Post-Processing and 

Database Export of Perform 3D results
• Risk Products: PML/SEL/SUL, EnvISA, Hazus, ShakeCast, 

Portfolio Loss, etc.
• NLRHA
• Component Modeling/Analysis
• Tall Building / Wind Analysis
• BIM / Analysis interaction
• Many other ongoing consulting and research activities
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Outline

• Why NLRHA?
• NL Analysis at Degenkolb
• Analysis Efficiency & Model Management
• Modeling SFSI in OpenSees
• BuildingTcl
• When to Use NLRHA?
• OpenSees Opportunities and Challenges
• Conclusion



Using Non-linear Response History 
Analysis (NLRHA) in Design

• Design Process and Goals
• Steps in the Process
• When and Why?
• Examples and Lessons
• Future Directions
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Design using Advanced Analysis
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Nonlinear Response History Analysis 
(NLRHA), Why?

• Improving our prediction of the expected 
range of structural response by modeling 
‘real behavior’.
• Reduce the uncertainties that we control.
• Understand those that we cannot.
• Develop our ‘model in the mind’.



NLRHA: Why?

• To better serve our clients…..
• By exploring solutions outside the code

• Alternate Means of Compliance (PBEE)
• New materials, systems, and techniques

• By reducing structural scope and cost
• By improving structural & seismic performance 

for the same or lower scope/cost.
• By improving post-earthquake outcomes and 

reducing life-cycle costs.
• While improving our understanding of structural 

behavior to make us better Designers



Earthquake Ground Motion
Selection and Scaling

Nonlinear Response History 
Models

Seismic Hazard & Ground Motions

Source: GeologyCafe.com (Base map modified after the Geologic Map 
of California by Jenning, C.W., 1997, California Dept. of Mines and 
Geology)



Site-Specific Seismic-Hazard Analysis
• Site Data

• Location
• Soil Profile

• Average shear-wave velocity in top 100ft: Vs30

• Depth to Rock
• Regional Seismicity

• Regional faults
• Distance & Magnitude
• Fault Mechanism

• Attenuation Relationships

• Probabilistic Spectra
• 2% probability of being exceed in 50 years
• 10% probability of being exceed in 50 years

• Deterministic Spectrum
• Mean + one standard deviation
• account for uncertainties associated with near-fault 

ground motions



Degenkolb Method
• Mean Spectrum Matching

• Developed at Degenkolb Engineers by Mark 
Sinclair

• Addresses the limitations of the other two methods 
and combines their advantages

• Addresses what is relevant to the structural 
engineer

• Minimal frequency-content modification to ground-
motion record

• Spectral Matching at average level:
SRavg = Target Spectrum

• We have used it on several projects
• Has been reviewed and approved by 

CGS/OSHPD on a new-hospital design project



Mean Spectrum Matching
• Advantages

• Maintain 
• All individual characteristics of 

record (except amplitude)
• Characteristic period and 

energy content of record
• Peaks and valleys in individual 

spectrum
• Minimize amplification/effects on 

higher modes
• Control variability between 

records
• Reduces peaks in spectrum

– Meet goal of mean response
– Can set different target spectra for different directions (Fn & Fp in near-field)
– Can control dispersion in response between records (standard deviation)

• Limitations
– Less known
– Implementation is not trivial, but automatable



Inelastic
Soil Characteristics

Inelastic
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Current State of the Practice:



Current Edge of the Practice:
• Uniform-Support Excitation = bathtub model
• Model kinematic effects (spatial variation of 

ground motions) implicitly



Just Beyond:
• Multi-Support Excitation
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Direct Modeling of System 
Response

from ATC 83 Project. Task 10, JP Stewart 



Perform 3D Model:



Soil-Spring Characterization
Winkler Foundation

Drag
Bearing Pressure (compression-only)
Passive Resistance (compression-only)



Soil Material Models

• Elastic
• Initial Stiffness
• Secant Stiffness

• Elastic-Perfectly-Plastic
• Initial Stiffness
• Secant Stiffness

• Inelastic Curvilinear
• Qz,Py,Ty Springs (OpenSees)

• Inelastic Multi-Linear
• Determined from Qz,Py,Ty Springs
• Implementable into SAP

Spring Deformation
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Detailed Component Analysis:
• In support of testing programs, e.g. 

SMRF Connections
• Evaluate behavior of critical 

components

Component Finite Element Analysis



FEA – Pipeline Analysis

• Determination of pipe 
stresses and strains due to 
imposed displacement at a 
fault crossing

• Incorporates:
• Inelastic pipe properties
• Inelastic soil properties
• Internal pipe pressures
• Varying soil conditions
• Varying fault locations and offsets



Moment/Brace Haunched Connection



NRH Analyses

• Typical Analysis
• 160 records (10 GM’s x 16 cases)
• On average 16 hours each record = over 100 

days end-to-end
• Typical suite can generate up to 2 TB of data

• Includes displacements, drifts, member 
forces, hinge rotations, energy dissipation, 
etc. for every single time step

• Can be labor intensive to reduce data to only a 
few important results per element



Model Efficiency

Rapid Model 
Generation 
Tools

Multimachine
Analysis

Database Post-
Processing



State of the Edge of the practice:
• Discovering limitations

• Software was developed for serial machines

Circa 2010

2012

Virtual
Analysis
Machine



Hardware Efficiencies

• Multi-Core 64 bit Processor

• Virtual Analysis Machines

• Adjustable allocation of resources

• Software only utilizes one core per instance, 
multiple instances on multiple cores 
machines allows for parallel analyses

• Multi-Machine Analysis



Multi-Machine Analysis

Core 1
GM 4

Core 2
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Core 3
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Core 4
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Core 1
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Analysis 
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Multi-Machine Analysis

• DE Level Analysis
• 10 Ground Motion pairs (avg 16 hrs each)
• x 4 (Eccentric mass cases)
• x 2 (rotated ground motions)
• x 2 (Upper & lower bound soil properties)
• = 160 records

• Run simultaneously runtime reduced from 100s of 
days to length of 5 ground motion (2-3 days)



Software Efficiencies
• Degenkolb Design Database

• Software developed for Degenkolb

• Accesses PERFORM binary result files directly

• Output to text files or database files



Degenkolb Design Database



State of the Edge of the practice:
• Discovering limitations

• Post-processing is proprietary and cumbersome

Analysis Output

Post-Processor



Database Queries - Drift



Database Queries - Drift



Model Management

• Why the need?
• Quality Control - Repetitive tasks invite human 

error
• Speed

• Software to automate the multi-machine analysis
• Calls on multiple models 
• Distribute models to available Virtual Analysis 

Machines.  
• Database can query across results from different 

models to assemble (envelope/average) results as 
required.



Analysis Management/Automation
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Model Management

• Model Exchange Tool
• Intermediate repository of structural model 

information 
• Allows the conversion of model data from one 

finite element software to another. 
• Should be able to convert to and from several 

applications including 
• ETABS, 
• SAP2000, 
• Perform3D, 
• OpenSees, 
• and BIM…



Model Management



OpenSees Modeling Capability

Research Involvement:
• Next generation structural analysis software
• Past involvement with OpenSees

Development Team
• Close collaboration with researchers



Model Conversion
• Automated extraction of Perform Model into 

OpenSees



OpenSees Model
• Apply multi-support excitation with spatial 

variation of ground motion
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Continued Improvement of 
BuildingTcl & BuildingTclViewer

a Real-Time Interface for Numerical 
Simulation in OpenSees



Model Input -- elevation



RC Sections



Lateral Loads



• Provide a graphical user interface for BuildingTcl input
• Provide capability of running OpenSees real-time
• Visualization of Input / real-time response / output
• Save graphically-generated input into BuildingTcl script file

BuildingTclViewer



Menus



Materials



Sections



Elevation-Model Input



3DFrame-Model Input
view Element Cross Sections

Fiber Sections only

zoom
(double-click to 
reset=1)



Real-Time OpenSees Simulation
Real-Time Pause/Stop



Visualization of Structural Response
envelope values



BuildingTcl combines the power 
of a scripting UI with a GUI



Soil-Structure Interaction:
Base Rocking 10-story RC Frame



Model Validation



When to go to NLRHA?

• Confirm first that there is a point, and 
degree of potential advantage:
• Is it required?  e.g. Base Isolation
• Is it going to produce a better answer?  
• Is it going to justify the increased cost?
• Should we just fix the problem….?

• Better for some structural systems
• Where R or m is much smaller than 
∆limit / ∆y

• When a ‘nonstructural’ project advantage 
exists (e.g. reduced disruption)



Comparison w/ Code-Based-Design

• Advantages
• Allowable drift increase (1.25 factor)
• Can achieve lower Ωo Factor (1.5 vs. 2.5-3.0)
• Advantage in ground motion scaling in far-field
• When taking a code exception
• Sometimes can use lower mass eccentricity

• Disadvantages
• Code drifts computed using Cd = 0.7R
• Podium structures, no easy two-stage analysis



CPMC 
Cathedral Hill



Structural System Drift Floor Steel Cost
Accel. Wt. Index

(psf)

Conventional SMRF 1.25% 1.0g ‐1.5g 36 1.0

Dual System ‐
BRBF+SMRF 1.25% 1.5g ‐2.0g 27 0.8

Braced Frame with 
Isolation 0.7% 0.2g ‐0.3g 28 1.0

SMRF with Dampers 1.25% 0.5g ‐0.8g 20 0.7

CPMC Cathedral Hill – Scheme Comparison



NLRHA: Design Requirements

• No current “code requirements”:
• In development, BSSC Task Group
• Usually means an AMoC or “Design Criteria”
• Make it as brief as possible.  
• Reference other standards where possible, 

e.g. ASCE-41, Tall Buildings Initiative
• Avoid finalizing it too early

• Understand review process
• Local jurisdiction/reviewer experience
• Consider impact of potential delays



NLRHA: Lessons Learned

• Allow extra time for learning process 
• Spend time with the model, run nightly

• Concrete is much harder than steel
• Especially at large deformations, e.g. for 

retrofit, or in podium structures.
• Viscous damping assumptions are important
• Accidental mass eccentricity assumptions 

are important
• Don’t overstate savings in the beginning
• Can work well IPD and DB environment



NLRHA Future Directions

• Which Software to use?
• Perform-3D: Future support by CSI?
• OpenSees: Continued development and 

funding?
• Overnight run-result cycle

• Better model management and automation
• Cloud based computing, multiple runs
• Explicitly consider dispersion

• Still have limitation on length of single RHA for 
large models
• Flexible diaphragm, Fiber models, Walls



Simulation Needs in the Profession

• Project time is key  Optimize simulation
• Integration with BIM – model management, and 

synchronizing models between software 
(OpenSees <-> Revit <-> Etabs)

• Multi-analysis & multi-model management
• Model uncertainties, sensitivities & optimization
• Integration into design tools
• Distributed computing
• Smart solution algorithms



Simulation Needs (cont.)

• Validation & verification of models
• Education of engineers
• Move away from always using lumped-plasticity 

models
• Data management & visualization
• Direct modeling of systems



OpenSees Opportunities/Benefits

• Open-Source
• Robust Solvers
• Latest research knowledge/models
• Can add user models/materials
• Multiple-support excitation
• SFSI / Soil modeling
• Parallel / Multi-Machine processing
• Customizable Output / Recorders
• Fiber models



OpenSees Limitations/Challenges

• Open-Source: Stability
• Solvers (Convergence, tuning)
• Latest Research: Model Stability/Robustness
• Lack of robust nonlinear RC wall elements 

(Promising developments by Prof. Filippou)
• Lack of some basic analysis tools used in 

design (modal analysis, etc..)
• Visualization / User Interface



QUESTIONS?


