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Experimental Investigations
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Existing Models

They can be subdivided in two categories:

— Plane stress models for all types of RC elements
— Fiber beam models for particular RC members
— Some incorporated in commercial software

Plane stress FE models seem to have issues of
accuracy for general RC stress states,
computational efficiency for large scale, or
robustness

Fiber beam models with shear appear to be limited
to cases of moderate shear demand
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Objectives of the Current Work

The current work aims at developing an efficient membrane
and plate model for the simulation of RC structural elements
under cyclic loads with the following features:

— general and suitable for several types of RC elements under high shear
with normal force and bending moment

— accurate and computationally efficient to be suitable for the
earthquake analysis of large structures
— plastic and damage evolution laws describe plastic strain and stiffness
degradation at the material level
The membrane and plate model is implemented in a general
purpose platform so that it can be combined with other finite
elements, such as beam or column elements, for modeling an
entire structure
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Experimental Evidences in Uniaxial Conditions
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Envelope

- Damage
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Cyclic Loading
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Features of the Presented Model

e The features of the presented concrete constitutive law are:

— itis a general three-dimensional law that can be used with all types of
finite elements

— both tensile and compressive damage modes are taken into account
by means of two scalar damage parameters

— asimplified plasticity evolution law represents the residual strains for
all stress states

— it uses a straight forward algorithm for material state determination
¢ The material parameters are calibrated once from experimental
data and used consistently in applications (no parameter “tuning”)
¢ The 3d concrete law is constrained to a plane stress state for the RC
membrane element

¢ The out-of-plane stress of the 3D concrete law is condensed out for
use with the RC plate element

Introduction 10/36

Plastic-Damage Concrete Model

Separate scalar damage parameters for tension and compression; these arre
coupled under multi-axial stress states
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Crack Width
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e The correlation between average concrete tensile strains, tensile
damage parameter and crack width can be derived from
experimental measurements

e The correlation holds only for micro-cracks; this may be suitable for
structural durability studies

* For the estimation of large crack widths under seismic excitations
the reinforcing steel strains should be used
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Multi-Axial Conditions

The concrete constitutive law is developed in three-dimensions and can be
used with all types of finite elements

For the analysis of RC shear walls the most significant biaxial stress state is
tension-compression

Kupfer et al. 1969
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RC Membrane Model

The 3d concrete law is constrained to a plane stress state

i

Concrete Uniaxial Steel layer
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RC Membrane Model

The 3d concrete law is constrained to a plane stress state

Uniaxial steel constitutive relations

N

Reinforced Concrete Filippou et al. (1983)
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RC Plate Model

The out-of-plane stress of the 3d concrete law is condensed

numerical integration over Insertion of reinforcing layer
the thickness: at actual locations
e.g. 7 mid-points e.g. 2 reinforcement nets
Models 16/36

Correlation with experiments

The material parameters are calibrated once
from experimental data on the concrete
material and used consistently in the
correlation studies (no parameter “tuning”)
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RC Beams w/o Shear Reinforcement

Leonhardt and
Walter 1962
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Shear Failure
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Flexural Failure
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RC Planar Shear Walls

RC Panel with boundary elements
(Maier and Thirrlimann 1985)

Height: 1200 mm = 47 in

Aspect ratio: 1

Thickness: 100 mm = 4 in

Vertical reinforcement ratio: 1.16%
Horizontal reinforcement ratio: 1.03%
Axial load: 416 kN = 94 kips
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RC Plates

RC Plates under combined
in-plane and lateral loads
(Ghoneim and MacGregor 1994

Size: 72iin = 1829 mm
Thickness: 2.65in = 67.4 mm
Isotropic reinforcement ratio: 0.77% in two grids

)

In-plane biaxial compression: 1400 psi = 9.8 MPa

Transverse load carrying capacity: 1440 psf = 69 kPa
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U-shaped shear wall
(Pégon et al., JRC Ispra, 2000)
Height: 3.6 m = 11ft10in
Axial load: 2MN = 450 kips
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RC U-shaped Shear Wall (2)
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RC Box Shear Wall (1)
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Box-shaped shear wall
(Japan Nuclear Energy Safety
Organization 2006)

Height: 1.0m = 3ft3in
Axial load: 670 kN = 150 kips
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RC Box Shear Wall (2)
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RC Box Shear Wall (2)
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Conclusions (1)

Excellent agreement with correlation studies was observed for
different specimens

— concrete cylinders and prisms under cyclic loads (uniaxial stress states)
— concrete prisms under combined tension and compression

— RC panels under cyclic shear loads (uniform stress state)

— beams without shear reinforcement (complex stress states)

— planar, U- and box-shaped RC shear walls under axial force and cyclic
lateral loads (complex stress states)

The tensile and compressive damage parameters of the concrete
constitutive law permit the interpretation of observed experimental
behavior in regard to

— accumulated structural damage

— failure mechanisms

— tensile cracks location and orientation

— micro-cracks width

— concrete compression strut location and orientation
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Conclusions (2)

Neglecting the dowel action and bond-slip of reinforcing bars does
not seem to affect the agreement of the model with the
experimental data regarding strength. However,

— some discrepancy in unloading and reloading is evident

— the dowel action of the reinforcement is statistically significant in

affecting the unloading stiffness the more the orientation of the
reinforcing bars deviates from the principal stress directions

The robustness and consistency of the proposed RC membrane and
plate model over a range of structural elements under different
stress states holds significant promise for its use as reliable tool for
the simulation of structural systems under earthquake excitations
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Current Work (1)

Influence of bond-slip and Bond degradation
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Current Work (2)

Shear Deficient Columns
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