Introduction to OpenSees and Tcl/Tk

Frank McKenna
UC Berkeley
OpenSees Days 2011

Outline of Presentation

• Overview of OpenSees the FRAMEWORK
• Introduction to Tcl Programming Language and Tcl interpreters
• Introduction to OpenSees.exe the APPLICATION
OpenSees is a Software Framework

- A framework is **NOT an executable**.
- A **framework** is a set of cooperating software components for building applications in a specific domain.
- The OpenSees framework is written primarily in the object-oriented language C++; though other languages namely C and Fortran are also used.
- The abstract classes in the OpenSees framework define the interface. The concrete subclasses that exist in the framework provide the implementations.
- Other classes can be provided to extend the capabilities of the framework by developers using DLL’s or providing the source code to the OpenSees repository.
- Currently over 1000 classes in the OpenSees framework.

Main Abstractions in OpenSees Framework

- **ModelBuilder**
 - Constructs the objects in the model and adds them to the domain.
 - (5 classes)
- **Domain**
- **Recorder**
 - Monitors user defined parameters in the model during the analysis.
 - (20 classes)
- **Analysis**
 - Moves the model from state at time t to state at time $t + dt$.
 - (200 classes)
- **Holds the state of the model at time t and $(t + dt)$**
 - (500 classes)
Recorder Options

What is in a Domain?
Some Other Classes associated with Elements:

Material
- **Uniaxial**
 - Elastic
 - ElasticPP
 - Hardening
 - Concrete
 - Steel
 - Hysteretic
 - PY-TZ-QZ
 - Parallel
 - Series
 - Gap
 - Fatigue
- **nD**
 - Elastic
 - J2
 - DruckerPrager
 - TemplateElastoPlasto
 - FluidSolidPorous
 - PressureMultiYield (dependent, independent)
- **Section**
 - Elastic
 - Fiber

(over 250 material classes)

GeomTransformation
- Linear
- Pdelta
- Corotational

Element in Global System

Element in Basic System

What is an Analysis?

Analysis
- **StaticAnalysis**
- **TransientAnalysis**

CHandler
- Plain
- Penalty
- Lagrange
- Transformation

Numberer
- Plain
- RCM
- AMD

CTest
- NormDispIncr
- NormUnbalance
- NormEnergy
- RelativeNormDispIncr
- RelativeNormUnbalance
- RelativeNormEnergy

SolnAlgorithm
- **EquiSolvAlgo**
 - Linear
 - NewtonRaphson
 - ModifiedNewton
 - Broyden
 - BFGS
 - KrylovNewton
 - NewtonLineSearch
- … (25 classes)

Integrator
- **StaticIntegrator**
 - LoadControl
 - DispControl
 - ArcLength
- **TransientIntegrator**
 - CentralDifference
 - Newmark
 - HHT
 - GeneralizedAlpha
 - NewmarkExplicit
 - TRBDF2
 - AlphaOS
- … (35 classes)

SystemOfEqn
- BandGeneral
- BandSPD
- ProfileSPD
- SparseGeneral
- SparseSymmetric
How Do People Use the OpenSees Framework?

• Provide their own main() function in C++ and link to framework.

• Use OpenSees interpreterS. These are extensions of the Tcl interpreters, tclsh and wish, for performing finite element analysis.
 1. OpenSees.exe
 2. OpenSeesTk.exe
 3. OpsesesesSP.exe
 4. OpenSeesMP.exe

Tcl Interpreters

• wish and tclsh are tel interpreters.
 • Interpreters (Perl, Matlab, Ruby) are programs that execute programs written in a programming language immediately.
 • There is no separate compilation & linking.
 • An interpreted program runs slower than a compiled one.

 puts “sum of 2 and 3 is [expr 2 + 3]”

 sum of 2 and 3 is 5
What is Tcl

• **Tcl is a dynamic programming language.**
 - It is a string based command language.
 - Variables and variable substitution
 - Expression evaluation
 - Basic control structures (if, while, for, foreach)
 - Procedures
 - File manipulation
 - Sourcing other files.

• Comand syntax:

 command arg1 arg2 …

• Help

Example Tcl

• **variables & variable substitution**

  ```tcl
  >set a 1
  1
  >set b a
  a
  >set b $a
  1
  ```

• **command syntax**

  ```tcl
  command arg1 arg2 …
  ```

• **expression evaluation**

  ```tcl
  >expr 2 + 3
  5
  >set b [expr 2 + $b]
  3
  ```

• **lists**

  ```tcl
  >set a {1 2 three}
  1 2 three
  >set la [llength $a]
  3
  >set start [lindex $a 0]
  1
  >lappend a four
  1 2 three four
  ```

• **file manipulation**

  ```tcl
  >set fileId [open tmp w]
  ??
  >puts $fileId "hello"
  >close $fileID
  >type tmp
  hello
  ```

• **sourcing other files**

  ```tcl
  >source Example1.tcl
  ```

• **procedures & control structures**

  ```tcl
  >for {set i 1} {i < 10} {incr i 1} {
    puts "i equals $i"
  }
  ...
  >set sum 0
  foreach value {1 2 3 4} {
    set sum [expr $sum + $value]
  }
  >puts $sum
  10
  >proc guess {value} {
    global sum
    if {$value < $sum} {
      puts "too low"
    } else {
      if {$value > $sum} {
        puts "too high"
      } else { puts "you got it!"
    }
  }
  >guess 9
  too low
  ```
OpenSees Interpreters

- The OpenSees interpreters are tcl interpreters which have been extended to include commands for finite element analysis:
 1. Modeling – create nodes, elements, loads and constraints
 2. Analysis – specify the analysis procedure.
 3. Output specification – specify what it is you want to monitor during the analysis.

- Being interpreters, this means that the files you create and submit to the OpenSees interpreters are not input files. You are creating and submitting PROGRAMS.

OpenSees.exe

- An interpreter that extends tclsh for FE analysis.

WARNING: There is no GUI!
model Command

*Adds the modeling commands to the interpreter.

- Basic Model Builder

```
model Basic -ndm ndm? -ndf ndf?>
```

This command now adds the following commands to the interpreter:

```
node mass element equalDOF fix fixX fixY fixZ pattern timeSeries load eleLoad sp uniaxialMaterial nDMaterial section geomTransf fiber layer patch block2D block3D
```

Truss example:

```
model Basic -ndm 2 -ndf 2
node 1 0.0 0.0
node 2 144.0 0.0
node 3 168.0 0.0
node 4 72.0 96.0
fix 1 1 1
fix 2 1 1
fix 3 1 1
uniaxialMaterial Elastic 1 3000.0
element truss 1 1 4 10.0 1
element truss 2 2 4 5.0 1
element truss 3 3 4 5.0 1
timeSeries Linear 1
pattern Plain 1 1 {
    load 4 100.0 -50.0
}
```
Example Analysis:

• Static Nonlinear Analysis with LoadControl
 constraints Transformation
 numberer RCM
 system BandGeneral
 test NormDispIncr 1.0e-6 6 2
 algorithm Newton
 integrator LoadControl 0.1
 analysis Static
 analyze 10

• Transient Nonlinear Analysis with Newmark
 constraints Transformation
 numberer RCM
 system BandGeneral
 test NormDispIncr 1.0e-6 6 2
 algorithm Newton
 integrator Newmark 0.5 0.25
 analysis Transient
 analyze 2000 0.01

handler type? args...
numberer type? args...
test type? args...
algorithm type? args...
integrator type? args...
system type? args...
analysis type? args...
analyze args ...
3 Ways to Execute the commands

1. **Interactively** - the commands as we have shown can be input directly at the prompt

   ```
   OpenSees > model basic -nnode 2 -nnode 2
   OpenSees > node 1 0.0 0.0
   OpenSees > node 2 2.0 0.0
   OpenSees > node 3 [expr 1d*5] 0.0
   OpenSees > node 4 7.0 90.0
   OpenSees > fix 1 1 1
   OpenSees > fix 2 1 1
   OpenSees > fix 3 1 1
   OpenSees > uniaxialMaterial Elastic 1 1000.0
   OpenSees > element truss 1 1 4 10.0 1
   OpenSees > element truss 2 2 4 5.0 1
   OpenSees > element truss 3 3 4 5.0 1
   OpenSees > timeSeries Linear 1
   OpenSees > pattern Points 1 1 (load 4 100.0 -50.0)
   OpenSees >
   ```

2. **Sourced from File** - the commands are placed in a text file which is sourced in

   ```
   OpenSees > source example1.txt
   ```
3 Ways to Execute the commands

3. **Batch Mode** - the commands are placed in a text file which are executed at startup.

useful default variables: **argv & argc**
OpenSees Resources
http://opensees.berkeley.edu

• Message Board - look for answers, post questions and ANSWERS
 http://opensees.berkeley.edu/community/index.php

• Getting Started Manual - basic how to for getting started
 http://opensees.berkeley.edu/wiki/index.php/Getting_Started

• User Documentation - command documentation & theory!

• User Examples
 http://opensees.berkeley.edu/wiki/index.php/OpenSees_User

• Developers
 http://opensees.berkeley.edu/wiki/index.php/OpenSees_Developer
 http://opensees.berkeley.edu/cgi-bin/cvsweb2.cgi/OpenSees/SRC/

OpenSeesWiki - Editable by all (including YOU!)

Any Questions?