
PySimple1Gen OpenSees Command
By: Scott Brandenberg
Date: June 28th, 2004

PySimple1Gen $File1 $File2 $File3 $File4 $File5 <$File6>

The PySimple1Gen command constructs PySimple1 materials (Boulanger, 2003) for pre-
defined zeroLength elements. The command requires five arguments, and supports an optional
sixth argument, all of which are file names. The first file contains soil and pile properties
required to define the PySimple1 materials. The second file contains information about the
nodes that define the mesh. The third file contains information about the zeroLength elements
that are to be assigned PySimple1 materials (hereafter called p-y elements). The fourth file
contains information about the beam column elements that are attached to p-y elements. The
fifth file is the output file to which the PySimple1 materials are written. The sixth file is the
output file to which the applied patterns are written (optional).

The command has been structured such that File2, File3, File4, File5 and File6 can be
sourced directly by OpenSees from within a master tcl file. Hence File2, File3 and File4 serve
two purposes:

1. They provide information to PySimple1Gen to create the PySimple1 materials.

2. They can be sourced directly in a master tcl file to define the nodes, zeroLength elements
for p-y materials, and pile elements, respectively.

Furthermore, File5 and File 6 serve the following purpose:

1. They can be sourced by OpenSees from within a master tcl file to define the PySimple1
materials and the applied patterns, respectively.

The intended use of the files is demonstrated in an example problem in the Appendix.

 2/17

File1
The first input file, File1, contains soil and pile properties that are required to calculate the

material properties for the PySimple1 materials, and optional information about p-multipliers,
and applied patterns (either loads on the pile nodes, or displacements on the free ends of the p-y
elements). Optional information is placed inside angle brackets (i.e. < Optional Information >).
The format of File1 is as follows:

matType(1) z_t(1) z_b(1) γ’ _t(1) γ’ _b(1) Additional Arguments(1)
.
.
.
matType(N) z_t(N) z_b(N) γ’ _t(N) γ’ _b(N) Additional Arguments(N)

<sp or load zPattern_t(1) zPattern_b(1) PatternVal_t(1) PatternVal_b(1)

.

.

.

sp or load zPattern_t(N) zPattern_b(N) PatternVal_t(N) PatternVal_b(N)

 mp zMp_t(1) zMp_b(1) MpVal_t(1) MpVal_b(1)

.

.

.

mp zMp(N) zMp_b(N) MpVal_t(N) MpVal_b(N)>

where,

b = pile diameter (meters).
zground = z-coordinate of ground surface (meters).
NPile = number of piles out-of-plane (if the analysis is in the y-z plane, then NPile is the number
of piles along the x-axis).

matType = py1 Approximates Matlock’s (1970) soft clay p-y relation.
matType = py2 Approximates API (1993) sand p-y relation.
matType = py3 Liquefied sand with normalized mobilized liquefied strength ratio

(approximates API sand shape).
matType = py4 Nonliquefied crust over liquefied sand relation (approximates either

Matlock soft clay p-y relation or API sand relation).

z_t = z-coordinate of top of sub-layer (meters).
z_b = z-coordinate of bottom of sub-layer (meters).
γ’_t = buoyant unit weight at top of sub-layer (kN/m3).
γ’_b = buoyant unit weight at bottom of sub-layer (kN/m3).

 3/17

Additional arguments are required for each different material (i.e. each different matType), as
summarized below:

matType = py1 Matlock (1970) soft clay p-y relation.

AdditionalArguments = b_t b_b cu_t cu_b e50_t e50_b Cd_t Cd_b <c_t c_b>

b_t = pile diameter (m) at depth z_t.
b_b = pile diameter (m) at depth z_b.
cu_t = undrained shear strength (kPa) at depth z_t.
cu_b = undrained shear strength (kPa) at depth z_b.
e50_t = shear strain at 50% shear stress for clay at depth z_t.
e50_b = shear strain at 50% shear stress for clay at depth z_b.
Cd_t = drag coefficient at depth z_t.
Cd_b = drag coefficient at depth z_b.
c_t = viscous damping term (optional) on the far-field (elastic) component of the

displacement rate (velocity) at depth z_t (0.0 default).
c_b = viscous damping term (optional) on the far-field (elastic) component of the

displacement rate (velocity) at depth z_b (0.0 default).

matType = py2 API (1993) sand p-y relation.

AdditionalArguments = b_t b_b phi_t phi_b Cd_t Cd_b <c_t c_b>
b_t = pile diameter (m) at depth z_t.
b_b = pile diameter (m) at depth z_b.
phi_t = friction angle (degrees) at depth z_t.
phi_b = friction angle (degrees) at depth z_b.
Cd_t = drag coefficient at depth z_t.
Cd_b = drag coefficient at depth z_b.
c_t = viscous damping term (optional) on the far-field (elastic) component of the

displacement rate (velocity) at depth z_t (0.0 default).
c_b = viscous damping term (optional) on the far-field (elastic) component of the

displacement rate (velocity) at depth z_b (0.0 default).

matType = py3 Liquefied sand with normalized residual strength ratio p-y relation.

AdditionalArguments = b_t b_b phi_t phi_b S/σv’_t S/σv’_b ru_t ru_b Cd_t Cd_b

<c_t c_b>

b_t = pile diameter (m) at depth z_t.
b_b = pile diameter (m) at depth z_b.
phi_t = friction angle (degrees) at depth z_t (used only to calculate y50).
phi_b = friction angle (degrees) at depth z_b (used only to calculate y50).
S/σv’_t = residual strength ratio at depth z_t at ru = 1.0.
S/σv’_b = residual strength ratio at depth z_b at ru = 1.0.
ru_t = peak excess pore pressure ratio at coordinate z_t.
ru_b = peak excess pore pressure ratio at coordinate z_b.

 4/17

Cd_t = drag coefficient at coordinate z_t.
Cd_b = drag coefficient at coordinate z_b.
c_t = viscous damping term (optional) on the far-field (elastic) component of the

displacement rate (velocity) at depth z_t (0.0 default).
c_b = viscous damping term (optional) on the far-field (elastic) component of the

displacement rate (velocity) at depth z_b (0.0 default).

matType = py4 User-specified pult and yult.
AdditionalArguments = type pult_t pult_b y50_t y50_b Cd_t Cd_b <c_t c_b>

type = 1 for approximation of Matlock’s (1970) soft clay p-y relation
type = 2 for approximation of API (1993) sand p-y relation
pult_t = ultimate capacity of p-y element (kN/m) at depth z_t.
pult_b = ultimate capacity of p-y element (kN/m) at depth z_b.
y50_t = relative displacement (soil displacement minus pile cap displacement) at which 50% of

ultimate resistance is reached in a monotonic virgin loading cycle at depth z_t (meters).
Y50_b = relative displacement (soil displacement minus pile cap displacement) at which 50% of

ultimate resistance is reached in a monotonic virgin loading cycle at depth z_b (meters).
Cd_t = drag coefficient at depth z_t.
Cd_b = drag coefficient at depth z_b.
c_t = viscous damping term (optional) on the far-field (elastic) component of the displacement

rate (velocity) at depth z_t (0.0 default).
c_b = viscous damping term (optional) on the far-field (elastic) component of the displacement

rate (velocity) at depth z_b (0.0 default).

Applied Patterns
sp is a character tag identifying the subsequent fields on the line as defining a displacement

pattern assigned to the free ends of the p-y elements.
load is a character string identifying the subsequent fields on the line as defining a load pattern

assigned to the pile nodes.
zPattern_t = z-coordinate of top of applied displacement or load (meters).
zPattern_b = z-coordinate of bottom of applied displacement or load (meters).
PatternVal_t = applied incremental displacement (meters) or load pattern (kN/m) at coordinate

zPattern_t.
PatternVal_b = applied incremental displacement (meters) or load pattern (kN/m) at coordinate

zPattern_b.

P-Multipliers
mp is a character string identifying the subsequent fields on the line as defining a p-multiplier.
zMp_t = z-coordinate of top of p-multiplier distribution (meters).
zMp_b = z-coordinate of bottom of p-multiplier distribution (meters).
MpVal_t = p-multiplier at coordinate zMp_t.
MpVal_b = p-multiplier at coordinate zMp_b.

 5/17

File2
The second input file, File2, contains information about the nodes that define the pile

elements and the zeroLength elements that are to be assigned PySimple1 materials. The format
of File2 is as follows:
node nodenum(1) y(1) z(1)
.
.
.
node nodenum(N) y(N) z(N)

where,

nodenum = number of node
y = y-coordinate of node
z = z-coordinate of node

File3

The third input file, File3, contains information about the zeroLength elements that are to be
assigned PySimple1 materials. The format of File3 is as follows:
element zeroLength elenum(1) node1(1) node2(1) –mat matTag (1) <ExtraInput...........>
.
.
.
element zeroLength elenum(N) node1(N) node2(N) –mat matTag (N) <ExtraInput.........>

where,

elenum = element number
node1 = a node defining the zeroLength element
node2 = a node defining the zeroLength element
matTag = material tag to be associated with a PySimple1 material
ExtraInput.......... is an optional text string that comes after matTag. The reason for allowing

“ExtraInput” is to facilitate dual use of File3 in both the PySimple1Gen command, and in a
master tcl file as demonstrated in the Appendix.

 6/17

File4
The fourth input file, File4, contains information about the pile elements to which the p-y
elements connect. This file is required to calculate the tributary length required to define each
PySimple1 material, and for applying load patterns to pile nodes. The format of File4 is as
follows:
element elementType elenum(1) node1(1) node2(1) <ExtraInput.....................>
.
.
.
element elementType elenum(N) node1(N) node2(N) <ExtraInput...................>
elenum = element number

node1 = a node defining the pile element

node2 = a node defining the pile element

ExtraInput.......... is an optional text string that comes after matTag. The reason for allowing
“ExtraInput” is to facilitate dual use of File4 in both the PySimple1Gen command, and in a
master tcl file as demonstrated in the Appendix.

File5
The output file, File5, contains the PySimple1 materials. The format of File5 is as follows:

Start PySimple1 Materials

uniaxialMaterial PySimple1 matTag(1) pyType(1) Pult(1) y50(1) Cd(1) c(1)
.
.
.
uniaxialMaterial PySimple1 matTag(N) pyType(N) Pult(N) y50(N) Cd(N) c(N)

End PySimple1 Materials

where,

matTag = material tag associated with the corresponding zeroLength element.
soilType = 1 Backbone of p-y curve approximates Matlock (1970) soft clay relation.
soilType = 2 Backbone of p-y curve approximates API (1993) sand relation.
Pult = capacity of PySimple1 material (kN).
y50 = relative displacement at 0.5pult (m).
Cd = drag coefficient.
c = viscous damping term (optional) on the far-field (elastic) component of the displacement rate

(velocity).

 7/17

File 6
File 6 contains the Pattern that applies loads to the pile nodes, and/or displacements to the

free ends of the p-y elements. The format of File6 is as follows:

Begin Pattern File
load nodenum ForceValue 0.0 0.0
.
.
load nodenum ForceValue 0.0 0.0
sp nodenum 1 DisplacementValue
.
.
sp nodenum 1 DisplacementValue
End Pattern File

Note that p-y elements are assumed to be oriented in the 1-direction, so the patterns are
applied in the 1-direction.

File Format
The format of File1 must be strictly followed to prevent I/O error. Metadata and comment

lines are not permitted for File 1. For cases in which both patterns (i.e. “sp” or “load”) and p-
multipliers (i.e. “mp”) are applied, they may be specified in any order (i.e. p-multipliers may be
intermixed with applied loads and displacements).

For File2, data is read for each line that begins with “node” and other lines are ignored. For
File3 and File4, data is read for each line that begins with “element” and other lines are ignored.
Hence, extra data and blank rows are permitted for File2, File3, and File4 as long as rows that
contain irrelevant data do not begin with the string “node” for File2 or “element” for File3 and
File4. The output files, File5 and File6, contain a header that explains that the PySimple1Gen
program was used to create the file.

The PySimple1Gen command does not contain the functionality of tcl. For example, the
programming features of tcl allow nodes to be defined using a loop, as demonstrated below:

Create pile nodes, with double nodes for adding zeroLength soil springs
for {set i 0}{$i<=30}{incr i 1}{
set yDim1 [expr $i*$dy1-660]
node [expr $i*2+1] 0. $yDim1
node [expr $i*2+2] 0. $yDim1
node [expr $i*2+63] -$dx $yDim1
node [expr $i*2+64] -$dx $yDim1
node [expr $i*2+125] $dx $yDim1
node [expr $i*2+126] dx $yDim1
}

 8/17

However, PySimple1Gen cannot recognize such loops. The node number and nodal coordinates
must be numbers for PySimple1Gen; expressions are not permitted.

Linear Interpolation
At a given node, soil properties, p-multipliers and displacement patterns are linearly

interpolated based on the location of the node and the location and associated soil properties and
pattern values defined in File1. Distributed loads along the pile are integrated over the tributary
length to obtain nodal loads. A node will be assigned a load pattern if any part of its tributary
area overlaps with any part of the applied distributed load, even if the node itself lies outside of
the region in which distributed loads were defined. P-y elements lying outside of the region of
defined p-multipliers will be assigned a p-multiplier of 1.0.

 9/17

APPENDIX 1: EXAMPLE PROBLEM

An example problem has been constructed to show how the structure of the input and output
files relates to a simple soil-pile model. The purpose of the example problem is to illustrate
much of the functionality of the PySimple1Gen command, and not to accurately model the
response the pile. The small number of p-y elements in the example problem is likely
insufficient to result in an accurate solution, but permits a clear means of demonstrating the
function of the PySimple1Gen command.

The extended pile shaft shown in Figure 1 is composed of six beam column elements, and
penetrates a soil profile consisting of clay overlying sand. The clay layer deforms under uniform
shear strain such that its surface displacement is 0.2 m, and the sand layer exhibits no
displacement. Additionally, a distributed load is applied to the top portion of the shaft above the
ground surface. Material properties are shown in the figure.

z (m)

4

3

2

1

0
1516

2327

3139

1217

2491

14

29

32

41

47

Clay
γ' = 7 kN/m
cu = 40 kPa

ε = 0.01
Cd = 0.1
c = 0.0

Sand
γ' = 10 kN/m
φ = 36 deg
Cd = 0.1
c = 1.5

mp = 2.3

Pile
b = 0.5 m
E = 200 GPa
A = 0.017 m
I = 0.0005 m

3

3

54

2

39

17

0.2 m

2

4

5

6

7

3

8

525 kN/m

50

Figure 1: Example problem to illustrate PySimple1Gen command.

 10/17

File1: Soil Properties Input File “SoilProp.tcl”

py1 4.0 2.0 7.0 7.0 0.5 0.5 40.0 40.0 0.01 0.01 0.1 0.1 0.0 0.0
py2 2.0 0.0 10.0 10.0 0.5 0.5 36.0 36.0 0.1 0.1 1.5 1.5
load 6.0 5.0 25.0 25.0
sp 4.0 2.0 0.2 0.0
sp 2.0 0.0 0.0 0.0
mp 2.0 0.0 2.3 2.3

File2: Nodes Input File “Nodes.tcl”

Begin Nodes

node 15 0 0
node 16 0 0
node 23 0 1
node 27 0 1
node 31 0 2
node 39 0 2
node 12 0 3
node 17 0 3
node 24 0 4
node 91 0 4
node 7 0 5
node 3 0 6

End Nodes

File3: Py Elements Input File “PyElements.tcl”

Begin p-y elements

element zeroLength 47 15 16 –mat 5 –dir 1
element zeroLength 41 23 27 –mat 17 –dir 1
element zeroLength 32 31 39 –mat 19 –dir 1
element zeroLength 29 12 17 –mat 23 –dir 1
element zeroLength 14 24 91 –mat 7 –dir 1

End p-y elements

Note that the material tags (-mat ??) have been assigned arbitrarily. The PySimple1Gen
command will use the arbitrary material tag to construct a PySimple1 material that is associated
with the proper element.

 11/17

File4: Pile Elements Input File “PileElements.tcl”

Begin beam-column elements

element elasticBeamColumn 17 24 12 0.017 200000000.0 0.0005 1
element elasticBeamColumn 39 12 31 0.017 200000000.0 0.0005 1
element elasticBeamColumn 2 31 23 0.017 200000000.0 0.0005 1
element elasticBeamColumn 54 23 15 0.017 200000000.0 0.0005 1
element elasticBeamColumn 8 7 24 0.017 200000000.0 0.0005 1
element elasticBeamColumn 5 3 7 0.017 200000000.0 0.0005 1

End beam-column elements

File5: Py Materials Output File “PyMaterials.tcl”

Material Properties for py Elements

uniaxialMaterial PySimple1 5 2 419.773 0.00103901 0.1 1.5
uniaxialMaterial PySimple1 17 2 508.041 0.000652545 0.1 1.5
uniaxialMaterial PySimple1 19 1 187.165 0.0125 0.1 0
uniaxialMaterial PySimple1 23 1 83.5 0.0125 0.1 0
uniaxialMaterial PySimple1 7 1 30.4375 0.0125 0.1 0

End Material Properties for py Elements

The material tags (i.e. the first number after the string Pysimple1) are the same tags that were
previously assigned arbitrarily to the zeroLength elements.

File6: Pattern Output File “Pattern.tcl”

Begin Pattern File

sp 16 1 0
sp 27 1 0
sp 39 1 0
sp 17 1 0.1
sp 91 1 0.2
load 7 12.5 0.0 0.0
load 3 12.5 0.0 0.0

End Pattern File

 12/17

Implementation in master tcl file
PySimple1Gen has be structured to receive certain arguments that are not required to define

the p-y materials (i.e. “ExtraInput”), but are required to define the nodes and elements in
OpenSees. So, as a matter of convenience, PySimple1Gen reads fields that are not essential to
its function so that the files can serve two purposes:

1. They can be used arguments for the PySimple1Gen command.

2. They can be sourced directly from a master tcl script file to define nodes and elements.

For the example problem, assume that the input files (File1 through File4) required as
arguments for PySimple1Gen are contained in the same folder as the master tcl file, and their file
names are as follows:

File1: “SoilProp.txt”

File2: “Nodes.tcl”

File3: “PyElements.tcl”

File4: “PileElements.tcl”

Furthermore, assume that the output files (File5 and File6) are named:

File5: “PyMaterials.tcl”

File6: “Pattern.tcl”

Using the preceding information, the following master tcl file utilizes the files in the
PySimple1Gen command, and also to define the nodes and elements in the domain.

Master file for py pushover analysis to illustrate PySimple1Gen
command

Created by Scott Brandenberg, April 30, 2004.

wipe

set NumSteps 100
set StepSize [expr 1.0/$NumSteps]

BUILD MODEL

model basic -ndm 2 -ndf 3

define the nodes
source Nodes.tcl

create geometric transformation for pile elements
geomTransf Linear 1

 13/17

define pile elements
source PileElements.tcl

use PySimple1Gen command to generate PyMaterials.tcl and Pattern.tcl
PySimple1Gen "SoilProp.txt" "Nodes.tcl" "PyElements.tcl" "PileElements.tcl" "PyMaterials.tcl" "Pattern.tcl"

define py elements and materials. Always define materials before
elements to prevent input error. Note that PyMaterials.tcl was previously created using the
PySimple1Gen command.
source PyMaterials.tcl
source PyElements.tcl

Fix free ends of py elements against rotation and vertical displacement
fix 91 0 1 1
fix 17 0 1 1
fix 39 0 1 1
fix 27 0 1 1
fix 16 0 1 1

Fix vertical deformation at pile tip
fix 15 0 1 0

NOW APPLY LOADING SEQUENCE AND ANALYZE (plastic)

Create the pattern. Note that Pattern.tcl was created using the PySimple1Gen command.
pattern Plain 1 Linear {
source Pattern.tcl
}

#create the recorder
recorder Node -file SoilDisplacement.dat -time -node 16 17 27 39 91 -dof 1 2 disp
recorder Node -file PileDisplacement.dat -time -node 3 7 12 15 23 24 31 -dof 1 2 disp
recorder Element -file PileElementRecorder.dat -time -ele 2 5 8 17 39 54 force
recorder Element -file PyElementRecorder.dat -time -ele 14 29 32 41 47 force

create the Analysis

constraints Penalty 1.e12 1.e12
test NormUnbalance 2e-3 100 0
numberer RCM
algorithm Newton
system ProfileSPD
integrator LoadControl $StepSize
analysis Static

analyze.

analyze $NumSteps

wipe #flush output stream

 14/17

APPENDIX 2: TECHNICAL INFORMATION

Calculating pult and y50

The ultimate resistances of the p-y materials pult, were calculated in a manner similar to that
described in LPile+4.0m technical manual (Reese et al. 2000). The difference between the
method used in PySimple1Gen and in LPile+4.0m involves the treatment of layered soil systems.
LPile+4.0m utilizes the method developed by Georgiadis (1983) for calculating pult for layered
soils. PySimple1Gen does not use the method of Georgiadis. Instead, pult is calculated based on
the vertical effective stress at a given depth, with no consideration of the strength of overlying
soil layers. The equations used in PySimple1Gen are included below:

For soft clay (pyType = 1)

)2,1min(
92

5.0'
31

pupup
bcpu

bc
zc

pu

ult

v

=
⋅⋅=

⋅⋅⎟
⎠
⎞

⎜
⎝
⎛ ++=

σ

where,

σv’ = vertical effective stress
c = undrained shear strength
z = depth
b = pile diameter

For sand (pyType=2)

+
⋅−

⋅⋅⋅
⋅=

)cos()tan(
)sin()tan(

'1
αφβ

βφ
σ

zK
pu o

v

() () ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅−−⋅⋅⋅⋅+⋅⋅+

−
⋅ bKzKzb aov)tan()sin()tan()tan()tan()tan(

)tan(
)tan(' αβφβαβ
φβ

βσ

()
)2,1min(

)(tan)tan('1)(tan'2 48

pupup
bKbKpu

ult

vova

=
⋅⋅⋅⋅+−⋅⋅⋅= βφσβσ

 15/17

where,

σv’ = vertical effective stress
Ko = coefficient of earth pressure at rest (default Ko = 0.4)
φ = friction angle of sand
β = 45 + φ/2
α = φ/2
z = depth
b = pile diameter
Ka = coefficient of active earth pressure (Ka = tan2(45 – φ/2))

The relative displacement at 0.50pult, y50, is calculated in PySimple1Gen in the same way as
discussed in the LPile+4.0m technical manual. For sand in LPile+4.0m, stiffness, k, is an input
parameter. In PySimple1Gen, k is not an input parameter. Instead, it is calculated from a
polynomial curve fit of the relationship between friction angle and stiffness for sand above the
water table provided in Figure 3.29 in the LPile+4.0m technical manual.

For liquefied sand (pyType = 3)

for ru = 0 (assuming undrained capacity with ru = 0 is the same as drained capacity)

+
⋅−

⋅⋅⋅
⋅=

)cos()tan(
)sin()tan(

'1 0 αφβ
βφ

σ
zK

pu o
vru

() () ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅−−⋅⋅⋅⋅+⋅⋅+

−
⋅ bKzKzb aov)tan()sin()tan()tan()tan()tan(

)tan(
)tan(' αβφβαβ
φβ

βσ

()
)2pu,1pumin(pu

)(tan)tan('bK1)(tan'bK2pu

0ru0ru0ru

4
vo

8
va0ru

=
β⋅φ⋅σ⋅⋅+−β⋅σ⋅⋅=

for ru = 1
bS9pu 1ru ⋅⋅=

for 0 < ru < 1
[]0ru1ruu0ru pupurpupu −⋅+=

where,

S = strength of sand mobilized against pile
b = pile diameter
ru = peak excess pore pressure ratio
Ko = coefficient of earth pressure at rest (default Ko = 0.4)
φ = friction angle of sand

 16/17

β = 45 + φ/2
α = φ/2
z = depth
b = pile diameter
Ka = coefficient of active earth pressure (Ka = tan2(45 – φ/2))

For user-specified (pyType = 4)

pult and y50 are user-specified.

Tributary Length for p-y Elements
The p-y material properties must contain Pult in units of force, not pult in units of force/length.

Pult represents the integral of pult over the tributary length. The integration was performed
numerically in the following manner:

1. z_top (coordinate at the top of the tributary length) and z_bot (coordinate at the bottom of
the tributary length) were calculated as the midpoints of the pile elements that share a
node with the p-y element, provided that the pile elements had a p-y element attached to
its other node as well. For example, pile elements that extend above the ground surface
will not contribute any tributary length to a p-y element at or below the ground surface.

2. The tributary length was divided into 10 sublayers, each with thickness, dz.

3. Pult was calculated as the sum of pult*dz over the ten sublayers from z_bot to z_top.

In the case when a p-y element lies near a boundary between two soil layers, such that its
tributary length spans across the layer boundary, pult will be based on properties of both soil
layers due to numerical integration over the tributary length. The type of p-y element (i.e. sand
or clay) and y50 will be based on the material properties at the p-y element location. The
numerical integration of pult over the tributary length will reduce errors associated with interface
effects, however closely spaced p-y elements are recommended at layer interfaces. In the case
when a p-y element lies at a boundary between two soil layers, the material type will be assigned
the same type as the upper soil layer.

Tributary Length for Loads Applied to Pile Elements
Tributary lengths for loads applied to pile elements are calculated in the same manner as for

p-y elements, except that beam column elements that do not attach to p-y elements can contribute
tributary length to the calculation of nodal loads. For example, you may apply a distributed load
to a beam column above the ground surface without any attached p-y elements (as was illustrated
in the example). You may also apply a distributed load to a pile element with attached p-y
elements.

 17/17

Error Checking

1. The program checks that all five (or six) files can be opened. If not, the program will
issue a warning and return without writing data to the output file(s).

2. The program checks that MatType = “py1”, “py2”, “py3” or “py4”. If not, the program
issues the following warning: “Invalid MatType in PySimple1Gen.”, and then exits
without writing data.

3. The program checks that the depth of each node lies within the depths specified in the
soil properties file (File1). If not, a warning is issued and vertical stress is set to zero.

APPENDIX 3: REFERENCES
API(1993). Recommended Practice for Planning, Design, and Constructing Fixed Offshore

Platforms. API RP 2A - WSD, 20th ed., American Petroleum Institute.

Boulanger, R. W. (2003). The PySimple1 Material. http://opensees.berkeley.edu.

Georgiadis, M. (1983). “Development of p-y curves for layered soils.” Proc., Geotechnical
Practice in Offshore Engineering, ASCE, pp. 536-545.

Matlock, H. (1970). “Correlations of design of laterally loaded piles in soft clay.” Proc. Offshore
Technology Conference, Houston, TX, Vol 1, No.1204, pp. 577-594.

Reese, L. C., Wang, S. T., Isenhower, W. M., Arrelaga, J.A., and Hendrix, J. A. (2000). LPILE
Plus Verion 4.0m, Ensoft, Inc. Austin, TX.

