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PySimple1Gen  $File1  $File2  $File3  $File4  $File5  <$File6> 
 

The PySimple1Gen command constructs PySimple1 materials (Boulanger, 2003) for pre-
defined zeroLength elements.  The command requires five arguments, and supports an optional 
sixth argument, all of which are file names.  The first file contains soil and pile properties 
required to define the PySimple1 materials.  The second file contains information about the 
nodes that define the mesh.  The third file contains information about the zeroLength elements 
that are to be assigned PySimple1 materials (hereafter called p-y elements).  The fourth file 
contains information about the beam column elements that are attached to p-y elements.  The 
fifth file is the output file to which the PySimple1 materials are written.  The sixth file is the 
output file to which the applied patterns are written (optional). 

The command has been structured such that File2, File3, File4, File5 and File6 can be 
sourced directly by OpenSees from within a master tcl file.  Hence File2, File3 and File4 serve 
two purposes: 

1. They provide information to PySimple1Gen to create the PySimple1 materials. 

2. They can be sourced directly in a master tcl file to define the nodes, zeroLength elements 
for p-y materials, and pile elements, respectively. 

Furthermore, File5 and File 6 serve the following purpose: 

1.  They can be sourced by OpenSees from within a master tcl file to define the PySimple1 
materials and the applied patterns, respectively. 

The intended use of the files is demonstrated in an example problem in the Appendix. 
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File1 
The first input file, File1, contains soil and pile properties that are required to calculate the 

material properties for the PySimple1 materials, and optional information about p-multipliers, 
and applied patterns (either loads on the pile nodes, or displacements on the free ends of the p-y 
elements).  Optional information is placed inside angle brackets (i.e. < Optional Information >).  
The format of File1 is as follows: 

 
matType(1)   z_t(1)   z_b(1)  γ’ _t(1)    γ’ _b(1)   Additional Arguments(1) 
. 
. 
. 
matType(N)   z_t(N)   z_b(N)  γ’ _t(N)   γ’ _b(N)   Additional Arguments(N) 

<sp or load    zPattern_t(1) zPattern_b(1)     PatternVal_t(1)     PatternVal_b(1) 

. 

. 

. 

sp or load          zPattern_t(N) zPattern_b(N)     PatternVal_t(N)     PatternVal_b(N) 

 mp     zMp_t(1) zMp_b(1) MpVal_t(1) MpVal_b(1) 

. 

. 

. 

mp  zMp(N)  zMp_b(N) MpVal_t(N) MpVal_b(N)> 

 

where, 

b = pile diameter (meters). 
zground = z-coordinate of ground surface (meters). 
NPile = number of piles out-of-plane (if the analysis is in the y-z plane, then NPile is the number 
of piles along the x-axis). 
 
 
matType = py1    Approximates Matlock’s (1970) soft clay p-y relation. 
matType = py2    Approximates API (1993) sand p-y relation. 
matType = py3    Liquefied sand with normalized mobilized liquefied strength ratio 

(approximates API sand shape). 
matType = py4    Nonliquefied crust over liquefied sand relation (approximates either 

Matlock soft clay p-y relation or API sand relation). 
 
z_t = z-coordinate of top of sub-layer (meters). 
z_b = z-coordinate of bottom of sub-layer (meters). 
γ’_t  = buoyant unit weight at top of sub-layer (kN/m3). 
γ’_b  = buoyant unit weight at bottom of sub-layer (kN/m3). 
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Additional arguments are required for each different material (i.e. each different matType), as 
summarized below: 
 
matType = py1 Matlock (1970) soft clay p-y relation. 

 
AdditionalArguments =  b_t  b_b  cu_t   cu_b   e50_t   e50_b  Cd_t  Cd_b  <c_t   c_b> 

b_t = pile diameter (m) at depth z_t. 
b_b = pile diameter (m) at depth z_b. 
cu_t = undrained shear strength (kPa) at depth z_t. 
cu_b = undrained shear strength (kPa) at depth z_b. 
e50_t = shear strain at 50% shear stress for clay at depth z_t. 
e50_b = shear strain at 50% shear stress for clay at depth z_b. 
Cd_t = drag coefficient at depth z_t. 
Cd_b = drag coefficient at depth z_b. 
c_t = viscous damping term (optional) on the far-field (elastic) component of the 

displacement rate (velocity) at depth z_t (0.0 default). 
c_b = viscous damping term (optional) on the far-field (elastic) component of the 

displacement rate (velocity) at depth z_b (0.0 default). 
 

matType = py2 API (1993) sand p-y relation. 
 

AdditionalArguments =  b_t  b_b  phi_t  phi_b  Cd_t  Cd_b  <c_t   c_b> 
b_t = pile diameter (m) at depth z_t. 
b_b = pile diameter (m) at depth z_b. 
phi_t = friction angle (degrees) at depth z_t. 
phi_b = friction angle (degrees) at depth z_b. 
Cd_t = drag coefficient at depth z_t. 
Cd_b = drag coefficient at depth z_b. 
c_t = viscous damping term (optional) on the far-field (elastic) component of the 

displacement rate (velocity) at depth z_t (0.0 default). 
c_b = viscous damping term (optional) on the far-field (elastic) component of the 

displacement rate (velocity) at depth z_b (0.0 default). 
 

matType = py3 Liquefied sand with normalized residual strength ratio p-y relation. 
 
AdditionalArguments =  b_t  b_b  phi_t  phi_b  S/σv’_t  S/σv’_b  ru_t  ru_b  Cd_t  Cd_b  

<c_t   c_b> 
 

b_t = pile diameter (m) at depth z_t. 
b_b = pile diameter (m) at depth z_b. 
phi_t = friction angle (degrees) at depth z_t (used only to calculate y50). 
phi_b = friction angle (degrees) at depth z_b (used only to calculate y50). 
S/σv’_t = residual strength ratio at depth z_t at ru = 1.0. 
S/σv’_b = residual strength ratio at depth z_b at ru = 1.0. 
ru_t = peak excess pore pressure ratio at coordinate z_t. 
ru_b = peak excess pore pressure ratio at coordinate z_b. 
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Cd_t = drag coefficient at coordinate z_t. 
Cd_b = drag coefficient at coordinate z_b. 
c_t = viscous damping term (optional) on the far-field (elastic) component of the 

displacement rate (velocity) at depth z_t (0.0 default). 
c_b = viscous damping term (optional) on the far-field (elastic) component of the 

displacement rate (velocity) at depth z_b (0.0 default). 
 

matType = py4 User-specified pult and yult. 
AdditionalArguments =  type   pult_t  pult_b y50_t    y50_b    Cd_t     Cd_b    <c_t   c_b> 

 
type = 1 for approximation of Matlock’s (1970) soft clay p-y relation 
type = 2 for approximation of API (1993) sand p-y relation 
pult_t = ultimate capacity of p-y element (kN/m) at depth z_t. 
pult_b = ultimate capacity of p-y element (kN/m) at depth z_b. 
y50_t = relative displacement (soil displacement minus pile cap displacement) at which 50% of 

ultimate resistance is reached in a monotonic virgin loading cycle at depth z_t (meters). 
Y50_b = relative displacement (soil displacement minus pile cap displacement) at which 50% of 

ultimate resistance is reached in a monotonic virgin loading cycle at depth z_b (meters). 
Cd_t = drag coefficient at depth z_t. 
Cd_b = drag coefficient at depth z_b. 
c_t = viscous damping term (optional) on the far-field (elastic) component of the displacement 

rate (velocity) at depth z_t (0.0 default). 
c_b = viscous damping term (optional) on the far-field (elastic) component of the displacement 

rate (velocity) at depth z_b (0.0 default). 
 
Applied Patterns 
sp is a character tag identifying the subsequent fields on the line as defining a displacement 

pattern assigned to the free ends of the p-y elements. 
load is a character string identifying the subsequent fields on the line as defining a load pattern 

assigned to the pile nodes. 
zPattern_t = z-coordinate of top of applied displacement or load (meters). 
zPattern_b = z-coordinate of bottom of applied displacement or load (meters). 
PatternVal_t = applied incremental displacement (meters) or load pattern (kN/m) at coordinate 

zPattern_t. 
PatternVal_b = applied incremental displacement (meters) or load pattern (kN/m) at coordinate 

zPattern_b. 
 
P-Multipliers 
mp is a character string identifying the subsequent fields on the line as defining a p-multiplier. 
zMp_t = z-coordinate of top of p-multiplier distribution (meters). 
zMp_b = z-coordinate of bottom of p-multiplier distribution (meters). 
MpVal_t = p-multiplier at coordinate zMp_t. 
MpVal_b = p-multiplier at coordinate zMp_b. 
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File2 
The second input file, File2, contains information about the nodes that define the pile 

elements and the zeroLength elements that are to be assigned PySimple1 materials.  The format 
of File2 is as follows: 
node   nodenum(1)   y(1)   z(1) 
. 
. 
. 
node   nodenum(N)   y(N)   z(N) 

where, 

nodenum = number of node 
y = y-coordinate of node 
z = z-coordinate of node 

 
File3 

The third input file, File3, contains information about the zeroLength elements that are to be 
assigned PySimple1 materials.  The format of File3 is as follows: 
element   zeroLength   elenum(1)   node1(1)   node2(1)   –mat   matTag (1)  <ExtraInput...........> 
. 
. 
. 
element   zeroLength   elenum(N)   node1(N)   node2(N)   –mat   matTag (N)  <ExtraInput.........> 

where, 

elenum = element number 
node1 = a node defining the zeroLength element 
node2 = a node defining the zeroLength element 
matTag = material tag to be associated with a PySimple1 material 
ExtraInput.......... is an optional text string that comes after matTag.  The reason for allowing 

“ExtraInput” is to facilitate dual use of File3 in both the PySimple1Gen command, and in a 
master tcl file as demonstrated in the Appendix. 
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File4 
The fourth input file, File4, contains information about the pile elements to which the p-y 
elements connect.  This file is required to calculate the tributary length required to define each 
PySimple1 material, and for applying load patterns to pile nodes.  The format of File4 is as 
follows: 
element   elementType   elenum(1)   node1(1)   node2(1)   <ExtraInput.....................> 
. 
. 
. 
element   elementType   elenum(N)   node1(N)   node2(N)   <ExtraInput...................> 
elenum = element number 

node1 = a node defining the pile element 

node2 = a node defining the pile element 

ExtraInput.......... is an optional text string that comes after matTag.  The reason for allowing 
“ExtraInput” is to facilitate dual use of File4 in both the PySimple1Gen command, and in a 
master tcl file as demonstrated in the Appendix. 

 

 

File5 
The output file, File5, contains the PySimple1 materials.  The format of File5 is as follows: 

#################################################################### 
## Start PySimple1 Materials 
 
uniaxialMaterial   PySimple1   matTag(1)   pyType(1)   Pult(1)   y50(1)   Cd(1)   c(1) 
. 
. 
. 
uniaxialMaterial   PySimple1   matTag(N)   pyType(N)   Pult(N)   y50(N)   Cd(N)   c(N) 
 
## End PySimple1 Materials 
##################################################################### 
 

where, 

matTag = material tag associated with the corresponding zeroLength element. 
soilType = 1 Backbone of p-y curve approximates Matlock (1970) soft clay relation. 
soilType = 2 Backbone of p-y curve approximates API (1993) sand relation. 
Pult = capacity of PySimple1 material (kN). 
y50 = relative displacement at 0.5pult (m). 
Cd = drag coefficient. 
c = viscous damping term (optional) on the far-field (elastic) component of the displacement rate 

(velocity). 
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File 6 
File 6 contains the Pattern that applies loads to the pile nodes, and/or displacements to the 

free ends of the p-y elements.  The format of File6 is as follows: 

#################################################################### 
## Begin Pattern File 
load nodenum ForceValue 0.0 0.0 
. 
. 
load nodenum ForceValue 0.0 0.0 
sp nodenum 1 DisplacementValue 
. 
. 
sp nodenum 1 DisplacementValue 
## End Pattern File 
#################################################################### 
 

Note that p-y elements are assumed to be oriented in the 1-direction, so the patterns are 
applied in the 1-direction. 
 

File Format 
The format of File1 must be strictly followed to prevent I/O error.  Metadata and comment 

lines are not permitted for File 1.  For cases in which both patterns (i.e. “sp” or “load”) and p-
multipliers (i.e. “mp”) are applied, they may be specified in any order (i.e. p-multipliers may be 
intermixed with applied loads and displacements). 

For File2, data is read for each line that begins with “node” and other lines are ignored.  For 
File3 and File4, data is read for each line that begins with “element” and other lines are ignored.  
Hence, extra data and blank rows are permitted for File2, File3, and File4 as long as rows that 
contain irrelevant data do not begin with the string “node” for File2 or “element” for File3 and 
File4.  The output files, File5 and File6, contain a header that explains that the PySimple1Gen 
program was used to create the file. 

The PySimple1Gen command does not contain the functionality of tcl.  For example, the 
programming features of tcl allow nodes to be defined using a loop, as demonstrated below: 

# Create pile nodes, with double nodes for adding zeroLength soil springs 
for {set i 0}{$i<=30}{incr i 1}{ 
set yDim1 [expr $i*$dy1-660] 
node [expr $i*2+1]  0.  $yDim1 
node [expr $i*2+2]   0.    $yDim1 
node [expr $i*2+63]   -$dx   $yDim1 
node [expr $i*2+64]   -$dx   $yDim1 
node [expr $i*2+125]  $dx    $yDim1 
node [expr $i*2+126]  dx   $yDim1 
} 
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However, PySimple1Gen cannot recognize such loops.  The node number and nodal coordinates 
must be numbers for PySimple1Gen; expressions are not permitted. 

Linear Interpolation 
At a given node, soil properties, p-multipliers and displacement patterns are linearly 

interpolated based on the location of the node and the location and associated soil properties and 
pattern values defined in File1.  Distributed loads along the pile are integrated over the tributary 
length to obtain nodal loads.  A node will be assigned a load pattern if any part of its tributary 
area overlaps with any part of the applied distributed load, even if the node itself lies outside of 
the region in which distributed loads were defined.  P-y elements lying outside of the region of 
defined p-multipliers will be assigned a p-multiplier of 1.0. 
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APPENDIX 1: EXAMPLE PROBLEM 
 

An example problem has been constructed to show how the structure of the input and output 
files relates to a simple soil-pile model.  The purpose of the example problem is to illustrate 
much of the functionality of the PySimple1Gen command, and not to accurately model the 
response the pile.  The small number of p-y elements in the example problem is likely 
insufficient to result in an accurate solution, but permits a clear means of demonstrating the 
function of the PySimple1Gen command. 

The extended pile shaft shown in Figure 1 is composed of six beam column elements, and 
penetrates a soil profile consisting of clay overlying sand.  The clay layer deforms under uniform 
shear strain such that its surface displacement is 0.2 m, and the sand layer exhibits no 
displacement.  Additionally, a distributed load is applied to the top portion of the shaft above the 
ground surface.  Material properties are shown in the figure. 
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Figure 1: Example problem to illustrate PySimple1Gen command. 
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File1: Soil Properties Input File “SoilProp.tcl” 
 
py1   4.0  2.0  7.0    7.0    0.5    0.5  40.0  40.0   0.01  0.01  0.1  0.1  0.0  0.0 
py2   2.0  0.0  10.0  10.0  0.5    0.5  36.0  36.0   0.1    0.1    1.5  1.5 
load  6.0   5.0     25.0   25.0   
sp     4.0    2.0    0.2   0.0 
sp     2.0    0.0    0.0   0.0 
mp   2.0    0.0    2.3   2.3 
 
File2: Nodes Input File “Nodes.tcl” 
 
############################################################# 
## Begin Nodes 
 
node 15  0  0 
node 16  0  0 
node  23  0  1 
node  27  0  1 
node  31  0  2 
node  39  0  2 
node  12  0  3 
node  17  0  3 
node  24  0  4 
node  91  0  4 
node  7    0   5 
node  3    0   6 
 
## End Nodes 
#################################################################### 
 
 
File3: Py Elements Input File “PyElements.tcl” 
 
############################################################### 
## Begin p-y elements 
 
element   zeroLength   47   15   16   –mat   5  –dir   1 
element   zeroLength   41   23   27   –mat   17  –dir   1 
element   zeroLength   32   31   39   –mat   19  –dir   1 
element   zeroLength   29   12   17   –mat   23  –dir   1 
element   zeroLength   14   24   91   –mat   7  –dir   1 
 
## End p-y elements 
################################################################### 
 
Note that the material tags (-mat ??) have been assigned arbitrarily.  The PySimple1Gen 
command will use the arbitrary material tag to construct a PySimple1 material that is associated 
with the proper element. 
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File4: Pile Elements Input File “PileElements.tcl” 
 
############################################################### 
## Begin beam-column elements 
 
element   elasticBeamColumn   17   24  12  0.017   200000000.0   0.0005   1    
element   elasticBeamColumn   39  12   31  0.017   200000000.0   0.0005   1    
element   elasticBeamColumn   2    31   23   0.017  200000000.0   0.0005   1 
element   elasticBeamColumn   54  23   15  0.017   200000000.0   0.0005   1 
element   elasticBeamColumn   8    7   24    0.017   200000000.0   0.0005   1 
element   elasticBeamColumn   5    3     7    0.017   200000000.0   0.0005   1  
 
## End beam-column elements 
#################################################################### 
 
File5: Py Materials Output File “PyMaterials.tcl” 
 
#################################################################################### 
## Material Properties for py Elements 
 
uniaxialMaterial PySimple1 5 2 419.773 0.00103901 0.1 1.5 
uniaxialMaterial PySimple1 17 2 508.041 0.000652545 0.1 1.5 
uniaxialMaterial PySimple1 19 1 187.165 0.0125 0.1 0 
uniaxialMaterial PySimple1 23 1 83.5 0.0125 0.1 0 
uniaxialMaterial PySimple1 7 1 30.4375 0.0125 0.1 0 
 
## End Material Properties for py Elements 
#################################################################################### 
 
The material tags (i.e. the first number after the string Pysimple1) are the same tags that were 
previously assigned arbitrarily to the zeroLength elements. 
 
File6: Pattern Output File “Pattern.tcl” 
 
#################################################################################### 
## Begin Pattern File 
 
sp 16 1 0 
sp 27 1 0 
sp 39 1 0 
sp 17 1 0.1 
sp 91 1 0.2 
load 7 12.5 0.0 0.0 
load 3 12.5 0.0 0.0 
 
 
## End Pattern File 
#################################################################################### 
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Implementation in master tcl file 
PySimple1Gen has be structured to receive certain arguments that are not required to define 

the p-y materials (i.e. “ExtraInput”), but are required to define the nodes and elements in 
OpenSees.  So, as a matter of convenience, PySimple1Gen reads fields that are not essential to 
its function so that the files can serve two purposes: 

1. They can be used arguments for the PySimple1Gen command. 

2. They can be sourced directly from a master tcl script file to define nodes and elements. 

For the example problem, assume that the input files (File1 through File4) required as 
arguments for PySimple1Gen are contained in the same folder as the master tcl file, and their file 
names are as follows: 

File1: “SoilProp.txt” 

File2: “Nodes.tcl” 

File3: “PyElements.tcl” 

File4: “PileElements.tcl” 

Furthermore, assume that the output files (File5 and File6) are named: 

File5: “PyMaterials.tcl” 

File6: “Pattern.tcl” 

 

Using the preceding information, the following master tcl file utilizes the files in the 
PySimple1Gen command, and also to define the nodes and elements in the domain. 

 
####################################################################### 
# Master file for py pushover analysis to illustrate PySimple1Gen 
# command 
# 
# Created by Scott Brandenberg, April 30, 2004. 
####################################################################### 
 
wipe 
 
set NumSteps 100 
set StepSize [expr 1.0/$NumSteps] 
 
############################################################# 
# BUILD MODEL 
# 
model basic -ndm 2 -ndf 3 
 
# define the nodes 
source Nodes.tcl 
 
# create geometric transformation for pile elements 
geomTransf Linear 1 
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# define pile elements 
source PileElements.tcl 
 
# use PySimple1Gen command to generate PyMaterials.tcl and Pattern.tcl 
PySimple1Gen "SoilProp.txt" "Nodes.tcl" "PyElements.tcl" "PileElements.tcl" "PyMaterials.tcl" "Pattern.tcl" 
 
# define py elements and materials.  Always define materials before 
# elements to prevent input error.  Note that PyMaterials.tcl was previously created using the 
# PySimple1Gen command. 
source PyMaterials.tcl 
source PyElements.tcl 
 
 
# Fix free ends of py elements against rotation and vertical displacement 
fix 91 0 1 1 
fix 17 0 1 1 
fix 39 0 1 1 
fix 27 0 1 1 
fix 16 0 1 1 
 
# Fix vertical deformation at pile tip 
fix 15 0 1 0 
 
############################################################# 
# NOW APPLY LOADING SEQUENCE AND ANALYZE (plastic) 
 
# Create the pattern.  Note that Pattern.tcl was created using the PySimple1Gen command. 
pattern Plain 1 Linear { 
source Pattern.tcl 
} 
 
#create the recorder 
recorder Node -file SoilDisplacement.dat -time -node 16 17 27 39 91 -dof 1 2 disp 
recorder Node -file PileDisplacement.dat -time -node 3 7 12 15 23 24 31 -dof 1 2 disp 
recorder Element -file PileElementRecorder.dat -time -ele 2 5 8 17 39 54  force 
recorder Element -file PyElementRecorder.dat -time -ele 14 29 32 41 47 force 
 
############################################################# 
# create the Analysis 
 
constraints Penalty 1.e12 1.e12 
test NormUnbalance 2e-3 100 0 
numberer RCM 
algorithm Newton 
system ProfileSPD 
integrator LoadControl $StepSize 
analysis Static 
 
############################################################# 
# analyze. 
 
analyze $NumSteps 
 
wipe  #flush output stream 
 



 14/17 

APPENDIX 2: TECHNICAL INFORMATION 
 
Calculating pult and y50 

The ultimate resistances of the p-y materials pult, were calculated in a manner similar to that 
described in LPile+4.0m technical manual (Reese et al. 2000).  The difference between the 
method used in PySimple1Gen and in LPile+4.0m involves the treatment of layered soil systems.  
LPile+4.0m utilizes the method developed by Georgiadis (1983) for calculating pult for layered 
soils.  PySimple1Gen does not use the method of Georgiadis.  Instead, pult is calculated based on 
the vertical effective stress at a given depth, with no consideration of the strength of overlying 
soil layers.  The equations used in PySimple1Gen are included below: 
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where, 

 
σv’ = vertical effective stress 
c = undrained shear strength 
z = depth 
b = pile diameter 

 

For sand (pyType=2) 
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where, 

 
σv’ = vertical effective stress 
Ko = coefficient of earth pressure at rest (default Ko = 0.4) 
φ = friction angle of sand 
β = 45 + φ/2 
α = φ/2 
z = depth 
b = pile diameter 
Ka = coefficient of active earth pressure (Ka = tan2(45 – φ/2)) 

The relative displacement at 0.50pult, y50, is calculated in PySimple1Gen in the same way as 
discussed in the LPile+4.0m technical manual.  For sand in LPile+4.0m, stiffness, k, is an input 
parameter.  In PySimple1Gen, k is not an input parameter.  Instead, it is calculated from a 
polynomial curve fit of the relationship between friction angle and stiffness for sand above the 
water table provided in Figure 3.29 in the LPile+4.0m technical manual. 

For liquefied sand (pyType = 3) 

 

for ru = 0 (assuming undrained capacity with ru = 0 is the same as drained capacity) 

+
⋅−

⋅⋅⋅
⋅=

)cos()tan(
)sin()tan(

'1 0 αφβ
βφ

σ
zK

pu o
vru  

( ) ( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅−−⋅⋅⋅⋅+⋅⋅+

−
⋅ bKzKzb aov )tan()sin()tan()tan()tan()tan(

)tan(
)tan(' αβφβαβ
φβ

βσ  

( )
)2pu,1pumin(pu

)(tan)tan('bK1)(tan'bK2pu

0ru0ru0ru

4
vo

8
va0ru

=
β⋅φ⋅σ⋅⋅+−β⋅σ⋅⋅=  

 

for ru = 1 
bS9pu 1ru ⋅⋅=  

 

for 0 < ru < 1 
[ ]0ru1ruu0ru pupurpupu −⋅+=  

where, 

 
S = strength of sand mobilized against pile 
b = pile diameter 
ru = peak excess pore pressure ratio 
Ko = coefficient of earth pressure at rest (default Ko = 0.4) 
φ = friction angle of sand 
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β = 45 + φ/2 
α = φ/2 
z = depth 
b = pile diameter 
Ka = coefficient of active earth pressure (Ka = tan2(45 – φ/2)) 
 
 

For user-specified (pyType = 4) 

pult and y50 are user-specified. 

 

Tributary Length for p-y Elements 
The p-y material properties must contain Pult in units of force, not pult in units of force/length.  

Pult represents the integral of pult over the tributary length.  The integration was performed 
numerically in the following manner: 

1. z_top (coordinate at the top of the tributary length) and z_bot (coordinate at the bottom of 
the tributary length) were calculated as the midpoints of the pile elements that share a 
node with the p-y element, provided that the pile elements had a p-y element attached to 
its other node as well.  For example, pile elements that extend above the ground surface 
will not contribute any tributary length to a p-y element at or below the ground surface. 

2. The tributary length was divided into 10 sublayers, each with thickness, dz. 

3. Pult was calculated as the sum of pult*dz over the ten sublayers from z_bot to z_top. 

In the case when a p-y element lies near a boundary between two soil layers, such that its 
tributary length spans across the layer boundary, pult will be based on properties of both soil 
layers due to numerical integration over the tributary length.  The type of p-y element (i.e. sand 
or clay) and y50 will be based on the material properties at the p-y element location.  The 
numerical integration of pult over the tributary length will reduce errors associated with interface 
effects, however closely spaced p-y elements are recommended at layer interfaces.  In the case 
when a p-y element lies at a boundary between two soil layers, the material type will be assigned 
the same type as the upper soil layer. 

 

Tributary Length for Loads Applied to Pile Elements 
Tributary lengths for loads applied to pile elements are calculated in the same manner as for 

p-y elements, except that beam column elements that do not attach to p-y elements can contribute 
tributary length to the calculation of nodal loads.  For example, you may apply a distributed load 
to a beam column above the ground surface without any attached p-y elements (as was illustrated 
in the example).  You may also apply a distributed load to a pile element with attached p-y 
elements. 
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Error Checking 

1. The program checks that all five (or six) files can be opened.  If not, the program will 
issue a warning and return without writing data to the output file(s). 

2. The program checks that MatType = “py1”, “py2”, “py3” or “py4”.  If not, the program 
issues the following warning: “Invalid MatType in PySimple1Gen.”, and then exits 
without writing data. 

3. The program checks that the depth of each node lies within the depths specified in the 
soil properties file (File1).  If not, a warning is issued and vertical stress is set to zero. 
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