Open System for Earthquake Engineering Simulation (OpenSees)

OpenSees Command
Language Manual

Silvia Mazzoni, Frank McKenna, Michael H. Scott, Gregory L. Fenves,
et al.

Printed on 19 July, 2006

Contents

Introduction 11
I\ o) 7= { o] o [T 11
(070703 o] 1 SRR 13
Introduction to the Tcl command IaNQUAGEcooiiuiiiiiiiiiiie e 14
Tcl CommaNds FOMMAL.....cooiiiiii et e e e e e e e e e e e annneeas 15
(=5E=Ta] o) (=T Wed W @7e] 1100 F- U o RSP 16
AdditioNal TCl RESOUICTESeeiiiiiiiiie ettt e e sttt e e s sate e e e s rabe e e e senteeeesaneeeeeeas 18
OPENSEES INTEIPIELEN ... eeii ittt e sttt e e e s bt e e e saate e e e saabeee e santeeeesaneeeaeaas 19
OpenSees 20
OPENSEES FEATUIES ...ttt et e bt ae e e e bt e e sabe e e be e e eabe e sneeesareeeneeas 22
WHY OPENSEES? ...ttt ettt ettt e s et e eae e e mee e et e bt e ebeeaaeeeneeemseemseenseeaseeseeens 22
+ The library of materials, elements and analysis commands makes OpenSees a powerful
tool for numerical simulation of nonlinear structural and geotechnical systems................ 22
+ The OpenSees library of components is ever-growing and at the leading edge of numerical-
SIMUIALION MOGEIS ..o e e e e e eanee e e e e 22
+ The OpenSees interface is based on a command-driven scripting language which enables
the user to create more-versatile iNPUL fileS.oooivieii i 22

+ OpenSees is not a black box, making it a useful educational tool for numerical modeling22
+ You can create your own material, element or analysis tools and incorporate them into

L0 01T g RS- PP 22

+ NEES is supporting integration of OpenSees as the simulation component of laboratory

LE=E]] o T PP PPPTPPPR 22

1Y@ T U 23

+ linear & nonlinear structural and geotechnical models ..o, 23

] 11 g T N PR 24

+ Static PUSH-OVEI @NAIYSEScooeiiiie e 24

+ static reversed-CyCliC @nalYSESccuuuiii i s 24

+ dynamic time-Series @nalYSES......ccoiuiiii i 24

+ UNIfOrmM-supPOrt @XCItATION. ..o 24

+ MUItI-SUPPOIT EXCITALION ... 24

MODELING FEATURES : ...ttt ettt ettt b e s saneeneens 24
MODEL-BUILDING FEATURES : ...ttt ettt eeee e e 25
ANALYSIS FEATURES ...ttt ettt ettt et et e e be e sbe e sae e emeeeeeebeesaeesaeeaneeanneas 28
MOdEIBUIIAET OBJECT it ae e st e e ar e e e be e e nee e 31
Do 0 F= 1 N O o] =] SRS RPR 32

R T=ToTo] (o [T R ©] o] 1= o1 SRR RR 33

F N QE 1) T LT @ o] =T o PR SR 34
Model-Building Objects 36
model Command 37
BasiC MOl BUIIAETooeieiee e 37

PUIID COMMEANG ... et s e s ane e e sneeenee e 38
node Command 39

mass Command 40

Contents iv

constraints objects 41
SiNGIE-POINt CONSIIAINTS ...ccuiiiieiie ettt e e st e e raee e sbeeeneeea 41
L0 @e 321 1.4 = U o ST 41
1100, Qo 421 1 4= U o S 42
L0 A0 o] 491 1 4= U o SRR 43
L1074 @701 1 0121 oo [ST 43
MUIti-POiNt CONSIIAINTSeeiiiiiieiie e e e e e e e e snnee e e e e 44
L=To [WE= 11 D@ i @] 1 o1 o ¢ F- g o H USRS 44
(gTe]lo|DIF=TolgTr=To 4o T @] 4] 0 F- Voo SRR 45
1o (o | T 0] 1Q @ o] 4 o1 o ¢ F- g T HFU USRS 46
uniaxialMaterial Command 47
-- Contributed Uniaxial Materials 48
oy I | 1V = =Y - R 48
Concrete04 Material -- Popovics Concrete Materialcoooeiiiiiiiieniiii e 61
Concrete04 -- Material Behavior 65
FatigueMaterialExample.tcl 67
Limit State Material 77
Shear LMt CUIVE ...ttt e s r e s e e s n e ann e sne e nnreenaneas 78
AXIAL LIMIE CUIVE <ottt st e e sttt e e s aat e e e s anbe e e e snbeee e sanbeeeesaneeeeeaas 79
Shear LMt CGUIVE ...ttt e s r e s e e ann e sne e nnreenareas 80
Example Files for Limit State Material...........coooiiiiiii e 82
PINCHINGA MaEEIIALcuveiieiiiiiieeeiiiie sttt s et e st e s ee e e et e e e s stae e e sssaeeeassseeeeaanseeaeennseeeeennnes 88
PINCHING4 Uniaxial Material Model DiSCUSSION........ccoicuiiieiiiieeeeiieeeeiieeeesieeeeeseeeeeesneeeeeenees 95
PyTzQz Uniaxial Materialsoouei ittt st sb e aee e 109
PySIimpleT1 MatErialcoo ittt ee e st e e rne e e s beeenee e 109
TZSIMPIET MALEITAL ...ttt s e b e b e s be e e sane e 110
QZSIMPIET MAEETTAL ... ettt sbe e e e ne s 111
I 1Y = (T - U PP SR 112
B I4 Lo 1Y = =T = PP 113
PySimple1Gen COMMENG.........ooiiiiiiiie et e e ane e e s e nnee e 115
TzSIiMpPlIeT1GeNn COMMANG.......coiiiiiiii et e e nnn e 116
ReinforcingSteel -- Material Behavior 131
=Ty (ol (T = SRR 131
Elastic-Perfectly Plastic Material...........ocuooi e 132
Elastic-Perfectly Plastic Gap Materialc.ooiiioiiiiii e 134
Elastic-NO Tension Material ...t e e e 136
Parallel Material..........ooo i et e e e e sn e e 137
SIS MAEIIAL ... e 138
Hardening Materialc..ooi i e st e e e 140
Concrete01 Material -- Zero Tensile Strength..........oooii i 141
Concrete01 -- Material Behavior 145
Concrete02 Material -- Linear Tension SOfteNiNgceeeiiiriiiiiiii e 145
Concrete02 -- Material Behavior 152
Concrete03 Material -- Nonlinear Tension SOftening..........cccocveveeiieiiiie e 152

Concrete03 -- Material Behavior 157

Contents

SEEEIOT MALEIIA ... oottt e e e e e e e et e e e e e e ee st e e s eeeeessasaaeeeaaeenes

Steel01 -- Material Behavior

Steel02 Material -- Giuffré-Menegotto-Pinto Model with Isotropic Strain Hardening..............

Steel02 -- Material Behavior

HySteretic Materiall.........oo.eeiiiieie et e s e e e sneeeas

Hysteretic -- Material Behavior

VAo LU T3 F= L (=Y =

nDMaterial Command

Elastic 1SOtropiC MatErialc..eiiiieiiee e
J2 PIaStiCity Material.........cooiuiiiiiiiie e
Plane Stress Materialcooiiiiiiiiiiiiee et e e e s e e s e e e e e e e anaees
Plate FIDer Materialoooeiiiieiiee et
Template Elasto-Plastic Material.............oooi i
FluidSolidPorousMaterial Materialccooieiieienieeie e
UPAAEMALEITAISTAGE -..eeei i e

section Command

Ty (oS T=T] (0] o F TR
8 a1 E = RS =To] 1o TR
] o= GRS 1T o1 (o] o [P TR
FIDEIr COMMEANG... ..ottt e e e e e e et e e e e e e e e e e e e e eeeesansaaeeeaasenes
Quadrilateral Patch COmMMANG........cooomieeeeieee et e e e e e e e e e e e e e e e s aaaaans
(OF1 o1 U1 =Tl == (o] a T 011 011 =V (o [
Straight Layer COMMEANGeeiiiiiiieieiiee et
Circular Layer COMMENGcooi ittt sbee e e sbee e e e ebee e e e s bee e e s sneeeeennnee
S T=Tor (o] g e [o =T = Lo ST P R PRR
Elastic Membrane Plat SECHONcci it e e e e e e e e e e eees
e L LT T o TS S T=To3 1o o I
230 [TE=Te] 1To] g T= LS T=Tel 1 o] TR TR
Isolator2spring Section: Model to include buckling behavior of an elastomeric bearing

element Command

Contents Vi

QIO ET T 1= 0 = | 213
CorotationNal TrUSS EIEMENT...... ..ot e e e e e e e e e e e e e e e e e eeas 214
Elastic Beam Column EIBMENT........... et e e et e e e e e e e e e e e e eaaeaees 215
NonLinear Beam-Column EIEMENTS........cooiiiie et e e e e e e e e e e aaaeaens 216
Nonlinear Beam ColumN BIBMENT...... .ot e e e e e e e e e e e e e e aaeaens 216
Beam With HINGES ElEMENTcooiiei e 218
Displacement-Based Beam-Column EI€mMeNnt........c..ooiiiiiiiiiiiiie e 222

WA= (o R =T oo = =T 1T o | ST 222

WA= (o R =T aTo = =T g1 o | SRR 223
Zero-Length ND EIEMENTooi e st e s neee s 224
Zero-Length Section EIBMENTooo e 225

@IV To [41N =T = I =Y 0 0= 0L 1T PR 226

QUAA EIBMENT ..ottt ettt et e e e e e e e e e e et e e e e e e eeeeeeeeeeeeeeeeeeeeererererererererenenes 226

Y a1 [1) 0 1= [TR 227

Bbar Plane Strain Quadrilateral EIBMENtoiiiieee et a e 227
Enhanced Strain Quadrilateral EIEMENt...........eiiiiieeee e e e 228

2T G101 S = (=T 1 A=Y 0L £ 229

] r=Tale P20l = T Tl S = 1= 0 0 1Y o 229

=] o T= Ul = T o] 1 =1 =0 0 1= o | 231

Eight Node Brick EIEMENT ... e 232
Twenty NOde BriCK EIEMENT......coo e 234

U o B W= =T 4= o PSPPSRI 236
FourNodeQUAAURP EIBMENTcoueeeeee ettt e e e e e e e e e e e e e s e e e eaaa e eeaeeeeens 237
BeamColumnJdoint BIEMENT.ot e et e e e e e e e e e e e aaaeaens 238
Beam-Column Joint EIemMent DiSCUSSIONuee et e e et e e e e e e e e e e e aaeaens 243
Beam-Column Joint Element Discussion 243
Soil Models and Solid-Fluid Fully Coupled Elements 264
PressureDependMUILIYIeIdooi i 265
PressureDependMUltiYield02c..eeiiiiiiiieiee e 272
PressurelndependMUltiYieldcooueiii i 277
UpdateMaterialSIageovi e 283

B oo FoN (= = U= 4= (=] PR 284
FluidSolidPorouSMaterialc.euueeiiiiiiiieeeee e e e e e e e e 285
FOUrNOAEQUAAURP ... et eeas 286
Nine_Four Node QUAAUPooiiiiii e e e 288

274101 1 290
Twenty_Eight_ Node _BFiCKUP......coo e 292

block Command 295
(o] [0 1924 I I 90 1 4 2 7= [296

(o] [0T1 16CT B K 00 1 422 = s [o 298
region Command 300
Geometric Transformation Command 302
[T T=T= T I = Ta 1] (o] 0 1 1= Lo o N 302
P-Delta TransSfOrmMationoouee i e e et e e e e e e e e e et eeesbeseesaan s e esannnsaesnan 308
Corotational TranSTOrMALION.cooo it e e e e e e e e e e e e e e e e e eeas 309

Time Series 311

Contents

vii

(O2eT a1 = Lol B T LTS =T =T
Q== T T Lo TR =T 41T
Rectangular TiME SEIESoo ittt e e ebe e et e e s be e e snse e
SINE TIME SEIES ..o
Path TimMeE SIS ...

pattern Command

[0 E= T T = U1 (=4 ISP
[oF=To [@70 4410 0 =T o [P RTOPRR PRSPPI
] o @70 20100 F=T oo [RS
(21T o =To @70 1011 4 F= g To PSSP
UniformEXCItation Patternooo e
MUIPIESUPPOIT PatterN ... e
groundMOotion COMMENT..........ei ittt ettt e be e s b e e see e e sabe e s bee e saneeenneas
Plain GroUNAMOLION.eiieieee ettt et be e e sar e e e be e e snneeeaee
Interpolated GroUNAMOLIONooiiiiii e et
iIMPOSEAMOtioN COMMANGcoiiiiiiiii ittt ettt e e be e s e e e sb e e e enee e sbeeeneeeas

Recorder Objects

NOGAE RECOITEN ...ttt e e an e s e e ne e e snn e e s ne e e nnneenane
(=T a1V7=1 (0] o T=1\ [oTe [T R {=ToTo T o 1= SO PR
D U=t oo o =T PRSPPSO
o g T oL T=To o] Co =Y SRR UPRRPR
EnvelopeElement RECOIAETooo it
DiISPlay RECOITETttt e et e e abn e e e s aan e e e e e anneeas
[(o) B 2 {=T ot (o = PSR UPRTPR
Playback COMMEANG.........uiiiiieiee ettt e e e be e e s b e e smbe e e rneeesbeeeneeeas

Analysis Objects

constraints Command

e P U I O] g 11 = 1L
L= o= AV, =1 1 o o ST SRP
Lagrange MUIIPIEIS ...coo ettt e e et e e et e e e e sneeeas
Transformation METNOAo oot e e e e e e e e e e st e e e s a e e ereaaaas

numberer Command

[l P T A 1T 0] o 1T =] TR
ROM NUMDEIEEottt e et e e e e e e e e et e e s e e e eeeaaaseeeaessssaaeseaasenes

system Command

BandGeneral SOE..........co oot s
BaNASPD SOKE ... bbbt b e nr e
ProfillESPD SOE ...ttt bbbt nr e
SPArSEGENEral SOE.......oo i
0N Vo S T SR
SPAISESPD SOE ... ittt bbb e e he e b e e s be e e aaee e ebeeeaeeeas

test Command

NOrM UNDAIANCE TEST ..ot e e e e et e e e e e e e e nnnreeeaaeeeaaas
Norm Displacement INCrement TEST......oviiii e
ENergy INCrement TESTo et e e e e eaeeeas

algorithm Command

Contents viii

Linear AlGOITNM ... e e e 352
NN (o T o N o o] 11 110 o PRSP P PP UPPPPRN 352
Newton with Line Search AIGOrithmc.ooo i 353
Modified Newton AlIGOrTNM ... 354
Krylov-Newton AlGOrthm ... 354
BFEGS AIGOTITRM .ttt e ettt e e e b e e e s ate e sabe e e aneeesabeeenneeas 354
Broyden AlGOrithMo e e 355
integrator Command 356
(o T=To [@001 (o] TR PRPTOPRP PRSPPI 358

D I1S] o] E=Tet=T o o= T 0 A @ o] o1 1 (o] PRSP 358
Minimum Unbalanced Displacement NOIM........coooiiiiiiiiii e 359

F Yo Tyl | (g I @70 101 1 (o] U SRR 360
L= g =T Q1Y 1= 1. o T SRR 361
Hilbert-Hughes-Taylor Methodcoo e 362
analysis Command 363
SEALIC ANAIYSIS ..ot e e e nnn e 363
TrANSIENT ANGIYSIS «.eeieiiiiiie ettt e et e e e st e e e st e e e s nbe e e e e nbee e e e enneeeeennnee 364
VariableTranSiENt ANGIYSIS.....cooiiiiiii et e s sb e e s aae e e e s sneeeas 365
rayleigh command 367
eigen Command 368
analyze Command 369
dataBase Commands 370
FileDatastore COMMANcuiiiiiiiiie ettt et e e et e e e e e e e s etae e e e snee e e e anneeeeennnes 370

T A= @011 0102 - To 1RSSR 371
(=TS (o T =3 @70] 1 011 =T Lo RS PRRRPRIR 371
Miscellaneous Commands 372
o111 9 @7o] 1 0122 =T o [P SPPPRRPPRRN 372

[ET=T 7] 1 T4 aF= 1o o FU RPN 373

(71T =T @ o] o1 4= 1 o L0 PP 373
WIPEANAIYSIS COMMENG ...coiiiiiiiiiiiiiie ettt e e e st e e s abee e e e nbe e e e e nbae e e s anneeeeennnes 374

[oF=To [@FeT o 1<) @0 491 1 4= L o PRSPPI 374

(oL T T=T @70 14100 =T o [USRS 375

(aToTe =BT o J @ o] s 42 =T o IR USRI 375

17T [T T @7 T 1 012 1 =T Lo [P SRR 375

(o117] 1 014 a - 13 o U USSR 376

(10 0 11 = o 11 o L= RS PSTRR 376
(o] 0] = 1A @] 1 41 .1 F-Tg T SRR 377

How To.... 378
RUN OPBNSEES ...ttt ettt e e e bt e e e s bt e e e s b e e e s abte e e e eneee e s snneeeeennnes 379
..DefiNe UNitS & CONSIANTSeiiiiiieiiee e e 382
...Generate Matlab CoOMMANASviiiiiiiee e e e e 383

B B 1= {1 1= I o] I (o ToT= T (U TSR 384

B =T o I e q (=T g B L {11 SRR 385
BUIlAING TNE MOGEL.....c i s anre e e e 387
...Define Variables and Parameters ... 387

...Build Model and Defing NOGEScouaiiiiiiieiee et 389

...Build Model and Define Nodes using Variables.........cccocueviiiiiiiiiinec e, 390

B B L= T LTV F= L= = £ 391

Contents ix

o :DEfiNE EIBMENES ... e 392
(DLt 1o Ta ol @ 1011 o | OSSPSR 393
...Define Analysis-Output GENErationoceiiiiiiiiie e 393
...Define Data-Plot DUrNG ANAIYSIS.......ccoiiiiiiiiiiie e 394

LG 1= 1771472 Mo Y- Lo - USRS 394
..DEfINE Gravity LOAASccoeeiiiiie ittt ettt e 394
ceRUN Gravity ANalYSIS....oueeiii et 395

STALIC ANAIYSIS .t e e e e e e e e e e b et e e e aa e e e e enreeas 395
...Define Static PUShOVEr ANalYSiScoiiiiiiiiiiiee e 395
...RuUn Static PUShOVEr ANalYSIS.....coiuiiiiiiiiee e 396
DYNAMIC ANAIYSIS ...ttt et e e e s bt e e e e bt e e e s b e e e e e bbe e e e anre e e e e 398
...Define Dynamic Ground-Motion ANalYSiScccuiiiiiiiiiiiiee e 398
...Run Dynamic Ground-Motion ANGIYSIScuiieiiiiiiiiir et 398
...Combine Input-File COMPONENTSoiiiiiiiei e 399
ceRUN Parameter STUAYeoiiii et rne e e b e e aee e 400
...Run Moment-Curvature Analysis 0N SECHONc.ciiiiiiiiie et 401
...Determine Natural Period & FreqQUENCYeviiiiiiiiee e 403
Getting Started with OpenSees 404
T goTo 18T o] o FO PRSP PPR PR 406
Doy] (o= To [@] 01T o 1S T= oY SRR 407
RUN OPEBNSEES ...ttt et e e et e e e s bt e e e e bt e e e s s bte e e e ebeeeeesnneeeeennnee 409
Problem Definition ... 413
MOEI BUIIAEY ...t e e e e e b e e e e bre e e e anr e e e e e 414
I\ (o7 [PSP PPP PP PPR 415
[T o 1T) £ S TSP PP UPPPPN 417
Rt=TeTo] o =] £ PP PPPUPPPPN 418
Summary of Model-Building INpUt Fileoooiiii s 418
(o T=To 3= Ta o [N q = 7 I SRR 421
1. Load defiNITION ... e e 421
2. Analysis definition and fEATUIESovi i s 422
B Y o F=)= TS = D= To U | o o PR ST 423
LT 1YY 0 Y- Lo SR 423
SUMMAry Of Gravity LOGOScui ittt e et e e st e e s saee e e s neeeas 427
Lateral Loads -- Static PUSHOVEToi ettt 427
Lateral Loads -- Cyclic Lateral LOadcooueiiiiiiiiiiie ettt 428
Lateral Loads -- Dynamic ground MOIONeeeiiiiiii i 429
Getting Going with OpenSees (under development) 433
Problem Definitionco e 434
AV ToTo L= B =T 1o |1 T PRSP 435
Variables and UNIES ..o 435
1V oo LTI = U | o T TR PR PRSPPSO 437
Nodal Coordinates & Masses, Boundary Conditionsoocceveiniieii e 438
Y =L C=T = TR PRPTOPRP PRSPPI 439
ElemeEnt CroSS SECHON....co ittt ettt ettt et e e be e e s abe e st e e e eaeeesabeeaneeaas 441
Elements and Element CONNECHVILYceiiiiiiiiiie e 442
Gravity and other Constant LOAASc.cooiiiiiiiiiie ettt 443
Summary of Defining Structural MOdElcceoi i 443
Error-Checking Tip for Model BUildingcceiiiiiiiiiiie ettt 449
RECOIrAErs fOr OUIPUL......eie ittt ettt e e e be e e s abe e sabe e e anee e sabeeeneeaas 454
Analysis Components 455

Script Utilities Library 456

Contents X

L0 0 F= =151 0 (o] T 456
R {OTe][forsT=To11 (o] TR (o] [T 458
RCCIICSECHONFEDEAS.ACH .. .ottt e e e e e e e e e e e e e e e e e e e aaaeeeeaasanns 459
RO o =T g [=T D 1] o) = LY (o] SRR TUSPURRRRN 461
MOMENTCUIVAIUIE.ACT ...t e e e e e et et e e e e e e e e s e e e s e e e eeeesaaeeeaaaennns 462
REAASIMDFFIE.ACH ... ettt e e e e e e et et e e e e e e e ee st eseaeeeesaaaaeeaaananes 463
[RT0Y 657 o] gl T =1 I SRR 465
StFramePZLAiSPIay.Clcoiiieiee e 466
LAY £ 1[0 TR (o 467
RigidFrame3DdiSPIay.tClueiiiiiiiie e 468
(8T oY OTo] 11 2= U 78 (o R 469
1Y =L = oL@ U1 101U 8 (o USRS 469
GENPIANEFTAME.ICT ... e e e 470
References 473

Index 477

11

CHAPTER 1

Introduction

This document is intended to outline the basic commands currently available with the OpenSees
interpreter. This interpreter is an extension of the Tcl/Tk language for use with OpenSees.

OpenSees is an object-oriented framework for finite element analysis. OpenSees' intended
users are in the research community. A key feature of OpenSees is the interchangeability of
components and the ability to integrate existing libraries and new components into the
framework (not just new element classes) without the need to change the existing code. Core
components, that is the abstract base classes, define the minimal interface (minimal to make
adding new component classes easier but large enough to ensure all that is required can be
accommodated).

In This Chapter

[N\ [o) 7= o] o TSRS 11
(O70] o)V T || R 13
Introduction to the Tcl command language............... 14
OpenSees Interpreter.........ooiiiiiieee, 19
Notation

The notation presented in this chapter is used throughout this document.

Input values are a string, unless the first character is a $, in which case an integer, floating point
number or variable is to be provided. In the Tcl language, variable references start with the $
character. Tcl expressions can also be used as input to the commands where the input value is
specified by the first character being a $.

Optional values are identified in enclosing <> braces.

When specifying a variable quantity of values, the command line contains (x $values). The
number of values required, x, and the types of values, $values, are specified in the description of
the command.

An arbitrary number of input values is indicated with the dot-dot-dot notation, i.e. $value1
$value? ...

Chapter 1 Introduction 12

The OpenSees interpreter constructs objects in the order they are specified by the user. New
objects are often based on previously-defined objects. When specified as an object parameter, a
previously-defined object must have already been added to the Domain. This requirement is
specified in the description of the command arguments.

Also, and very important:

Do not use greek fonts ANYWHERE in your documentation, not only do they not come out in
Html, they are not allowed in tcl, which is where this is important. | recommend spelling out the
letters: alpha, beta, gamma, eps (short for epsilon), etc.

| recommend to not use them in your figures either, as you would be unable to refer to them. If
you must use them you have to do it very carefully, as it may be okey for internal variables.

Example command:

| node $nodeTag (ndm $coords) <-mass (ndf $MassValues)>

This line executes the node command (page 39) assigns coordinates and masses to a specified
node. The $nodeTag argument is an integer tag identifying the node.The coordinate arguments
are specified with the parentheses () because the number of arguments is dependent on the
definition of the model (ndm (page 37)): two arguments in 2D and three in 3D.

The mass specification at the node definition is optional. Therefore, it is enclosed in <> braces.
The number of mass arguments is also dependent on the model definition, depending on the
number of degrees of freedom assigned to a node (ndf (page 37)).

Chapter 1 Introduction 13

Copyright

Copyright © 1999,2000 The Regents of the University of California. All Rights Reserved.

Permission to use, copy, modify, and distribute this software and its documentation for
educational, research and non-profit purposes, without fee, and without a written agreement is
hereby granted, provided that the above copyright notice, this paragraph and the following three
paragraphs appear in all copies.

Permission to incorporate this software into commercial products may be obtained by
contacting the University of California. [Bill Hoskins Office of Technology Licensing, 2150
Shattuck Avenue #150 Berkeley, CA 94720-1620, (510) 643-7201]

This software program and documentation are copyrighted by The Regents of the University of
California. The software program and documentation are supplied "as is", without any
accompanying services from The Regents. The Regents does not warrant that the operation of
the program will be uninterrupted or error-free. The end-user understands that the program was
developed for research purposes and is advised not to rely exclusively on the program for any
reason.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES,
INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE. THE UNIVERSITY OF CALIFORNIA SPECIFICALLY
DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE
UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE,
SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Chapter 1 Introduction 14

Introduction to the Tcl command language

The Tcl scripting language was chosen to support the OpenSees commands, which are used to
define the problem geometry, loading, formulation and solution. These commands are one-line
commands which have specific tasks, as described in this manual. The Tcl language provides
useful programming tools, such as variables manipulation, mathematical-expression evaluation
and control structures.

Tcl is a string-based scripting language which allows the following:

= Variables and variable substitution

= Mathematical-expression evaluation

= Basic control structures (if , while, for, foreach)
= Procedures

= File manipulation

More information on Tcl commands can be found at its web site: Tcl/Tk Primer
(http://dev.scriptics.com/scripting/primer.html) (http://dev.scriptics.com/scripting/primer.html)

Handy Tcl commands:

incr - Increment the value of a variable:

seta
incr a

a book reference:

Brent Welch <welch@acm.org>, Ken Jones, and Jeff Hobbs: Practical Programming in Tcl
and Tk, (http://www.beedub.com/book/) 4th Edition ISBN: 0-13-038560-3, June, 2003
(http://www.beedub.com/book/)

Chapter 1 Introduction 15

Tcl Commands Format

Tcl scripts are made up of commands separated by new lines or semicolon (;).

The basic syntax for a Tcl command is:

| command $arg1 $arg2 ...

command name of the Tcl command or user-defined procedure
$arg1 $arg2 ... arguments for the command

Tcl allows any argument to be nested command:

command [nested-command1] [nested-command2]

where the [] are used to delimit the nested commands. The Tcl interpreter will first evaluate the
nested commands and will then evaluate the outer command with the results to the nested
commands.

The most basic command in Tcl is the set command:

| set variable $value

for example:

setab

The Tcl interpreter regards a command starting with the pond sign (#) to be a comment
statement, so it does not execute anything following the #. For example:

this command assigns the value 5 to the variable a
setab

The pound sign and the semicolon can be used together to put comments on the same line as
the command. For example:

| set a 5; # this command assigns the value 5 to the variable a

Chapter 1 Introduction

16

Example Tcl Commands

arithmetic procedure for & foreach functions
>seta 1 >proc sum {a b} { for {seti 1} {$i < 10} {incri 1} {
1 return [expr $a + $b] puts “i equals $i”
>setb a } }

a >sum 2 3

>set b $a 5

1 >set ¢ [sum 2 3] set sum 0

>expr2 + 3 5 foreach value {1 2 3 4} {
5 > set sum [expr $sum +
>expr 2 + $a $value]

3 }

>set b [expr 2 + $a]
3

>

puts $sum
10

>

file manipulation

procedure & if statement

>set fileld [open tmp w]
anumber

>puts $fileld “hello”
>close $filelD

>type tmp

hello

>

>source Example1.icl

>proc guess {value} {
global sum
if {$value < $sum} {
puts “too low”
}else {

if {$value > $sum} {

puts “too high”

} else { puts “you got it!"}

> guess 9
too low

Chapter 1 Introduction 17

Additional Tcl Resources

Here are additional resources for Tcl:

http.//www.freeprogrammingresources.com/tcl.htm/
(http://www.freeprogrammingresources.com/tcl.html)

(a large list of helpful resources)

http://www.tcl.tk/man/ (http://www.tcl.tk/man/)

(Tcl/Tk manual pages)

http://www.mit.edu/afs/sipb/user/golem/doc/tclik-iap2000/TclTk1.html
(http://www.mit.edu/afs/sipb/user/golem/doc/icltk-iap2000/TclTk1.html)

(a tutorial describing many commands by describing their implementation in a
short program)

http://www.beedub.com/book/ (http://www.beedub.com/book/)

(some sample chapters from Practical Programming in Tcl and Tk, by Welch and
Jones)

http://philip.greenspun.com/tcl/ (http://philip.greenspun.com/tcl/)

(not the most readable tutorial IMHO, but it does have Tickle-me-Elmo ;) It can be
accessed from the link below as well.)

http://www.tcl.tk/scripting/ (http://www.tcl.tk/scripting/)

Chapter 1 Introduction 18

http://hegel.ittc.ukans.edu/topics/tcltk/tutorial-noplugin/index.html
(http://hegel.ittc.ukans.edu/topics/tcltk/tutorial-noplugin/index.html)

(a short tutorial on the essential Tcl commands, also includes a manual of Tcl/Tk
commands at the website below)

http://hegel.ittc.ukans.edu/topics/linux/man-pages/index/index-mann.html
(http://hegel.ittc.ukans.edu/topics/linux/man-pages/index/index-mann.html)

http://pages.cpsc.ucalgary.ca/~saul/personal/archives/Tcl-Tk stuff/tcl examples/
(http://pages.cpsc.ucalgary.ca/~saul/personal/archives/Tcl-Tk_stuff/tcl_examples/)

(Tk widgets with screenshots)

OpenSees Interpreter

The main abstractions of OpenSees will be explained using the OpenSees interpreter. The
interpreter is an extension of the Tcl (page 15) scripting language. The OpenSees interpreter
adds commands to Tcl for finite element analysis. Each of these commands is associated
(bound) with a C++ procedure that is provided. It is this procedure that is called upon by the
interpreter to parse the command. In this document we outline only those commands which have
been added to Tcl by OpenSees.

For OpenSees we have added commands to Tcl for finite element analysis:

= Modeling — create nodes, elements, loads and constraints

= Analysis — specify the analysis procedure.

= Qutput specification — specify what it is you want to monitor during the analysis.
» HELP

OpenSees Documentation Web Page (http://opensees.berkeley.edu/OpenSees/primer.html)

http.//opensees.berkeley.edu/cgi-bin/OpenSeesCommands.pl (http://opensees.berkeley.edu/cgi-
bin/OpenSeesCommands.pl)

19

CHAPTER 2

OpenSees

» What is OpenSees?

= +AAn object-oriented software framework for simulation applications in earthquake engineering using

finite element methods. OpenSees is not a code.

= +AA communication mechanism within PEER for exchanging and building upon research

accomplishments.

= +AAs open-source software, it has the potential for a community code for earthquake engineering.

my favorite: o
+ You can describe a structural/geotech. traditional code vs. O
component at a number of levels:

penSEES

S e | T [ot o et ol e | Traditional Code Framework of Components
- section level - moment-curvature model User Interface L |osel Buicer
- fiber level - material stress-strain model t t
Input Language > * Model Domain ¥
element node Integralgnooints elemert node g
lm) Base Code =« Elements ‘Materials ‘Other
[* % = = ¥ ’—} S -
Elements = 1 Solution Procedures 1
element ————— ciement 2 | '
4 i > Solvers
e Compute Technology
[} Compute Technology
1
¥ Databases
fiber

simulation-framework
components

computation information
technology

Algorithms, Software framework,
Solvers, - Databases, Visualization,
Parallel/distributea Internet/grid computation
computing

Simulation models,

Performance models,

Limit state models

Material, component, system models

Open-Source Community
Simulation Framework

+— Application Program
Interface (API)

Chapter 2

OpenSees

20

OpenSees is comprised of a set of modules to perform creation of the
finite element model, specification of an analysis procedure, selection of
quantities to be monitored during the analysis, and the output of results. In
each finite element analysis, an analysis is used to construct 4 main types
of objects, as shown

main abstractions in
O p en S E E S Holds the state of the model at time 1, and

(1; + dt) & is responsible for storing the
objects created by the ModelBuilder
object and for providing the Analysis and
Recorder objects access to these objects

‘ModelBuiIderH Domain H Analysis

Constructs the objects Moves The. model from
state af time t; to state

in the model and adds I
them to the domain. at time and (t; + df)

Monitors user-defined
parameters in the
model during the
analysis

all this is within the
Tel interpreter & commands

domain & analysis objects

O

[
‘ Element ‘ ‘ Node ‘ ‘MP_Constraint‘ ‘SP_Constraint‘ ‘LoadPattern ‘ ‘ TimeSeries‘

[|
‘ ElementalLoad ‘ ‘ NodalLoad ‘ ‘SP_Constraint‘
Analysis

<&

[I [[I |
‘ CHandler H Numberer‘ ‘AnalysisModel‘ ‘SolnAIgorithm‘ | Integrator | ‘ SystemOfEqgn ‘

In This Chapter

OpenSees Features
ModelBuilder Object
Domain ODJECEeeveiiiiiiiiiiiieee e
Recorder Object ...
Analysis ObJECtccoiiiiiiiiie e

Chapter 2 21

OpenSees Features

+ The library of materials, elements and analysis
powerful tool for numerical simulation of nonline
systems

+ The OpenSees library of components is ever-gt
numerical-simulation models

+ The OpenSees interface is based on a comman
enables the user to create more-versatile input fil

+ OpenSees is not a black box, making it a useful
modeling

+ You can create your own material, element or a
into OpenSees

+ NEES is supporting integration of OpenSees as
laboratory testing

WHY OPENSEES?

Chapter 2 22

MODELS:

+ linear & nonlinear structural and
geotechnical models

Chapter 2

23

SIMULATIONS:

+ static push-over analyses

+ static reversed-cyclic analyses
+ dynamic time-series analyses
+ Uuniform-support excitation

+ multi-support excitation

MODELING FEATURES:

> MODEL-BUILDING CAPABILITIES:

= model command (page 37)

= node command (page 39)

= mass command (page 40)

= constraints objects

= uniaxialMaterial command (page 47)
= nDMaterial command (page 175)

= section command (page 185)

= element command (page 213)

= block command (page 295)

= region command

= Geometric Transformation command (page 302)

Chapter 2

24

Time Series command (page 311)
pattern command (page 317)

ANALYSIS CAPABILITIES
constraints command (page 339)
numberer command (page 344)
system command (page 346)
test command (page 349)
algorithm command (page 352)
integrator command (page 356)
analysis command (page 363)
rayleigh command (page 367)
eigen command (page 368)
dataBase command

RECORDER/OUTPUT CAPABILITIES

Node Recorder (page 326)
EnvelopeNode Recorder
Drift Recorder

Element Recorder (page 330)
EnvelopeElement Recorder
Display Recorder (page 333)
Plot Recorder

playback Command

MODEL-BUILDING FEATURES:

> UNIAXIAL MATERIALS (page 47):

Chapter 2 25

Elastic Material (page 131)

Elastic-Perfectly Plastic Material

Elastic-Perfectly Plastic Gap Material

Elastic-No Tension Material

Parallel Material

Series Material

Hardening Material

Concrete01 Material -- Zero Tensile Strength (page 141)
Concrete02 Material -- Linear Tension Softening (page 145)
Concrete03 Material -- Nonlinear Tension Softening (page 152)
Steel01 Material (page 157)

Steel02 Material -- Giuffré-Menegotto-Pinto Model with Isotropic Strain Hardening (page
165)

Hysteretic Material (page 170)

Viscous Material

BARSLIP Material

Bond_SPO01 - - Strain Penetration Model for Fully Anchored Steel Reinforcing Bars
Concrete04 Material -- Popovics Concrete Material (page 61)

Fatigue Material

Limit State Material

PINCHING4 Material (page 88)

PyTzQz Uniaxial Materials

Reinforcing Steel Material

MULTIDIMENSIONAL/nD MATERIALS:
Elastic Isotropic Material (page 175)

J2 Plasticity Material

Plane Stress Material

Plate Fiber Material (page 177)

Template Elasto-Plastic Material
FluidSolidPorousMaterial Material (page 182)
PressurelndependMultiYield Material
PressureDependMultiYield Material

ELEMENTS:
Truss Element

Chapter 2

26

Corotational Truss Element

Elastic Beam Column Element (page 215)
Nonlinear Beam Column Element (page 216)

Beam With Hinges Element (page 218)
Displacement-Based Beam-Column Element (page 222)
Zero-Length Element

Zero-Length ND Element

Zero-Length Section Element (page 225)

Quad Element

Shell Element

Bbar Plane Strain Quadrilateral Element (page 227)
Enhanced Strain Quadrilateral Element

Standard Brick Element

Bbar Brick Element

Eight Node Brick Element (page 232)

Twenty Node Brick Element

u-p-U element

FourNodeQuadUP Element (page 237)
BeamColumndoint Element

SECTIONS:

Elastic Section (page 187)
Uniaxial Section (page 187)
Fiber Section (page 189)
Section Aggregator

Elastic Membrane Plate Section
Plate Fiber Section (page 202)
Bidirectional Section

Isolator2spring Section: Model to include buckling behavior of an elastomeric bearing

ANALYSIS FEATURES:

Chapter 2 27

Linear Equation Solvers (page 346) -- provide the solution of the linear system
of equations Ku = P. Each solver is tailored to a specific matrix topology.

Profile SPD (page 347) -- Direct profile solver for symmetric positive definite matrices
Band General -- Direct solver for banded unsymmetric matrices

Band SPD -- Direct solver for banded symmetric positive definite matrices

Sparse General -- Direct solver for unsymmetric sparse matrices

Sparse Symmetric -- Direct solver for symmetric sparse matrices

UmfPack General -- Direct UmfPack solver for unsymmetric matrices

Full General -- Direct solver for unsymmetric dense matrices

Conjugate Gradient -- Iterative solver using the preconditioned conjugate gradient method

Eigenvalue Solvers -- provide the solution of the generalized eigenvalue
problem Kv = MvL

Symmetric Arpack -- Arpack solver for symmetric matrices
Band Arpack -- Arpack solver for banded matrices

DOF Numberers (page 344) -- number the degrees of freedom in the domain
Plain (page 344) -- Uses the numbering provided by the user

RCM (page 345) -- Renumbers the DOF to minimize the matrix band-width using the
Reverse Cuthill-McKee algorithm

Static Integrators (page 356) -- determine the next time step for an analysis

Load Control (page 358) -- Specifies the incremental load factor to be applied to the loads in
the domain

Displacement Control (page 358) -- Specifies the incremental displacement at a specified
DOF in the domain

Minimum Unbalanced Displacement Norm (page 359) -- Specifies the incremental load
factor such that the residual displacement norm in minimized

Arc Length (page 360) -- Specifies the incremental arc-length of the load-displacement path

Transient Integrators (page 356) -- determine the next time step for an analysis
including inertial effects

Newmark (page 361) -- The two parameter time-stepping method developed by Newmark

Hilbert-Hughes-Taylor (page 362) -- The three parameter Hilbert-Hughes-Taylor time-
stepping method

Chapter 2 28

Central Difference -- Approximates velocity and acceleration by centered finite differences of
displacement

Solution Algorithms (page 352) -- Iterate from the last time step to the current
Linear Algorithm -- Uses the solution at the first iteration and continues

Newton Algorithm (page 352) -- Uses the tangent at the current iteration to iterate to
convergence

Modified Newton Algorithm -- Uses the tangent at the first iteration to iterate to convergence
Newton with Line Search Algorithm

Krylov-Newton Algorithm

BFGS Algorithm

Broyden Algorithm

Convergence Tests (page 349) -- Accept the current state of the domain as
being on the converged solution path

Norm Unbalance -- Specifies a tolerance on the norm of the unbalanced load at the current
iteration

Norm Displacement Increment -- Specifies a tolerance on the norm of the displacement
increments at the current iteration

Energy Increment -- Specifies a tolerance on the inner product of the unbalanced load and
displacement increments at the current iteration

Relative Unbalance
Relative Displacement Increment
Relative Energy Increment

Constraint Handlers (page 339) -- Handle the constraints defined on the
domain

Plain Constraints (page 341) -- Removes constrained degrees of freedom from the system of
equations

Lagrange Multipliers (page 342) -- Uses the method of Lagrange multipliers to enforce
constraints

Penalty Method (page 341) -- Uses penalty numbers to enforce constraints

Transformation Method (page 343) -- Performs a condensation of constrained degrees of
freedom

Chapter 2 29

» analysis Command (page 363) -- defines what type of analysis is to be
performed

= Static Analysis (page 363) -- solves the KU=R problem, without the mass or damping
matrices.

= Transient Analysis (page 364) -- solves the time-dependent analysis. The time step in this
type of analysis is constant. The time step in the output is also constant.

= Variable Transient Analysis (page 365) -- performs the same analysis type as the Transient
Analysis object. The time step, however, is variable. This method is used when there are
convergence problems with the Transient Analysis object at a peak or when the time step is
too small. The time step in the output is also variable.

ModelBuilder Object

The model builder constructs As in any finite element analysis, the analyst's first step is to
subdivide the body being studied into elements and nodes, to define loads acting on the
elements and nodes, and to define constraints acting on the nodes.

The ModelBuilder is the object in the program responsible for building the following objects in the
model and adding them to the domain:
= Node (page 39)

= Mass (page 40)

= Material (page 175, page 47)

= Section (page 185)

= Element (page 213)

= LoadPattern (page 317)

= TimeSeries (page 311)

= Transformation (page 302)

= Block (page 295)

= Constraint (page 339)

Chapter 2 30

Domain Object

The Domain object is responsible for storing the objects created by the ModelBuilder (page 31)
object and for providing the Analysis (page 336) and Recorder (page 33) objects access to these

objects.

Figure 1: Domain
Object

Domain

| | | ? | | |

Elerment Mode MP_Constraing BF_Constraind (LoadFPattern TimeSeriey

?

I I |
hl aterial Elerrentalload | [Modalload| BEP_Constrain

Chapter 2 31

Recorder Object

The recorder object monitors user-defined parameters in the model during the analysis. This, for
example, could be the displacement history at a node in a transient analysis, or the entire state
of the model at each step of the solution procedure. Several Recorder (page 326) objects are
created by the analyst to monitor the analysis.

> What does a recorder do?

= Monitors the state of a domain component (node, element, etc.) during an analysis
= Writes this state to a file or to a database at selected intervals during the analysis
= There are also recorders for plotting and monitoring residuals

Once in a file, the information can be easily post-processed.

Analysis Object

The Analysis objects are responsible for performing the analysis. The analysis moves the model
along from state at time t to state at time t + dt. This may vary from a simple static (page 363)
linear analysis to a transient (page 364, page 365) non-linear analysis. In OpenSees each
Analysis object is composed of several component objects, which define the type of analysis
how the analysis is performed.

Analysis

? Salver

CHandler Mumberer Analysizhodel | | SolnAlgorithm Irtegrstar SystemOiEgn

D e P Sp

Pl =0 Tt Equ ksl &igo Sigticlvkq Etor BawdGe veral
P alty RCM Liear LgdCoitol BandsAD
L5 rEkge I Ik Dieg ree VAL TR R AT ey R iz DEpCoial FromesRD
Trakshm Jto INcediect & W b arclengty Sparre Ge el
Mewrbion Lines: anch MisUsbalD EpH om Umack
B oy » Sparse Symmet
BFGS TNk ptivteg Eor

FIyioun emiioy Newmark
HHT

Chapter 2 32

Figure 2: Analysis
Object

CHAPTER 3

Model-Building Objects

These objects are used to create the physical model.

In This Chapter

mModel ComMmMaNd.........ouuiiiieiieie e 37
Node ComMMANd.........uiiiiiiiie e 39
Mass Commandccooeivvueiiiiiiee e 40
constraints ObjecCtS...........uveiiiiiii 41
uniaxialMaterial Commandccceeeveiiieiieiiiieeees 47
nDMaterial Commandcoovveviiiiiiieieiieiee e, 175
section CommaNndcooovueiiiiiiiie e 185
element Command.........c.oeeiieiiiiiiiiii e 213
Soil Models and Solid-Fluid Fully Coupled Elements 264
block Commandoouiiiiiiie e 295
region ComMmaNd.........ccoeveiiiiiiiiiiieeee e 300
Geometric Transformation Command....................... 302
TIME SEIHES ... e 311

pattern Command............cccccuvereriniiiiiiiiiii, 317

34

CHAPTER 4

model Command

This command is used to construct a ModelBuilder object.

Currently there is only one type of ModelBuilder accepted.

For an example of this command, refer to the Model Building Example (page 389)

In This Chapter
Basic Model BUIlder.......c.veeeeeeeeeeeeeeeeeeeeeeeeeee, 37
build ComMmMAaNdcon e 38

Basic Model Builder

This command is used to construct the BasicBuilder object.

| model BasicBuilder -ndm $ndm <-ndf $ndf>

$ndm dimension of problem (1,2 or 3)
$ndf number of degrees of freedom at node (optional)
(default value depends on value of ndm:
ndm=1 -> ndf=1
ndm=2 -> ndf=3
ndm=3 -> ndf=6)

These additional commands allow for the construction of Nodes (page 39), Masses (page 40),
Materials (page 175, page 47), Sections (page 185), Elements (page 213), LoadPatterns (page
317), TimeSeries (page 311), Transformations (page 302), Blocks (page 295) and Constraints

(page 339). These additional commands are described in the subsequent chapters.

EXAMPLE:

Chapter 4 model Command

35

model basic -ndm 3 -ndf 6; # 3 spacial dimensions, 6 DOF's per node
For an example of this command, refer to the Model Building Example (page 389)

build Command

This command is used to invoke build() (???7?) on the ModelBuilder (page 31) object.

| build

This command has no effect a BasicBuilder (page 37) object, but will on other types of
ModelBuilder (page 31) objects.

36

CHAPTER 5

node Command

This command is used to construct a Node object. It assigns coordinates and masses to the
Node object.

| node $nodeTag (ndm $coords) <-mass (ndf $MassValues)>

$nodeTag integer tag identifying node
$coords nodal coordinates (ndm (page 37) arguments)
$MassValues nodal mass corresponding to each DOF (ndf (page 37)

arguments) (optional)

The optional -mass string allows analyst the option of associating nodal mass with the node

EXAMPLE:

node 1 0.0 0.0 0.0; # x,y,zcoordinates (0,0,0) of node 1

node 2 0.0 120. 0.0; # x,y,z coordinates (0,120,0) of node 2

For an example of this command, refer to the Model Building Example (page 389)

37

CHAPTER 6

mass Command

This command is used to set the mass at a node.

| mass $nodeTag (ndf $MassValues)

$nodeTag integer tag identifying the node associated with the mass

$MassValues mass values corresponding to each nodal degrees of freedom
(ndf (page 37) values)

EXAMPLE:
mass 2 2.50.0 2.50.00.0 0.0; # define mass in x and z coordinates
For an example of this command, refer to the Model Building Example (page 389)

38

CHAPTER 7

constraints objects

From Cook: " A constraint either prescribes the value of a DOF (as in imposing a support
condition) or prescribes a relationship among DOF. In common terminology, a single-point
constraint sets a single DOF to a known value (often zero) and a multi-point constraint imposes
a relationship between two or more DOF-.... For example, support conditions on a three-bar truss
invoke single-point constraints, while rigid links and rigid elements each invoke a multi-point
constraint."

In This Chapter
Single-Point Constraints.........cccocveiiiiiiiee e 41
Multi-Point Constraints ..., 44

Single-Point Constraints

The following commands construct homogeneous single-point boundary constraints.

fix Command

This command is used to construct homogeneous single-point boundary constraints.

| fix $nodeTag (ndf $ConstrValues)

$nodeTag integer tag identifying the node to be constrained

$ConstrValues constraint type (0 or 1). ndf (page 31) values are specified,
corresponding to the ndf degrees-of-freedom.

The two constraint types are:
0 unconstrained
1 constrained

EXAMPLE:
fix 111111 1; # node 1: fully fixed

Chapter 7 constraints objects 39

fix2010010-mass 2.50.0 2.50.0 0.0 0.0; # node 2: restrain axial elongation and
torsion, translational masses in x-z plane only

For an example of this command, refer to the Model Building Example (page 389)

fixX Command

This command is used to construct multiple homogeneous single-point boundary constraints for
all nodes whose x-coordinate lies within a specified distance from a specified coordinate.

| fixX $xCoordinate (ndf $ConstrValues) <-tol $tol>

For example, this command is used when specifying boundary conditions for a series of nodes
lying in a plane parallel to the y-z plane in global coordinates.

$xCoordinate x-coordinate of nodes to be constrained

$ConstrValues constraint type (0 or 1). ndf (page 31) values are specified,
corresponding to the ndf degrees-of-freedom.

The two constraint types are:
0 unconstrained
1 constrained
$tol user-defined tolerance (optional, default = 1e-10)

EXAMPLE:
fixX0.0111111-tol 0.1; # fully restrain all nodes in y-z plane at origin (x=0.0)

fixY Command

This command is used to construct multiple homogeneous single-point boundary constraints for
all nodes whose y-coordinate lies within a specified distance from a specified coordinate.

| fixY $yCoordinate (ndf $ConstrValues) <-tol $tol>

For example, this command is used when specifying boundary conditions for a series of nodes
lying in a plane parallel to the x-z plane in global coordinates.

Chapter 7 constraints objects 40

$yCoordinate y-coordinate of nodes to be constrained

$ConstrValues constraint type (0 or 1). ndf values are specified, corresponding
to the ndf (page 37) degrees-of-freedom.

The two constraint types are:
0 unconstrained
1 constrained
$tol user-defined tolerance (optional, default = 1e-10)

EXAMPLE:
fixY 0.0111111-tol 0.1; # fully restrain all nodes in x-z plane at origin (y=0.0)

fixZ Command

This command is used to construct multiple homogeneous single-point boundary constraints for
all nodes whose z-coordinate lies within a specified distance from a specified coordinate.

| fixZ $zCoordinate (ndf $ConstrValues) <-tol $tol>

For example, this command is used when specifying boundary conditions for a series of nodes
lying in a plane parallel to the x-y plane in global coordinates.

$zCoordinate z-coordinate of nodes to be constrained

$ConstrValues constraint type (0 or 1). ndf values are specified, corresponding
to the ndf (page 37) degrees-of-freedom.

The two constraint types are:
0 unconstrained
1 constrained
$tol user-defined tolerance (optional, default = 1e-10)

EXAMPLE:
fixZ0.0111111-tol 0.1; # fully restrain all nodes in x-y plane at origin (z=0.0)

Chapter 7 constraints objects 41

Multi-Point Constraints

The following commands construct multi-point boundary constraints.

equalDOF Command

This command is used to construct a multi-point constraint between nodes.

| equalDOF $rNodeTag $cNodeTag $dof1 $dof2 ...

$rNodeTag integer tag identifying the retained, or master node (rNode)
$cNodeTag integer tag identifying the constrained, or slave node (cNode)
$dof1 $dof2 ... nodal degrees-of-freedom that are constrained at the cNode to

be the same as those at the rNode

Valid range is from 1 through ndf (page 37), the number of
nodal degrees-of-freedom.

EXAMPLE:

equalDOF 23 135; #impose the traslational displacements in x and z directions,
and rotation about the y-axis of node 3 to be the same as those
of node 2.

rigidDiaphragm Command

This command is used to construct a number of Multi-Point Constraint (MP_Constraint) objects.
These objects will constraint certain degrees-of-freedom at the listed slave nodes to move as if
in a rigid plane with the master node.

rigidDiaphragm $perpDirn $masterNodeTag $slaveNodeTag1 $slaveNodeTag2

Chapter 7 constraints objects 42

$perpDirn direction perpendicular to the rigid plane (i.e. direction 3
corresponds to the 1-2 plane)

The rigid plane can be the 1-2, 1-3 or 2-3 plane

$masterNodeTag integer tag identifying the master node
$slaveNodeTag1 nodes that are to be constrained to the master node
$slaveNodeTag?2 ...

NOTE: The constraint object is constructed assuming small rotations.

NOTE: The rigidDiaphragm command works only for problems in three dimensions with six-
degrees-of-freedom at the nodes (ndf (page 37) = 6).

EXAMPLE:
rigidDiaphragm 22 4 5 6; constrain nodes 4,5,6 to move as if in the same x-z plane as node
2.

rigidLink Command

This command is used to construct a single MP_Constraint object.

| rigidLink $type $masterNodeTag $slaveNodeTag

$type string-based argument for rigid-link type:

rod only the translational degree-of-freedom will be
constrained to be exactly the same as those at
the master node

beam both the translational and rotational degrees of
freedom are constrained.

$masterNodeTag integer tag identifying the master node

$slaveNodeTag integer tag identifying the slave node to be constrained to
master node

NOTE: The constraint object constructed for the beam option assumes small rotations

EXAMPLE:
rigidLink beam 2 3; # connect node 3 to node 2 via a rigid link-beam.

43

CHAPTER 8

uniaxialMaterial Command

This command is used to construct a UniaxialMaterial object which represents uniaxial stress-
strain (or force-deformation) relationships.

The valid queries to any uniaxial material when creating an ElementRecorder (page 330) are
'strain,' 'stress,' and 'tangent.’

In This Chapter

-- Contributed Uniaxial Materialscccccccoeviunnneeee. 48
Elastic Material...........cccovvieeiiiiiicce e, 131
Elastic-Perfectly Plastic Material...........cccccoevveeeee. 132
Elastic-Perfectly Plastic Gap Material....................... 134
Elastic-No Tension Material..........cccccceeeeiiiiiiiennnnnnnn. 136
Parallel Material..........ccccoceeeiiiiiiiiicce e, 137
Series Materialcooooeiiiiiiiiiiie e, 138
Hardening Material ..o, 140
Concrete01 Material -- Zero Tensile Strength........... 141

Concrete02 Material -- Linear Tension Softening...... 145
Concrete03 Material -- Nonlinear Tension Softening152

Steel01 Materialceeeviiiiiiiii e 157
Steel02 Material -- Giuffré-Menegotto-Pinto Model with Isotropic
Strain Hardeningceeveeiiiiiiiie 165
Hysteretic Material...........cccooiiiiiiieen 170

Viscous Materialcoveeeeeeeee e 173

44

CHAPTER 9

-- Contributed Uniaxial Materials

These additional materials are contributions to OpenSees and should be available in the latest
executable.

If you have questions about these objects, please do contact the individual authors directly.

In This Chapter

BARSLIP Materialccooveeiiiiiiiiiieieeee e 48
Bond_SPO01 - - Strain Penetration Model for Fully Anchored Steel
Reinforcing Bars..........coooviiiii 50
Concrete04 Material -- Popovics Concrete Material.. 61

Fatigue Material...........cooiiiiii s 65

Limit State Material..............euveeiiiiieiiiiiiiiiiiiiiiiiiieiennns 77
PINCHING4 Materialcccovveeeeieeiiiiiiiiieeee e 88

PyTzQz Uniaxial Materialsccccccooiiiiiiieeiiinnnnns 109
Reinforcing Steel Materialcccooiiiiiiiieinnnns 117

BARSLIP Material

Contact Author:

This command is used to construct a uniaxial material that simulates the bar force versus slip
response of a reinforcing bar anchored in a beam-column joint. The model exhibits degradation
under cyclic loading. Cyclic degradation of strength and stiffness occurs in three ways: unloading
stiffness degradation, reloading stiffness degradation, strength degradation.

uniaxialMaterial BarSlip $matTag $fc $fy $Es $fu $SEh $db $id $nb $depth
$height <$ancLratio> $bsFlag $type <$damage $unit>

$matTag unique material object integer tag

$fc positive floating point value defining the compressive strength of
the concrete in which the reinforcing bar is anchored

Chapter 9 -- Contributed Uniaxial Materials 45

$ty
$Es
$fu
$Eh
$id

$db
$nb
$depth

$height

$ancLratio

$bsFlag
$type

$damage

$unit

NOTE:

Model Characteristics:

positive floating point value defining the yield strength of the
reinforcing steel

floating point value defining the modulus of elasticity of the
reinforcing steel

positive floating point value defining the ultimate strength of the
reinforcing steel

floating point value defining the hardening modulus of the
reinforcing steel

floating point value defining the development length of the
reinforcing steel

point value defining the diameter of reinforcing steel
an integer defining the number of anchored bars

floating point value defining the dimension of the member (beam
or column) perpendicular to the dimension of the plane of the

paper
floating point value defining the height of the flexural member,

perpendicular to direction in which the reinforcing steel is
placed, but in the plane of the paper

floating point value defining the ratio of anchorage length used
for the reinforcing bar to the dimension of the joint in the
direction of the reinforcing bar (optional, default: 1.0)

string indicating relative bond strength for the anchored
reinforcing bar (options: "Strong" or "Weak")

string indicating where the reinforcing bar is placed. (options:
"beamtop”, “beambot” or "column")

string indicating whether there is full damage in the material or
no damage (optional, options: “Damage”, “NoDamage” ; default:
Damage)

string indicating the type of unit system used (optional, options:
“psi”, “MPa”, “Pa”, “psf”, “ksi”, “ksf”) (default: “psi” / “MPa”)*

Chapter 9 -- Contributed Uniaxial Materials 46

The uniaxial material model uses the Pinching4 material (page 88) model (Ref. Pinching4
material model). The response envelope for the bar-slip springs does not represent strength
deterioration, but once the slip demand exceeds 3mm (0.12 in), strength deterioration due to
cyclic loading initiates. As a result the bond-slip springs always exhibit positive stiffness, but
strength deterioration upon reloading to a previously observed slip demand. Reloading and
Unloading Stiffness deterioration are also simulated.

The damage index for unloading and reloading stiffness degradation is evaluated the same say
as the Pinching4 material (ref. Pinching4 material doc.) but the index for strength degradation

J is specified as
§ =(gF1-(d_)+ gF3)< gFLim

With degradation model parameters gF*. It should be noted in here that the deterioration
parameters for unloading, reloading stiffness and strength degradation cannot be modified by
the user and are defined to represent observed behavior.

*NOTE: The model includes predefined bond strengths, so there is the necessity to include in
Units in this material model. For default one can specify units in psi (i.e. pounds/inch?) or in MPa
(i.e. N/'mm?). The code detects units in psi if the compressive strength of concrete is greater than
1000 otherwise it takes it as MPa system. The optional variable $unit will help the user to specify
other different types of unit systems according to one’s choice, but currently it is limited to the
unit systems as specified above. The user should also take care to specify the units of length in
the corresponding matching units. (note: Pa = N/m?; ksf = kilo-pound/ft?)

Bond_SPO01 - - Strain Penetration Model for Fully Anchored Steel
Reinforcing Bars

URL: http://www.uwm.edu/~jzhao/Bond_SP01_pages/Bond_index.html
http://www.uwm.edu/~jzhao/Bond_SP01_pages/Bond_index.html

Contact Authors: Jian Zhao, University of Wisconsin, Milwakee [jzhao@uwm.edu]
Sri Sritharan, lowa State University [sri@iastate.edu]

Chapter 9 -- Contributed Uniaxial Materials 47

This command is used to construct a uniaxial material object for capturing strain penetration
effects at the column-to-footing, column-to-bridge bent caps, and wall-to-footing intersections. In
these cases, the bond slip associated with strain penetration typically occurs along a portion of
the anchorage length. This model can also be applied to the beam end regions, where the strain
penetration may include slippage of the bar along the entire anchorage length, but the model
parameters should be chosen appropriately.

uniaxialMaterial Bond_SP01 $matTag $Fy $Sy $Fu $Su $b $R

This model is for fully anchored steel reinforcement bars that experience bond slip along a
portion of the anchorage length due to strain penetration effects, which are usually the case for
column and wall longitudinal bars anchored into footings or bridge joints

$matTag Unique material object integer tag
$Fy Yield strength of the reinforcement steel
$Sy Rebar slip at member interface under yield stress and may be

obtained from

d (ll’l) $Fy(pSl) N alpha .
$Sy(in) = (3000 Y7 (e (2 alphaH)] +0.013(in)

or

$F alpha
$Smm=25 {”4’(’"’@ Al phal)r 34

8437f' (MP)tz

d.: rebar diameter
$Fy: yield strength of the reinforcement steel

f.': concrete compressive strength of the adjoining connection
member

alpha: parameter used in the local bond-slip relation and can be
taken as 0.4 in accordance with CEB-FIP Model Code 90

$Fu Ultimate strength of the reinforcement steel

$Su Rebar slip at the loaded end at the bar fracture strength

$Su =(30~40*3$Sy

Chapter 9 -- Contributed Uniaxial Materials 48

$b Initial hardening ratio in the monotonic slip vs. bar stress
response (0.3~0.5)
$R Pinching factor for the cyclic slip vs. bar response (0.5~1.0)
NOTE:
% A
e
$Fu
SbK/
$Fy}-——

$Sy $Su slii)

Chapter 9

-- Contributed Uniaxial Materials

49

Figure 1: Monotonic bar stress vs. slip response as modelled in Bond_SP01

stress

Figure 2: Cyclic bar stress vs. slip response as modelled in Bond_SPO01

80 —

N
(e}
\

Bar stress (ksi)
o

A
S
\

-0.2

0
Loaded-end slip (in)

0.6

Chapter 9 -- Contributed Uniaxial Materials 50

Figure 3: Pinching effect represented by $R in Bond_SP01

Model background:

Capturing the structural response and associated damage require accurate modeling of
localized inelastic deformations occurring at the member end regions as identified by shaded
areas in Figure 4. These member end deformations consist of two components: 1) the flexural
deformation that causes inelastic strains in the longitudinal bars and concrete, and 2) the
member end rotation, as indicated by arrows in Figure 4, due to reinforcement slip. The slip
considered here is the result of strain penetration along a portion of the fully anchored bars into
the adjoining concrete members (e.g., footings and joints) during the elastic and inelastic
response of a structure. Ignoring the strain penetration component may appear to produce
satisfactory force-displacement response of the structural system by compromising strain
penetration effects with greater contribution of the flexural action at a given lateral load.
However, this approach will appreciably overestimate the strains and section curvatures in the
critical inelastic regions of the member, and thereby overestimate the structural damage.

m) T
3] N\

M

Building frame Bridge bent Structural wall

Figure 4: Expected inelastic regions at the column and wall ends

Chapter 9 -- Contributed Uniaxial Materials 51

The zero-length section element available in OpenSees may be used to accurately model the
strain penetration effects (or the fixed end rotations shown in Figure 4). Zero-length section
elements have been generally used for section analyses to calculate the moment corresponding
to a given curvature. To model the fixed-end rotation, the zero-length section element should be
placed at the intersection between the flexural member and an adjoining member representing a
footing or joint as shown in Figure 5. A duplicate node is also required between a fiber-based
beam-column element and the adjoining concrete element as shown in Figure 5. The
translational degree-of-freedom of this new node (i.e., node j in Figure 5) should be constrained
to the other node (i.e., node i in Figure 5) to prevent sliding of the beam-column element under
lateral loads because the shear resistance is not included in the zero-length section element.

Ay

Node k T
Sec.n
beam-
column)
element)
Sec. 2
zero-length Se€c:1 / |

v
0

section Node j ‘
element Node i . $

Figure 5: Adding a zero-length section element to a beam-column element

The zero-length section element in OpenSees is assumed to have a unit length such that the
element deformations (i.e., elongation and rotation) are equal to the section deformations (i.e.,
axial strain and curvature). The material model for the steel fibers in the zero-length section
element represents the bar slip instead of strain for a given bar stress. The uniaxial material
model Bond_SPO01 is developed for steel fibers in the zero-length section elements.

Note on Material Model for Concrete Fibers

Chapter 9 -- Contributed Uniaxial Materials 52

Similar to the model proposed for the steel fibers, a material model describing the monotonic
response and hysteretic rules is also required for the concrete fibers. The combination of using
the zero-length section element and enforcing the plane section assumption at the end of a
flexural member impose high deformations to the extreme concrete fibers in the zero-length
element. These deformations would likely correspond to concrete compressive strains
significantly greater than the strain capacity stipulated by typical confined concrete models. Such
high compressive strains at the end of flexural members are possible because of additional
confinement effects expected from the adjoining members and because of complex localized
deformation at the member end. Without further proof, it is suggested that the concrete fibers in
the zero-length section element follow a concrete model in OpenSees (e.g., Concrete02). To
accommodate the large deformations expected to the extreme concrete fibers in the zero-length
element, this concrete model may be assumed to follow a perfectly plastic behavior once the
concrete strength reduces to 80% of the confined compressive strength. A parametric study has
indicated that the simulation results would not be very sensitive to the compressive strain
chosen to trigger the perfectly plastic behavior for the concrete fibers in the zero-length section
element.

Reference:

Zhao, J., and S. Sritharan. Modeling of strain penetration effects in fiber-based analysis of
reinforced concrete structures. ACI Structural Journal. (Accepted for publication in 2006).

example ss_ic1.tcl

bridge T-joint

Units: kips, in.

Pushover analysis multiple dispBeamColumn with strain penetration
modeling the circular RC column in a bridge T-joint tested by

Sri Sritharan

"Seismic response of column/cap beam tee connections
with cap beam prestressing" Ph.D. thesis, UCSD

Create ModelBuilder (with two dimensions and 2 DOF/node)
model basic -ndm 2 -ndf 3

Create nodes

tag X Y

node 1 0.0 -48.0
node 2 0.0 -30.0
node 3 0.0 -12.0
node 4 0.0 0.0
node 5 0.0 12.0
node 6 0.0 30.0
node 7 0.0 48.0
node 8 12.0 0.0
node 9 19.0 0.0
node 10 40.0 0.0
node 11 61.5 0.0
node 12 84.0 0.0

node 13 12.0 0.0

Chapter 9 -- Contributed Uniaxial Materials 53

Fix supports at base of column

TagDX DY Rz

fix 1 1 A 0

fix 7 1 0 0

#equalDOF $rNodeTag $cNodeTag $dofl1 $dof2

equalDOF 8 13 2

Define materials for nonlinear columns

##column Core CONCRETE tag f'c ec0 f'cu ecu

uniaxialMaterial Concrete01 1 -6.38 -0.004 -5.11 -0.014

uniaxialMaterial Concrete01 200 -6.38 -0.004 -5.11 -0.014

##column Cover CONCRETE tag f'c ec0 f'cu ecu

uniaxialMaterial Concrete01 2 -4.56 -0.002 0.0 -0.006

##column stub CONCRETE tag E

uniaxialMaterial Elastic 3 2280

##beam CONCRETE tag f'c ec0 f'cu
ecu

uniaxialMaterial Concrete01 4 -5.76 -0.002 0.0 -0.006

STEEL rebar

##STEELO2 tag $Fy $E $b $RO
$cR1 $cR2 $at $a2 $a3 $a4d

uniaxialMaterial Steel02 5 65.0 29000 0.02 18.5 0.925 0.15
0.041.0 0.04 1.0

uniaxialMaterial Steel02 6 62.8 29000 0.02 18.5 0.925 0.15
0.001.0 0.00 1.0

uniaxialMaterial Elastic 7 29000

#uniaxialMaterial StrPen01 $Tag $Psy $fy $su $fu $Kz $R
$Cd $db $fc $la

uniaxialMaterial StrPen01 400 0.02 65 0.7 97.5 0.50 0.7
0.0 1.0 4.35 25.0

Define cross-section for nonlinear column

set colDia 24; # bending in this direction (local and global y)

set cover 1.38;

set bcent 1.81; # [expr $cover+0.197+0.5]

set As 0.60; # Area of no. 7 bar

set R [expr $colDia/2.0]

set Rc [expr $colDia/2.0-$cover]

set Rb [expr $colDia/2.0-$bcent]

section Fiber 1 {
core concrete fibers
patch circ 1 70 22 0.0 0.0 0.0 $Rc 0.0 360.0
concrete cover fibers
patch circ 2 70 2 0.0 0.0 $Rc $R 0.0 360.0
reinforcing fibers
layer circ 5 14 $As 0.0 0.0 $Rb -90.0 2443

section Fiber 2 {
core concrete fibers
patch circ 3 70 22 0.0 0.0 0.0 $Rc 0.0 360.0
concrete cover fibers
patch circ 3 70 2 0.0 0.0 $Rc $R 0.0 360.0
reinforcing fibers
layer circ 5 14 $As 0.0 0.0 $Rb -90.0 2443

Chapter 9 -- Contributed Uniaxial Materials 54
section Fiber 5 {
core concrete fibers
patch circ 200 70 22 0.0 0.0 0.0 $Rc 0.0 360.0
concrete cover fibers
patch circ 2 70 2 0.0 0.0 $Rc $R 0.0 360.0
reinforcing fibers
layer circ 400 14 $As 0.0 0.0 $Rb -90.0 2443
}
Define cross-section for nonlinear cap beam
set bmw 27; # bending in this direction (local and global y)
set bmh 24; # bending in this direction (local and global y)
set cover 1.38;
set bcent 1.81; # [expr $cover+0.197+0.5]
set aw [expr $bmw/2.0]
set ac [expr $bmw/2.0-$cover]
set ab [expr $bmw/2.0-$bcent]
set bw [expr $bmh/2.0]
set bc [expr $bmh/2.0-$cover]
set bb [expr $bmh/2.0-$bcent]
section Fiber 3 {
concrete fibers
patch quad 4 48 1 -$bw -$aw $bw -faw $bw $aw -$bw $aw
reinforcing fibers
layer straight 6 7 $As -$bb $ab -$bb -$ab
layer straight 6 7 $As $bb $ab $bb -$ab
}
Define column elements
Geometry of coloumn elements
geomTransf Linear 1
Number of integration points along length of element
setnp 5
Create the columns using displacement controlled beam-column elements
tag ndl ndJ nsecs seclD transfTag
element dispBeamColumn 1 1 2 $np 3 1
element dispBeamColumn 2 2 3 $np 3 1
element dispBeamColumn 3 3 4 $np 3 1
element dispBeamColumn 4 4 5 $np 3 1
element dispBeamColumn 5 5 6 $np 3 1
element dispBeamColumn 6 6 7 $np 3 1
element dispBeamColumn 7 4 8 $np 2 1
element dispBeamColumn 8 13 9 $np 1 1
element dispBeamColumn 9 9 10 $np 1 1
element dispBeamColumn 10 10 11 $np 1 1
element dispBeamColumn 11 11 12 $np 1 1
zerolLengthSection tag ndl ndJ seclD
element zeroLengthSection 12 8 13 5)

Set up and perform analysis

Create recorders

recorder Node -file topdispac.out -time -node 12 -dof 2 disp
recorder Node -file rot4ac.out -time -node 4 -dof 3 disp
recorder Node -file rot8ac.out -time -node 8 -dof 3 disp
recorder Drift drift84ac.out 4 8 2 1

recorder Drift curvatureac.out 8 9 3 1

Chapter 9 -- Contributed Uniaxial Materials

55

recorder Drift curvatureac1.out 139 3 1

recorder Element -file secstrspac.out -time -ele 8 section 5 fiber -$Rb 0 5 stressStrain
recorder Element -file secstrsnac.out -time -ele 8 section 5 fiber $Rb 0 5 stressStrain
recorder Element -file secstrcac.out -time -ele 8 section 5 fiber $Rc 0 1 stressStrain
recorder plot topdispac.out Node12_Ydisp 10 10 300 300 -columns 2 1

set P -90.0

pattern Plain 1 "Constant” {
load 12 $P 0.0 0.0

}

Define analysis parameters
integrator LoadControl 0
system SparseGeneral -piv
test NormDisplncr 1.0e-4 2000
numberer Plain

constraints Plain

algorithm KrylovNewton
analysis Static

Do one analysis for constant axial load
analyze 1

Define reference force
pattern Plain 2 "Linear" {

load 12 0.0 1.0 0.0
}

set dU1 -0.02
set dU2 0.02

Perform the analysis

integrator DisplacementControl 12 2 $dU1
analyze 33

integrator DisplacementControl 12 2 $dU2
analyze 65

integrator DisplacementControl 12 2 $dU1
analyze 32

integrator DisplacementControl 12 2 $dU1
analyze 67

integrator DisplacementControl 12 2 $dU2
analyze 134

integrator DisplacementControl 12 2 $dU1
analyze 67

integrator DisplacementControl 12 2 $dU1
analyze 101
integrator DisplacementControl 12 2 $dU2
analyze 202
integrator DisplacementControl 12 2 $dU1
analyze 101

integrator DisplacementControl 12 2 $dU1
analyze 135
integrator DisplacementControl 12 2 $dU2
analyze 270
integrator DisplacementControl 12 2 $dU1
analyze 135

Chapter 9

-- Contributed Uniaxial Materials

56

integrator DisplacementControl 12 2 $dU1
analyze 202
integrator DisplacementControl 12 2 $dU2
analyze 404
integrator DisplacementControl 12 2 $dU1
analyze 202

materialmodels.tcl

load pattern test

Jian Zhao, lowa State University
June 20, 2004

R Create Model (2-D 3dof problem-plane truss)
model basic -ndm 2 -ndf 3

Create nodes
tag X Y
node 1 0.0 0.0
node 2 1.0 0.0
node 3 1.0 1.0

Fix supports at node 1

Tag DX DY R
fix 1 1 A1 1
fix 2 0 1 1
fix 3 0 0 1

Define faked material

unconfined CONCRETE tag

uniaxialMaterial Concrete01 1 -4.5

confined CONCRETE tag f'c ec0

uniaxialMaterial Concrete01 2 -6.0

unconfined CONCRETE tag
ratioft et0 ft0 beta

uniaxialMaterial Concrete03 3 -6.0
0.1 2.5 0.0025

STEELO2 tag $Fy
$al $a2 $a3 $a4

uniaxialMaterial Steel02 4 68.1
0.041.0 0.04 1.0

#uniaxialMaterial StrPen01 tag $sy
$Cd $db $fc $la

uniaxialMaterial StrPen01 5 0.022
0.0 1.0 4.35 25.0

setmat5

Define truss element

tag inode jnode A

element truss 1 2
3
3

—_

element truss 2 1
element truss 3 2
e DONE Create Model

R Create Analysis
Create displacement command recorders
recorder Node -file

f'c
-0.002
-0.004
f'c

etu
-0.004
$E

29000

Mattag

ecO
f'cu
-5.0
ecO

$fy

60

$mat
$mat
$mat

commanddisp.out-time

-0.006
ecu
-0.014
-0.014
$b
0.010
$su

0.77

-node

f'cu

feu
0.5
$Ro
22
$fu
90

2

ecu

ecu
0.45
$cR1
0.925
$Kz

0.5

-dof

0.0015
$cR2
0.15
$R

0.65

Chapter 9 -- Contributed Uniaxial Materials 57

disp
Create reaction force recorders (for checking material models)
recorder Element -file reaction.out -time -ele 1 axialForce

pattern Plain 1 "Series -dt 0.01 -filePath cycload.txt" {
sp211
}

integrator LoadControl .01
system SparseGeneral -piv

test NormUnbalance 1.0e-6 100
numberer Plain

constraints Transformation
algorithm Newton

analysis Static

set numincr 310
analyze $numincr

wipe

Concrete04 Material -- Popovics Concrete
Material

Contact Authors: Laura Lowes: http://www.ce.washington.edu/~lowes/
Michael Berry: mpberry@u.washington.edu

This command is used to construct a uniaxial Popovics concrete material object with degraded
linear unloading/reloading stiffness according to the work of Karsan-Jirsa and tensile strength
with exponential decay.

| uniaxialMaterial Concrete04 $matTag $fc $ec $Secu $Ec <$ft $et> <$beta>

$matTag unique material object integer tag

$fc floating point values defining concrete compressive strength at
28 days (compression is negative)*

$ec floating point values defining concrete strain at maximum
strength*

$ecu floating point values defining concrete strain at crushing
strength*

$Ec floating point values defining initial stiffness**

$fct floating point value defining the maximum tensile strength of

concrete

Chapter 9 -- Contributed Uniaxial Materials 58

$et floating point value defining ultimate tensile strain of concrete

$beta floating point value defining the exponential curve parameter to
define the residual stress (as a factor of $ft) at $etu

*NOTE: Compressive concrete parameters should be input as negative values.
**NOTE: The envelope of the compressive stress-strain response is defined using the model

57000,/|f
proposed by Popovics (1973). If the user defines Ec = \/m (in psi) then the envelope curve
is identical to proposed by Mander et al. (1988).

Model Characteristic:

For loading in compression, the envelope to the stress-strain curve follows the model
proposed by Popovics (1973) until the concrete crushing strength is achieved and also for
strains beyond that corresponding to the crushing strength.

’ gci n
o)
‘ n—l+(8€ij
gc

where subscript i refer to the stress/strain at any load step. For unloading and reloading in
compression, the Karsan-Jirsa model (1969) is used to determine the slope of the curve. For
tensile loading, an exponential curve is used to define the envelope to the stress-strain curve:

A

£—

oms(22)

where 'Bmultiplier refers to the stress at ultimate tensile strain, generally the value considered is
0.1.

For unloading and reloading in tensile, the secant stiffness is used to define the path.

Chapter 9

-- Contributed Uniaxial Materials

59

The following figures show example stress-strain histories generated using the model.

stress

stress

stress

Tensile response

0.4
0.2 i
0 — -
0 0.5 1 1.5
strain %10
Compressive response
3 ; ‘
2 4
1 i
0
0 8
strain X 1073
Tensile-Compressive response
3
2 4
1 4
O 4
-1 L L L L
-2 0 2 4 6 8
strain 3

x 10

0.01

0.005

x 10 cyclic tension

0 500 1000 1500 2000
cyclic compression

0 200 400 600 800 1000

x 10° cyclic tension-compression

0 200 400 600 800 1000 1200

Chapter 9 -- Contributed Uniaxial Materials 60

cyclic tension compression response envelope
3 T RO ekt T T T

stress (ksi)

0.5+

_05 L L L L L L L
-1

strain « 10_3

Reference:

Mander, J. B., Priestley, M. J. N., and Park, R. (1988). "Theoretical stress-strain model for
confined concrete." Journal of Structural Engineering ASCE, 114(8), 1804-1825.

Popovics, S. (1973). " A numerical approach to the complete stress strain curve for concrete.”
Cement and concrete research, 3(5), 583-599.

Karsan, I. D., and Jirsa, J. O. (1969). "Behavior of concrete under compressive loading." Journal
of Structural Division ASCE, 95(ST12).

61

CHAPTER 10

Concrete04 -- Material Behavior

Each material was subjected to a series of ten uniaxial tension and compression strain histories.
The following is the response of this material to such strain excursions. The data shown are the
normalized stresses versus strain. In the normalization, the steel stress was divided by the yield
stress Fy and the concrete stress was divided by the absolute value of compressive strength fc -
- to maintain positive tension and negative compression. The first figure shows all 10 load
patterns together, which are subsequently shown individually.

Fatigue Material
Author: Patxi Uriz

Contact Information: Exponent - Failure Analysis Associates
149 Commonwealth Drive Menlo Park, CA 94025
patxi@exponent.com

The fatigue material uses a modified rainflow cycle counting algorithm to accumulate damage in
a material using Miner’s Rule. Element stress/strain relationships become zero when fatigue life
is exhausted.

uniaxialMaterial Fatigue $matTag $tag <-E0 $EO0> <-m $m>
<-min $min> <-max $max>

This material model accounts for the effects of low cycle fatigue. A modified rainflow cycle
counter has been implemented to track strain amplitudes. This cycle counter is used in concert
with a linear strain accumulation model (i.e. Miner’s Rule), based on Coffin-Manson log-log
relationships describing low cycle fatigue failure. This material “wraps” around another material
and does not influence the stress-strain (or force-deformation) relationship of the parent
material.

Once the Fatigue material model reaches a damage level of 1.0, the force (or stress) of the
parent material becomes zero (1.0x10° times the call to the material). If failure is triggered in
compression, the material stress is dropped at the next zero-force crossing (i.e. compression
force never “drops” to zero).

The Fatigue material assumes that each point is the last point of the history, and tracks damage
with this assumption. If failure is not triggered, this pseudo-peak is discarded.

Chapter 10 Concrete04 -- Material Behavior 62

The material also has the ability to trigger failure based on a maximum or minimum strain (i.e.
not related to fatigue). The default for these values is set to very large numbers.

The default values are calibrated parameters from low cycle fatigue tests of European steel
sections Ballio and Castiglioni (1995), for more information about how material was calibrated,
the user is directed to Uriz (2005).

$matTag unique material object integer tag

$tag Unique material object integer tag for the material that is being
“wrapped”

$EO Value of strain at which one cycle will cause failure (default
0.191)

$m Slope of Coffin-Manson curve in log-log space (default -0.458)

$min Global minimum value for strain or deformation (default -1e16)

$max Global maximum value for strain or deformation (default 1e16)

Example Command:
Example command: uniaxialMaterial Fatigue 2 1 -E0 0.191 -m -0.458

where 2 is the Fatigue material tag, and 1 is the material that is being wrapped, the -E0 and -m
values | have listed here are the default values.

Valid recorder objects for the material are ‘stress’,’'tangent’, ‘strain’, ‘stressStrain’, and ‘damage’.
The stress, strain, and tangent recorder options must be available in the material that you are
wrapping.

Chapter 10 FatigueMaterialExample.tcl 63

FatigueMaterialExample.tcl

Chapter 10 FatigueMaterialExample.tcl 64

Run an example script to test the fatigue material model

Define model and loads
model BasicBuilder -ndm 2 -ndf 2
node 1 0.0 0.0
node 2 0.0 0.0
fix 1 11
fix2 01
uniaxialMaterial Steel01 1 60.0 29800.0 0.003
uniaxialMaterial Fatigue 2 1
element zeroLength 1 1 2 -mat 2 -dir 1
pattern Plain 1 "Linear" {
nd FX
load2 1.00.00.0

Recorders
recorder Element -file "Damage.out" -time -ele 1 material 1 damage
recorder Element -file "StressStrain.out" \

-time -ele 1 material 1 stressANDstrain

Set analysis parameters
test Energylncr 1.0e-8 200 0
algorithm Newton

system UmfPack

numberer RCM

constraints Plain

analysis Static

Source the displacement history, and initialize analysis parameters
#source RandomStrainHstory1.tcl

source RandomStrainHstory2.tcl

set LoopLength [array size disp]

seth 1

set controlNode 2

set currentDisp [nodeDisp $controlNode 1]

puts [format " \n STARTING DISPLACEMENT = %5.3f \n" $currentDisp]

Chapter 10

FatigueMaterialExample.tcl

65

Strain

Lramage

1.5 T T T T T T T
1 -
(IR
0 1 | | | | |
u] 5 10 15 20 25 20 25
Cycle
Fandom Strain Historny
|:|1 T T T T T T T
0.05
u]
-0.05 -
0. 1 1 1 1 1 1 1
u] 4] 10 15 20 25 20 25
Cycle

Accumulated Damage

Figure 1. DamageExample1.jpg

Chapter 10

FatigueMaterialExample.tcl

66

Strain

Lramage

1.5 T T T T T T
1 -
(IR
0 1 | | | | |
u] 10 15 20 25 20 25
Cycle
Fandom Strain Historny
|:|1 T T T T T T
0.05
u]
-0.05 -
0. 1 1 1 1 1 1
u] 10 15 20 25 20 25
Cycle

Accumulated Damage

Figure 2. DamageExample2.jpg

Chapter 10 FatigueMaterialExample.tcl 67

RandomStrainHistory1.tcl

Chapter 10 FatigueMaterialExample.tcl

68

-0.0110
-0.0106
-0.0129
-0.0089
.0113
-0.0069
set disp(7) -0.0079
set disp(8) 0.0020
-0.0118
-0.0057
-0.0180
-0.0097
-0.0195
-0.0152
-0.0321
-0.0281
-0.0323
-0.0145
-0.0179
-0.0098
-0.0297
-0.0219
-0.0304
-0.0172
-0.0199
-0.0175
-0.0261
-0.0201
-0.0243
-0.0089
-0.0092
0.0047
-0.0104
0.0087
0.0048

set disp(1
set disp(2
set disp(3
set disp(4
set disp(5
set disp(6

set disp(9
set disp
set disp
set disp
set disp
set disp
set disp
set disp
set disp

)
)
)
)
) -0
)
)
)
)
0
1
2
3
4
5
6
7
set disp(18
9

1
1
1
1
1
1
1
1
1
1

set disp(20
set disp(21
set disp(22
set disp(23
set disp(24
set disp(25
set disp(26
set disp(27
set disp(28
set disp(29
set disp(30
set disp(31
set disp(32
set disp(33
set disp(34
set disp(35
set disp(36) 0.0059
set dlsp 37) 0.0022

o om v o~ o~ o~ —

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
set disp(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

~— e O O~ e v~ e . e o~ e — o s s o o s o e~~~ ~—

Chapter 10 FatigueMaterialExample.tcl 69

Chapter 10 FatigueMaterialExample.tcl 70

RandomStrainHistory2.tcl

Chapter 10 FatigueMaterialExample.tcl

71

set disp(1) -0.0058
set disp(2) 0.0028
-0.0043
-0.0040
-0.0088
-0.0048
set disp(7) -0.0057
set disp(8) 0.0120
set disp(9) 0.0077
) 0.0138
) 0.0056
) 0.0125
) 0.0019
) 0.0036
) -0.0053
) 0.0028
) -0.0011
) 0.0084
) 0.0024
) 0.0154
) 0.0078
) 0.0123
set disp(23) -0.0006
set disp(24) 0.0022
)
)
)
)
)
)
)
)
)
)
)
)
)

set disp(3
set disp(4
set disp(5
set disp(6

set disp
set disp
set disp
set disp
set disp
set disp
set disp
set disp

)
)
)
)
)
)
)
)
)
0
1
2
3
4
5
6
7
set disp(18
9

1
1
1
1
1
1
1
1
1
1

set disp(20
set disp(21
set disp(22

-0.0022
0.0027
0.0012
0.0033
-0.0059
0.0058
-0.0081
0.0005
-0.0092
-0.0024
-0.0066

set disp(25
set disp(26
set disp(27
set disp(28
set disp(29
set disp(30
set disp(31
set disp(32
set disp(33
set disp(34
set disp(35
set disp(36) -0.0042
set dlsp 37) -0.0094

e oy v o~ o~ o~ o~

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
set disp(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

Chapter 10 FatigueMaterialExample.tcl 72

References

Uriz, Patxi (2005) “Towards Earthquake Resistant Design of Concentrically Braced Steel
Structures,” Doctoral Dissertation, Structural Engineering, Mechanics, and Materials,
Department of Civil and Environmental Engineering, University of California, Berkeley,
December 2005

Ballio, G., and Castiglioni, C. A. (1995). "A Unified Approach for the Design of Steel Structures
under Low and/or High Cycle Fatigue." Journal of Constructional Steel Research, 34, 75-101.

73

CHAPTER 11

Limit State Material

Contact Author: Ken Elwood:
http://www.civil.ubc.ca/faculty/KElwood/KElwood.html

This command is used to construct a uniaxial hysteretic material object with pinching of force
and deformation, damage due to ductility and energy, and degraded unloading stiffness based
on ductility. Failure of the material is defined by the associated limit curve.

uniaxialMaterial LimitState $matTag $s1p $el1p $s2p $e2p $s3p $e3p $s1n $e1n
$s2n $e2n $s3n $e3n $pinchX $pinchY
$damage1 $damage2 $beta $curveTag $curveType.

$matTag unique material object integer tag

$s1p $elp stress and strain (or force & deformation) at first point of
the envelope in the positive direction

$s2p $e2p stress and strain (or force & deformation) at second point
of the envelope in the positive direction

$s3p $e3p stress and strain (or force & deformation) at third point of
the envelope in the positive direction (optional)

$s1n $eln stress and strain (or force & deformation) at first point of
the envelope in the negative direction*

$s2n $e2n stress and strain (or force & deformation) at second point
of the envelope in the negative direction*

$s3n $e3n stress and strain (or force & deformation) at third point of
the envelope in the negative direction (optional)*

$pinchX pinching factor for strain (or deformation) during reloading

$pinchY pinching factor for stress (or force) during reloading

$damage1 damage due to ductility: D;(u-1)

$damage2 damage due to energy: D,(E/E.)

$beta power used to determine the degraded unloading stiffness
based on ductility, up (optional, default=0.0)

$curveTag an integer tag for the LimitCurve defining the limit surface

$curveType an integer defining the type of LimitCurve (0 = no curve,

1 = axial curve, all other curves can be any other integer)

Chapter 11 Limit State Material 74

*NOTE: negative backbone points should be entered as negative numeric values

In This Chapter

Shear Limit CUIVE... oo 78
AXial LIMit CUIVE e 79
Shear Limit CUIVEe.... oo 80
Example Files for Limit State Material 82

Shear Limit Curve

This command is used to construct a shear limit curve object that is used to define the point of
shear failure for a LimitStateMaterial object. Point of shear failure based on empirical drift
capacity model from Chapter 2.

limitCurve Shear $curveTag $eleTag $rho $fc $b $h $d $Fsw $Kdeg $Fres
$defType $forType <$ndl $ndJ $dof $perpDirn $deltas.

$curveTag unique limit curve object integer tag

$eleTag integer element tag for the associated beam-column
element

$rho transverse reinforcement ratio (A./bh)

$fc concrete compressive strength (psi)

$b column width (in.)

$h full column depth (in.)

$d effective column depth (in.)

$Fsw floating point value describing the amount of transverse

reinforcement (F.., = A.f,d./s)

$Kdeg If positive: unloading stiffness of beam-column element
(Kunoas from Figure 4-8)
if negative: slope of third branch of post-failure backbone
(see Figure 4-6)

$Fres floating point value for the residual force capacity of the
post-failure backbone (see Figure 4-6)

Chapter 11 Limit State Material 75

$defType integer flag for type of deformation defining the abscissa
of the limit curve
1 = maximum beam-column chord rotations
2 = drift based on displacment of nodes ndl and

ndJ
$forType integer flag for type of force defining the ordinate of the
limit curve*
0 = force in associated limit state material
1 = shear in beam-column element
$ndl integer node tag for the first associated node
(normally node | of $eleTag beam-column element)
$ndJ integer node tag for the second associated node
(normally node J of $eleTag beam-column element)
$dof nodal degree of freedom to monitor for drift**
$perpDirn perpendicular global direction from which length is

determined to compute drift**
$delta drift (floating point value) used to shift shear limit curve

NOTE: * Option 1 assumes no member loads.
“*1=X,2=Y,3=Z

Axial Limit Curve

This command is used to construct an axial limit curve object that is used to define the point of
axial failure for a LimitStateMaterial object. Point of axial failure based on model from Chapter 3.
After axial failure response of LimitStateMaterial is forced to follow axial limit curve.

limitCurve Axial $curveTag $eleTag $Fsw $Kdeg $Fres $defType $forType
<$ndl $ndJ $dof $perpDirn $delta>.

$curveTag unique limit curve object integer tag

$eleTag integer element tag for the associated beam-column
element

$Fsw floating point value describing the amount of transverse

reinforcement (F.. = A.f,d./s)

$Kdeg floating point value for the slope of the third branch in the
post-failure backbone, assumed to be negative (see
Figure 4-6)

Chapter 11 Limit State Material 76

$Fres floating point value for the residual force capacity of the
post-failure backbone (see Figure 4-6)

$defType integer flag for type of deformation defining the abscissa
of the limit curve
1 = maximum beam-column chord rotations
2 = drift based on displacment of nodes ndl and

ndJ
$forType integer flag for type of force defining the ordinate of the
limit curve*
0 = force in associated limit state material
1 = shear in beam-column element
2 = axial load in beam-column element
$ndl integer node tag for the first associated node
(normally node | of $eleTag beam-column element)
$ndJ integer node tag for the second associated node
(normally node J of $eleTag beam-column element)
$dof nodal degree of freedom to monitor for drift**
$perpDirn perpendicular global direction from which length is

determined to compute drift**
$delta drift (floating point value) used to shift axial limit curve

NOTE: * Options 1 and 2 assume no member loads.
“*1=X,2=Y,3=Z

Shear Limit Curve

This command is used to construct a shear limit curve object that is used to define the point of
shear failure for a LimitStateMaterial object. Point of shear failure based on empirical drift
capacity model from Chapter 2.

limitCurve Shear $curveTag $eleTag $rho $fc $b $h $d $Fsw $Kdeg $Fres
$defType $forType <$ndl $ndJ $dof $perpDirn $deltas.

$curveTag unique limit curve object integer tag

$eleTag integer element tag for the associated beam-column
element

$rho transverse reinforcement ratio (A./bh)

$fc concrete compressive strength (psi)

Chapter 11 Limit State Material

77

$b
$h
$d
$Fsw

$Kdeg

$Fres

$defType

$forType

$ndl
$ndJ

$dof
$perpDirn

$delta

column width (in.)
full column depth (in.)
effective column depth (in.)

floating point value describing the amount of transverse
reinforcement (F.., = A.f,d./s)

If positive: unloading stiffness of beam-column element
(Kunoas from Figure 4-8)

if negative: slope of third branch of post-failure backbone
(see Figure 4-6)

floating point value for the residual force capacity of the
post-failure backbone (see Figure 4-6)

integer flag for type of deformation defining the abscissa
of the limit curve

1 = maximum beam-column chord rotations

2 = drift based on displacment of nodes ndl and
ndJ

integer flag for type of force defining the ordinate of the
limit curve*

0 = force in associated limit state material

1 = shear in beam-column element

integer node tag for the first associated node
(normally node | of $eleTag beam-column element)

integer node tag for the second associated node
(normally node J of $eleTag beam-column element)

nodal degree of freedom to monitor for drift**

perpendicular global direction from which length is
determined to compute drift**

drift (floating point value) used to shift shear limit curve

NOTE: * Option 1 assumes no member loads.
*1=X,2=Y,3=Z

Chapter 11 Limit State Material 78

Example Files for Limit State Material

CenterCol_basicModel.tcl

Chapter 11 Limit State Material 79

Example analysis file for LimitStateMaterial
#

Units: Kip, in

KJE, Feb 2003

source tags.tcl

Number of analysis steps and step size
#set nSteps 35000

set nSteps 6000

set dlamda 0.1

Loading option
set loading push
#set loading cyclic

Analysis control option
set control load
#set control displ

HHHHHHEHEHHHHE
Build model
HHHHHHEHEHHHHE

model BasicBuilder -ndm 2 -ndf 3

S
Define nodal mesh and B.C.s
HHHHHHEHEHHHHE
set L 58.0

tag X Y

node 1 0.00.0
node 2 0.0 0.0
node 3 0.0 $L
node 4 0.0 $L
node 5 0.0 $L

tag DX DY RZ
fix 1 111
fix 4 00 1
fix 5 111

HHHHHHHHEHHHHH
Create column section
HHHHHHHHEHHHHH

source CenterColSecFiber.tcl

AR

Define the beam-column element
HHHHHHEHEHHH

geomTransf PDelta 1

set nint 5

element nonlinearBeamColumn $bcTag 2 3 $nint $flexSec 1 -iter 5 1e-15

A
Define the zero-length end springs
HHHHHHEHEH A
#rigid material

uniaxialMaterial Elastic $rigidMatTag 9.9e9

#bottom of column slip spring

Chapter 11

Limit State Material

80

CenterColShearSpring.tcl

Defines Shear Spring
Units: Kip, in
KJE, Feb 2003

slopes of shear spring backbone
set rigidSlope 1700; #Values when using zero-length spring (G*Av/L)
set negSlope -8;

residual shear capacity
set Vr 3.0;

strengths for initial response
set Vi1 25.0;
set Vi2 30.0;
set Vi3 45.0;

stiffness of unloading slope for flexural component
set kf 24.7 ;# measured off hysteresis plot from analysis

define limit surface using shear drift model
tag eleTag
#rho fc b h d Fsw
Kdeg Fres defType forType nodel noded dof perpDirn
limitCurve Shear $shearCurveTag $bcTag\
0.0018 3517.09.09.0 7.75 11.87\
$kf $Vr 2 0 1 4 1 20.0

define HystereticMaterial
uniaxialMaterial LimitState $shearTag\

$Vi1 [expr $Vil/$rigidSlope] $Vi2 [expr $Vi2/$rigidSlope] $Vi3 [expr $Vi3/$rigidSlope]\
[expr -$Vi1] [expr -$Vil/$rigidSlope] [expr -$Vi2] [expr -$Vi2/$rigidSlope] [expr -$Vi3] [expr -

$Vi3/$rigidSlope]\
$pinchX $pinchY $damage1 $damage?2 $beta $shearCurveTag 2 0

CenterColSecFiber.tcl

Defines Center Column Section
Units: kip, in
KJE, Feb 2003

seth 9.0
set b $h

set betal 100.0
set beta2 100.0
set spall nospalling
set alphaS 0.015

Set parameters for fiber section
set nfCore 28

set nfCover 4

setc 1.0

set z [expr $h/2.0-$c]

set y [expr $b/2.0-$c]

Chapter 11 Limit State Material 81

set nz [expr -$z]

set ny [expr -$y]

set zc [expr $z+%c]

set yc [expr $y+$c]

set nzc [expr -$zc]

set nyc [expr -$yc]

set fc -3.517

set fc [expr -3.517*$beta2/100.0]
set fcu [expr $fc*$beta1/100.0]

setfy 69.5

set Es 29000.0

set esy [expr $fy/$Es]

setesu 0.15

set fu [expr $fy+$alphaS*$Es*($esu-$esy)]

Define parameters for elastic section
set Ec 3400

set A [expr $h*$b]

set Ig [expr $h*$h*$h*$b/12]

set Mcr 228.0
set Ker 1.2e-4

set My 554.0 ;# for trilinear model (Mmax from UCFyber)
set Ky 6.3e-4 ;# based on UCFyber results

set Ry [expr $Ky*$L/6.0] ; # yield rotation
set EI [expr $My/$Ky]
set alpha 0.05

setKu 0.05
set Mu [expr $My+S$alpha*$EI*($Ku-$Ky)]
set Ru 0.5 ;# this assumes alpha is very small so diff between M-curv alpha and M-rot alpha is negligible

set pinchX 0.5
set pinchY 0.4
set damagei 0.0
set damage?2 0.0

set beta 0.4; #only to be used with version 1.3
setlc [expr $EI/$EC]

set slipStiff 91000 ;# see CenterColumnMomCurv.xls
set Rslipy [expr $My/$slipStiff]

set alphaSlip [expr $alpha/(1.0+(1.0-$alpha)*($slipStiff*$L/6/$EI))]
set Rslipu [expr $Rslipy+($Mu-$My)/($alphaSlip*$slipStiff)]

Create axial failure spring
source CenterColAxialSpring.tcl

Create shear failure spring
source CenterColShearSpring.tcl

section Aggregator $shearAxialOnlySec $shearTag Vy $axialFailTag P

Chapter 11

Limit State Material

82

Create fiber section
Define uniaxialMaterials
tag fc epsc f'cu epscu
uniaxialMaterial Concrete01 $coreTag $fc -0.002 $fcu -0.0052

if {$spall == "spalling"} {
uniaxialMaterial Concrete01 $coverTag $fc -0.002 0.0 -0.0060

} elseif {$spall == "nospalling"} {
uniaxialMaterial Concrete01 $coverTag $fc -0.002 $fcu -0.0052

} else {
puts stderr "Invalid spalling option: $spall”
}

tag fy E hardening ratio
#uniaxialMaterial Steel02 $steelTag 69.5 29000 $alphaS
uniaxialMaterial Hysteretic $steelTag $fy $esy $fu $esul

-$fy -$esy -$fu -$esu 1.01.00 0

Define the fiber section
section Fiber $flexSec {

Define the concrete patch with fibers for unidirectional bending

patch quadr $coreTag 1 $nfCore $ny $z $ny $nz Sy $nz $y $z

Define the four cover patches

patch quadr $coverTag 1 $nfCover $nyc $zc $nyc $nzc $ny $nz $ny $z
patch quadr $coverTag 1 $nfCover $y $z $y $nz $yc $nzc $yc $zc
patch quadr $coverTag 1 $nfCore $ny $nz $nyc $nzc $yc $nzc $y $nz
patch quadr $coverTag 1 $nfCore $nyc $zc $ny $z $y $z $yc $zc

Define the reinforcement explicitly using fiber command
yloc zloc area matTag

fiber -3.250 3.250 0.2 $steelTag O

fiber -3.250 -3.250 0.2 $steelTag 0

fiber 3.250 -3.250 0.2 $steelTag O

fioer 3.250 3.250 0.2 $steelTag 0

fioer -3.187 0.0 0.31 $steelTag 0

fioer 3.187 0.0 0.31 $steelTag 0

fiber 0.0 -3.187 0.31 $steelTag 0

fiber 0.0 3.187 0.31 $steelTag 0}

moment-rotation end springs for slip (assume elastic)
uniaxialMaterial Elastic $centerSlipTag $slipStiff

set Acenter $A
set Eccenter $Ec
set Iccenter $lc

CenterColAxialSpring.tcl

Defines Axial Spring
Units: Kip, in
KJE, Feb 2003

set Fsw [expr 11.87/1.0]

Chapter 11 Limit State Material 83

Axial elastic stiffness (only one axial spring used)
set axialElasticSlope [expr 99.0*$Ec*$A/$L]; #99 times more rigid than column
set axialNegSlope -90.0; #slope = axial load/axial displ}

residual capacity
set Pr 5.0;

axial loads used for setting initial elastic slope
set P1 65.0;
set P2 75.0;
set P3 85.0;

define limit surface
tag eleTag Fsw Kdeg Fres defType forType nodel noded dof perpDir delta eleRemove
limitCurve Axial $axialCurveTag $bcTag $Fsw $axialNegSlope $Pr 2 2 1 4 12 0.0 0

define LimitStateMaterial
uniaxialMaterial LimitState $axialFailTag\
$P1 [expr $P1/$axialElasticSlope] $P2 [expr $P2/$axialElasticSlope] $P3 [expr $P3/$axialElasticSlope]\
[expr -$P1] [expr -$P1/$axialElasticSlope] [expr -$P2] [expr -$P2/$axialElasticSlope] [expr -$P3] [expr -
$P3/$axialElasticSlope]\
0.50.5 0.0 0.0 0.0 $axialCurveTag 1

Tags.tcl
UniaxialMaterial tags
setcoreTag 1 ;# core concrete
set coverTag 2 ;# cover concrete
set steelTag 3 # steel
set shearTag 4 :# shear limit state material
setmomTag 5 ;# mom-curv hysteretic model
set axialTag 6 ;# elastic axial force-strain model
set momDegTag 7 ;# degrading moment-curv hysteretic model
set axialFailTag 8 ;# axial limit state material

set centerSlipTag 9 ;# elastic slip spring

set rigidMatTag 10
set softMatTag 11

Section tags

set flexSec 1

set shearSec 2

set flexTopSec 3

set flexBotSec 4

set axialSec 5

set shearAxialSec 6

set axialOnlySec 7

set flexShearSec 8

set shearAxialOnlySec 9

Limit Curve tags
set shearCurveTag 1
set axialCurveTag 2

Element tags

Chapter 11

Limit State Material

84

set bcTag 99

cyclic.txt

1.2557524028480316e-003
1.2557524028480316e-003
3.0608252487525078e-003
1.5641001656305775e-003
1.1015791633965932¢-003

-1.8313432524451514e+000

PINCHING4 Material

Contact Author:

Chapter 11 Limit State Material 85

This command is used to construct a uniaxial material that represents a ‘pinched’ load-
deformation response and exhibits degradation under cyclic loading. Cyclic degradation of
strength and stiffness occurs in three ways: unloading stiffness degradation, reloading stiffness
degradation, strength degradation.

uniaxialMaterial Pinching4 $matTag $ePf1 $ePd1 $ePf2 $ePd2 $eP{3 $ePd3
$ePf4 $ePd4 <$eNf1 $eNd1 $eNf2 $eNd2 $eNf3 $eNd3 $eNf4 $eNd4>
$rDispP $rForceP $uForceP <$rDispN $rForceN $uForceN > $gK1
$9K2 $gK3 $gK4 $gKLim $gD1 $gD2 $gD3 $gD4 $gDLim $gF1 $gF2
$gF3 $gF4 $gFLim $gE $dmgType

$matTag

$ePf1 $ePf2 $ePf3
$ePf4

$ePd1 $ePd2
$ePd3 $ePd4

$eNf1 $eNf2 $eNf3
$eNf4

$eNd1 $eNd2
$eNd3 $eNd4

$rDispP

$rForceP

$uForceP

$rDispN

unique material object integer tag

floating point values defining force points on the positive
response envelope

floating point values defining deformation points on the positive
response envelope

floating point values defining force points on the negative
response envelope (optional, default: negative of positive
envelope values)

floating point values defining deformations points on the
negative response envelope (optional, default: negative of
positive envelope values)

floating point value defining the ratio of the deformation at which
reloading occurs to the maximum historic deformation demand

floating point value defining the ratio of the force at which
reloading begins to force corresponding to the maximum historic
deformation demand

floating point value defining the ratio of strength developed upon
unloading from negative load to the maximum strength
developed under monotonic loading

floating point value defining the ratio of the deformation at which
reloading occurs to the minimum historic deformation demand
(optional, default: $rDispP)

Chapter 11 Limit State Material

86

$rForceN

$uForceN

$gK1 $gK2 $gK3
$gK4 $gKLim

$gD1 $gD2 $gD3
$gD4 $gDLim

$gF1 $gF2 $gF3
$gF4 $gFLim

$gE

$dmgType

floating point value defining the ratio of the force at which
reloading begins to the force corresponding to the minimum
historic deformation demand (optional, default: $rForceP)

floating point value defining the ratio of the strength developed
upon unloading from a positive load to the minimum strength
developed under monotonic loading (optional, default:
$rForceP)

floating point values controlling cyclic degradation model for
unloading stiffness degradation

floating point values controlling cyclic degradation model for
reloading stiffness degradation

floating point values controlling cyclic degradation model for
strength degradation

floating point value used to define maximum energy dissipation
under cyclic loading. Total energy dissipation capacity is defined
as this factor multiplied by the energy dissipated under
monotonic loading.

string to indicate type of damage (option: “cycle”, “energy”)

Chapter 11 Limit State Material 87

NOTE:

(dna e fldna:))
load /\ (ePd, ePf,) (ePd, ePf,)

(tDizpP-d__ ,tForceP - f{(

{* uForceP-¢P fj}é} - J

(ePd,.ePf)

defommation >-

eNd,eNf} el (* uForceN-eNf,)
' W [DispN-d_ rForcaN-£(d..))
(eNd, eNf,)

i ehld, ,ENE¢
{ehld, enf) (tin,F(drin))

Figure 1: Definition of Pinching4 Uniaxial Material Model

.<

Damage Models:

Stiffness and strength are assumed to deteriorate due to the imposed “load” history. The same
basic equations are used to describe deterioration in strength, unloading stiffness and reloading
stiffness:

Chapter 11 Limit State Material 88

where ki is the unloading stiffness at time t, k, is the initial unloading stiffness (for the case of no

damage), and &, (defined below) is the value of the stiffness damage index at time t.

d. . =d_ . -(1+d,)

max; max(

d

where “maxi is the deformation demand that defines the end of the reload cycle for increasing

deformation demand, Amaxo is the maximum historic deformation demand (which would be the
deformation demand defining the end of the reload cycle if degradation of reloading stiffness is

ignored), and A, (defined below) is the value of reloading stiffness damage index at time t.

(fmax),‘ = (fmax)o '(1 - 5fi)

Chapter 11 Limit State Material 89

where (s) is the current envelope maximum strength at time t, (s o is the initial envelope

maximum strength for the case of no damage, and ‘s (defined below) is the value of strength
value index at time t.

The damage indices, &f, o, and é[f, may be defined to be a function of displacement history
only ($dmgType = “cycle”) or displacement history and energy accumulation ($dmgType =
“energy”). For either case, all of the damage indices are computed using the same basic
equation.

If the damage indices are assumed to be a function of displacement history and energy

accumulation, the unloading stiffness damage index, K

K3 E grct
ok; = {gK1 (G ¢ + gk2- (E—] J < gKLim

monotonic

i is computed as follows:

where

8 _ ma){ dmaxi dmini :|
max —)
defmax defin

E, = |[dE

load history

E monotonic = gE { J‘dE J

monotonic load history

Chapter 11 Limit State Material 90

with E....... equal to the energy required to achieve under monotonic loading the deformation that
defines failure, def... and def... the positive and negative deformations that define failure. The

other damage indices, o, and @Cl‘, are computed using the same equations with degradation
model parameters gK* replaced by gF* and gD*, as is appropriate.

The above expressions were meant for “Energy” type damage. The user specification of
“Energy” type damage implements damage due to displacement as well as energy. Other type of
damage can be activated: “Cycle” which implements damage due to displacement as well as
damage accrued due to load cycle counting. The expressions for the “Cycle” damage are given
below.

If the damage indices are assumed to be a function only of the displacement history, the

unloading stiffness damage index, *, is computed as follows:

~

X, = (gKl : (d)gK3 +gK?2- (Cycle)g“j < gKLim

max

where

8 _ ma){ dmaxi dmini :|
max —)
defnax defmin

with Cycle equal to the number of cycles accrued in the loading history, def.... and def.. the

positive and negative deformations that define failure. The other damage indices, o, and @Cl‘,
are computed using the same equations with degradation model parameters gK* replaced by
gF* and gD*, as is appropriate.

> EXAMPLE:

main input file:

= RCyclicPinch.tcl (page 101)
supporting files:

= procUniaxialPinching.tcl (page 106)
= procRCycDAns.tcl (page 108)

Chapter 11 Limit State Material 91

PINCHING4 Uniaxial Material Model
Discussion

PINCHING4 Uniaxial Material Model Discussion

The example files (RCyclicPinch.tcl (page 101), procUniaxialPinching.tcl (page 106),
procRCycDAns.tc (page 108)l) create a one-dimensional structural model consisting of a single
truss element of length 1.0 and area 1.0 (Figure 1). The Pinching4 uniaxial material model is
used to simulate the stress-strain response of the truss material. The truss is subjected to a
pseudo-static cyclic loading. Several files are provided that include different input parameters for
the Pinching4 material model and result in different load-displacement histories for the truss
structure. Refer to the documentation about the Pinching4 uniaxial material model for additional
information.

Input for the Pinching4 Uniaxial Material Model

Refer to the documentation of the Pinching4 uniaxial material model for an explanation of the
following notation.

Response Envelopes:
In these examples the pinching material model is demonstrated with two different load-

deformation response envelopes. Envelope 1 (Figure 2) defines a hardening-type response
while Envelope 2 (Figure 2) defines a softening-type response.

Envelope 1 (Figure 2):

ePdl ePf1] [0.0001 2 —eNdl —eNfl
ePd2 ePf2| |0.0055 6 | |-eNd2 —eNf2
ePd3 ePf3| |0.0188 7 | |—eNd3 —eNf3

ePd4 ePf4| |0.0189 72| |-eNd4 —eNf4

Chapter 11 Limit State Material 92

Envelope 2 (Figure 2):

ePdl ePf1] [0.0001 2 —eNdl —eNfl
ePd2 ePf2| |0.0055 6 | |-eNd2 —eNf2
ePd3 ePf3| |0.0188 7 | |—eNd3 —eNf3

ePd4 ePf4 0.0189 0.2 —eNd4 —eNf4

Load-Unload Response Parameters:

The form of the load-unload response, and the extent of pinching in the response history, is
defined by the following six parameters. In each of the examples, the following values are used.

[rDispP rForceP uForceP]z[rDispN rForceN uForceN]z[O.S 0.25 0.05]

Chapter 11 Limit State Material 93

Strength and Stiffness Degradation Parameters:

The Pinching4 uniaxial material model simulates degradation of stiffness and strength under
cyclic loading. The example files demonstrate, individually and in combination, each of the two
stiffness degradation options and the one strength degradation option. The following parameters
are used to define strength and stiffness degradation, as needed, in the example files.

gK1l gK2 gK3 gK4 gKLim 1.0 02 03 02 09
gDl gD2 ¢D3 gD4 gDLim| |05 05 20 20 05

gFl1 gF2 gF3 gF4 gFLim 1.0 00 1.0 1.0 09
gE 10.0

Tcl Scripts:

The following tcl script files are used to run the examples:
RCyclicPinch.tcl (page 101)

procUniaxialPinching.tcl (page 106)

procRCycDAns.tcl (page 108)

Lines should be commented out as necessary within RCyclicPinch.tcl to exercise different
degradation models of the Pinching4 uniaxial material model and different load histories.

If the structure is subjected to a monotonic load history, the load-displacement history is shown
in Figure 2 results with the actual response history depending on the envelope chosen for the
material model. If the structure is subjected to a cyclic load history (Figure 3), one of the load-
displacement histories shown in Figure 4 results, with the exact response depending on the
strength and stiffness degradation model employed. In this case the damage type activated was
“Energy”. The case in which the damage type activated was “Cycle” is shown in Figure 5.

Figures:

Chapter 11 Limit State Material 94

P&
éﬂ

Figure 3: Structural
Model

Figure 1: Structural Model

armalope 1

Load

armalape 2

|:| 1 1 1 1 1 1 1 1 1
g d.0o: oo0od 0005 d.008 D001 40012 0014 0016 d.018 o002
Deformation

Chapter 11 Limit State Material 95

Figure 4: Response
Envelopes

Figure 2: Response Envelopes

0.5 , . ; ,))
001 |emee e L A I tone HEL S o RRE . .
e | e A Rt O e

E : : : :

m 1 I 1 1 I I

E : i : i ; ;

o i I ! : ! i

o : : : ; :
2 Dless ek f fune bt of-packe R i
T, N | . 1 - | - N | —]

oms i i i i i i
0 0.5 1 1.5 2 25 3 31k
paudo tirne + 107

Figure 5: Cyclic

Displacement History

Figure 3: Cyclic Displacement History

Chapter 11 Limit State Material 96

L L L L L
-om 0.006 o li[3 om oms
Oefomnation

a) Only Unloading Stiffness Degradation

Spy
g
m

— with na darmage

I 1 1 1 1
-EFEHE 00 41.005 1] 0.005 0.m 0.ms

c) Only Strength Degradation

B
— nodamaege
BF |— wih D damage
4k
2 L
-
Ll :
2k
Ak
Bl
A 1 L 1 L 1
-00E Eilujl 1.0 a 0.005 om 0.0!s
Oefbmation

b) Only Re-Loading Stiffness Degradatio

8 T
— no demege
g| | — wilh all 3 damaga= }‘741._-‘?-1 4
I
4t {4
2 L
] al et e
: T
2 LAHIE
Lo d AT
J 84
'
&| Li@ﬂmj
_H 1 1 1 1 1
0.m6 Ealij| 1.008 o 0.ms om om
Daformation

d) Both Stiffness and Strength Degradati

Chapter 11 Limit State Material 97

Figure 6: Load-
Deformation Response
Histories ("Energy type
damage")

Figure 4: Load-Deformation Response Histories (“Energy type damage”)

I
— damage type "enemgy’ _
— damage type "oyTlE

Load

] R e
-

ta

Figure 7: Plot showing
Both Stiffness and
Strength Degradation
for Damage Type
"Energy" and "Cycle"

Figure 5. Plot showing Both Stiffness and Strength Degradation for Damage Type
"Energy" and "Cycle"

RCyclicPinch.tcl

HHHH
HHHHR A

Test example for PINCHING MATERIAL

Chapter 11 Limit State Material 98

Written: N.Mitra

Description: uniaxial material with user defined envelope (softening type used here) and damage parameters

Date: May 04 2002

Model subjected to reverse Cyclic Loading

File Name: RCyclicPinch.tcl

refer to Pinching-Type Material Model.doc for full explanation of the parameters

HHHH
HEHHRHR R

wipe

#create the ModelBuilder object

model BasicBuilder -ndm 2 -ndf 2

add nodes - command: node nodeld xCrd yCrd

node 1 0.0 0.0

node 2 1.0 0.0

please keep the follwoing procedures on the same path

source procUniaxialPinching.tcl

source procRCycDAns.tcl

#i#### Positive/Negative envelope Stress/Load

Chapter 11 Limit State Material 99

##H# stress1 stress2 stress3 stress4

set pEnvelopeStress [list 2.0 6.0 7.0 0.2]

set nEnvelopeStress [list -2.0 -6.0 -7.0 -0.2]

####H# Positive/Negative envelope Strain/Deformation

strain1 strain2 strain3 strain4

set pEnvelopeStrain [list 0.0001 0.0055 0.0188 0.0189]

set nEnvelopeStrain [list -0.0001 -0.0055 -0.0188 -0.0189]

####H# Ratio of maximum deformation at which reloading begins

Pos_env. Neg_env.

set rDisp [list 0.5 0.5]

####H# Ratio of envelope force (corresponding to maximum deformation) at which reloading begins

Pos_env. Neg_env.

set rForce [list 0.25 0.25]

#i#### Ratio of monotonic strength developed upon unloading

Pos_env. Neg_env.

set uForce [list 0.05 0.05]

Chapter 11

Limit State Material

100

##t## Coefficients for Unloading Stiffness degradation

gammaK1 gammakK2 gammaK3 gammak4 gammakKLimit

set gammak [list 1.0 0.2 0.3 0.2 0.9]

#set gammak [list 0.0 0.0 0.0 0.0 0.0]

#i#### Coefficients for Reloading Stiffness degradation

gammaD1 gammaD2 gammaD3 gammaD4 gammaDLimit

set gammabD [list 0.5 0.52.0 2.0 0.5]

#set gammabD [list 0.0 0.0 0.0 0.0 0.0]

#i#### Coefficients for Strength degradation

gammaF1 gammaF2 gammaF3 gammaF4 gammaFLimit

set gammaF [list 1.0 0.0 1.0 1.0 0.9]

#set gammakF [list 0.0 0.0 0.0 0.0 0.0]

set gammak 10

material ID

set matiD 1

damage type (option: "energy", "cycle")

set dam "energy"

Chapter 11 Limit State Material 101

add the material to domain through the use of a procedure

procUniaxialPinching $matID $pEnvelopeStress $nEnvelopeStress $pEnvelopeStrain $nEnvelopeStrain $rDisp
$rForce $uForce $gammakK $gammabD $gammaF $gammaE $dam

add truss elements - command: element truss trussID node1 node2 A matID

elementtruss1121.01

set the boundary conditions - command: fix nodelD xResrnt? yRestrnt?

fix111

fix201

pattern Plain 1 Linear {

load210

recorder Node -file RCyclicPinchR.out -node 2 -dof 1 disp

build the components for the analysis object

system ProfileSPD

constraints Plain

test NormDispincr 1.0e-8 20

Chapter 11 Limit State Material 102

algorithm Newton

numberer RCM

analysis type used in the procedure is Static

set peakpts [list 0.0001 0.001 0.002 0.003 0.005 0.006 0.007 0.009 0.01 0.011 0.012 0.013]

set increments 10

set nodeTag 2

set dofTag 1

start procedure for feeding in

Reverse Cyclic loading to the model by Disp. control

procRCycDAns $increments $nodeTag $dofTag $peakpts

print the results at nodes

print node

procUniaxialPinching.tcl

R A
A

#H#

procUniaxialPinching.tcl

procedure for activating the pinching material given its parameters in the form of list

Chapter 11 Limit State Material 103

created NM (nmitra@u.washington.edu) dated : Feb 2002

R A
IR

proc procUniaxialPinching { materialTag pEnvelopeStress nEnvelopeStress pEnvelopeStrain nEnvelopeStrain rDisp
rForce uForce gammaK gammaD gammaF gammaE damage} {

add material - command: uniaxialMaterial paramaters as shown

#uniaxialMaterial Pinching4 tag

##H## stress1P strain1P stress2P strain2P stress3P strain3P stress4P strain4P

#i#t## stress1N strain1N stress2N strain2N stress3N strain3N stress4N straindN

##i## rDispP rForceP uForceP rDispN rForceN uForceN

gammaK1 gammakK2 gammak3 gammaK4 gammakKLimit

gammaD1 gammaD2 gammaD3 gammaD4 gammaDLimit

gammaF1 gammaF2 gammaF3 gammaF4 gammaFLimit gammaE $damage

uniaxialMaterial Pinching4 $materialTag [lindex $pEnvelopeStress 0] [lindex $pEnvelopeStrain 0] [lindex
$pEnvelopeStress 1] [lindex $pEnvelopeStrain 1] [lindex $pEnvelopeStress 2] [lindex $pEnvelopeStrain 2] [lindex
$pEnvelopeStress 3] [lindex $pEnvelopeStrain 3] [lindex $nEnvelopeStress 0] [lindex $nEnvelopeStrain 0] [lindex
$nEnvelopeStress 1] [lindex $nEnvelopeStrain 1] [lindex $nEnvelopeStress 2] [lindex $nEnvelopeStrain 2] [lindex
$nEnvelopeStress 3] [lindex $nEnvelopeStrain 3] [lindex $rDisp 0] [lindex $rForce 0] [lindex $uForce 0] [lindex $rDisp
1] [lindex $rForce 1] [lindex $uForce 1] [lindex $gammakK 0] [lindex $gammakK 1] [lindex $gammak 2] [lindex
$gammak 3] [lindex $gammakK 4] [lindex $gammaD 0] [lindex $gammaD 1] [lindex $gammaD 2] [lindex $gammaD 3]
[lindex $gammabD 4] [lindex $gammaF 0] [lindex $gammaF 1] [lindex $gammaF 2] [lindex $gammaF 3] [lindex
$gammaF 4] $gammaE $damage

Chapter 11 Limit State Material 104

procRCycDAnNs.tcl

HHH
IR

#

procRCycDAns.tcl

procedure for reverse cyclic displacement control analysis given the peak pts.
analysis type used : STATIC

Written : N.Mitra

R A
IR

proc procRCycDAns { incre nodeTag dofTag peakpts} {

set x [lindex $peakpts 0]
set fir [expr $x/$incre]

integrator DisplacementControl $nodeTag $dofTag 0.0 1 $fir $fir

create the analysis object

analysis Static

perform the analysis

analyze $incre

integrator DisplacementControl $nodeTag $dofTag 0.0 1 [expr -$fir] [expr -$fir]
analyze [expr 2*$incre]

integrator DisplacementControl $nodeTag $dofTag 0.0 1 $fir $fir

analyze $incre

for {set j 1} {$j < [llength $peakpts]} {incrj 1} {
set tx [lindex $peakpts $j]
set tinc [expr $tx/$fir]
set rt [expr int($tinc)]

integrator DisplacementControl $nodeTag $dofTag 0.0 1 $fir $fir

analyze $rt

integrator DisplacementControl $nodeTag $dofTag 0.0 1 [expr -$fir] [expr -$fir]
analyze [expr 2*$rt]

integrator DisplacementControl $nodeTag $dofTag 0.0 1 $fir $fir

analyze $rt

Chapter 11 Limit State Material 105

HHHEHHEHEHHAHAAH A end procRCYCDANS tC| ###H#HHHHHHHEHHEHHEHHHA A
}

PyTzQz Uniaxial Materials

This section describes commands that are used to construct uniaxial materials for p-y, t-z and
g-z elements for modeling soil-structure interaction developed at UC Davis.

There is available documentation on UCD COmpGeomech work within OpenSees framework at:

http://sokocalo.engr.ucdavis.edu/~jeremic/OpenSees/UCD _CG_OpenSees_Commands_2up.pd
f
(http://sokocalo.engr.ucdavis.edu/~jeremic/OpenSees/UCD_CG_OpenSees_Commands_2up.p
df)

Also, there is a more in depth writeup (lecture notes) at:

http://sokocalo.engr.ucdavis.edu/~jeremic/CG/CompGeomechanicsLectureNotes. pdf
(http://sokocalo.engr.ucdavis.edu/~jeremic/CG/CompGeomechanicsLectureNotes.pdf)

PySimple1 Material

This command is used to construct a PySimple1 uniaxial material object.

| uniaxialMaterial PySimple1 $matTag $soilType $pult $Y50 $Cd <$c>.

$matTag Unique material object integer tag.

$soilType soilType = 1 Backbone of p-y curve approximates Matlock
(1970) soft clay relation.

soilType = 2 Backbone of p-y curve approximates APl (1993)
sand relation.

Chapter 11 Limit State Material 106

$pult Ultimate capacity of the p-y material. Note that “p” or “pult” are
distributed loads [force per length of pile] in common design
equations, but are both loads for this uniaxialMaterial [i.e.,
distributed load times the tributary length of the pile].

$Y50 Displacement at which 50% of pult is mobilized in monotonic
loading.

$Cd Variable that sets the drag resistance within a fully-mobilized
gap as Cd*pult.

$c The viscous damping term (dashpot) on the far-field (elastic)

component of the displacement rate (velocity). Default = 0.0.
Nonzero c values are used to represent radiation damping
effects.

NOTE: Full documentation of the PyLig1 command is found in PySimple1_documentation.pdf
(http://peer.berkeley.edu/~silvia/OpenSees/manual/documents/PyTzQzMats/PySimple1_docum
entation.PDF)

TzSimple1 Material

This command is used to construct a TzSimple1 uniaxial material object.

| uniaxialMaterial TzSimple1 $matTag $tzType $tult $z50 <$c>.

$matTag Unique material object integer tag.

$tzType tzType = 1 Backbone of t-z curve approximates Reese and
O’Neill (1987) relation.

tzType = 2 Backbone of t-z curve approximates Mosher (1984)
relation.

$tult Ultimate capacity of the t-z material. Note that “t” or “tult” are
distributed loads [force per length of pile] in common design
equations, but are both loads for this uniaxialMaterial [i.e.,
distributed load times the tributary length of the pile].

$250 Displacement at which 50% of tult is mobilized in monotonic
loading.
$c The viscous damping term (dashpot) on the far-field (elastic)

component of the displacement rate (velocity). Default = 0.0.
Nonzero c values are used to represent radiation damping
effects.

Chapter 11 Limit State Material 107

NOTE: Full documentation of the TzLig1 command is included in:
TzSimple1_documentation.PDF
(http://peer.berkeley.edu/~silvia/OpenSees/manual/documents/PyTzQzMats/TzSimple1_docum
entation.PDF)

QzSimple1 Material

This command is used to construct a QzSimple1 uniaxial material object.

| uniaxialMaterial PySimple1 $matTag $qzType $quit $Y50 <$suction $c>.

$matTag Unique material object integer tag.

$soilType gzType = 1 Backbone of g-z curve approximates Reese and
O’Neill’s (1987) relation for drilled shafts in clay.

gzType = 2 Backbone of g-z curve approximates Vijayvergiya’s
(1977) relation for piles in sand.

$quilt Ultimate capacity of the -z material. Note that “q” or “qult” are
stresses [force per unit area of pile tip] in common design
equations, but are both loads for this uniaxialMaterial [i.e.,
stress times tip area].

$250 Displacement at which 50% of pult is mobilized in monotonic
loading. Note that Vijayvergiya’s relation (qzType=2) refers to a
“critical” displacement (zcrit) at which qult is fully mobilized, and
that the corresponding z50 would be 0. 125zcrit.

$suction Uplift resistance is equal to suction*qult. Default = 0.0. The
value of suction must be 0.0 to 0.1.*

$c The viscous damping term (dashpot) on the far-field (elastic)
component of the displacement rate (velocity). Default = 0.0.
Nonzero c values are used to represent radiation damping
effects.”

NOTE: Full documentation of the QzSimple1 command is found in:
QzSimple1_Documentation.pdf
(http://peer.berkeley.edu/~silvia/OpenSees/manual/documents/PyTzQzMats/QzSimple1_docum
entation.PDF)

*NOTE: Optional variables suction and ¢ must either both be omitted or both be included.

Chapter 11 Limit State Material 108

PyLig1 Material

This command is used to construct a PyLig1 uniaxial material object.

uniaxialMaterial PyLig1 $matTag $soilType $pult $Y50 $Cd $c $pRes
$solidElem1 $solidElem2.

$matTag Unique material object integer tag.

$soilType soilType = 1 Backbone of p-y curve approximates Matlock
(1970) soft clay relation.

soilType = 2 Backbone of p-y curve approximates API (1993)
sand relation.

$pult Ultimate capacity of the p-y material. Note that “p” or “pult” are
distributed loads [force per length of pile] in common design
equations, but are both loads for this uniaxialMaterial [i.e.,
distributed load times the tributary length of the pile].

$Y50 Displacement at which 50% of pult is mobilized in monotonic
loading.

$Cd Variable that sets the drag resistance within a fully-mobilized
gap as Cd*pult.

$c The viscous damping term (dashpot) on the far-field (elastic)

component of the displacement rate (velocity). Default = 0.0.
Nonzero c values are used to represent radiation damping
effects.

$pRes Minimum (or residual) p-y resistance that the material retains as
the adjacent solid soil elements liquefy (i.e. atr, = 1.0).

$solidElem1 Element object integer tag for a solid element from which
PyLig1 will obtain mean effective stresses and pore pressures.

$solidElem2 Element object integer tag for a solid element from which
PyLig1 will obtain mean effective stresses and pore pressures.

Chapter 11 Limit State Material 109

NOTE: Full documentation of the PyLig1 command is found in: PyLiq1_Documentation.pdf
(http://peer.berkeley.edu/~silvia/OpenSees/manual/documents/PyTzQzMats/PyLiq1_documenta
tion.pdf)

NOTE: The implementation of PyLiq1 requires that the specified soil elements consist of
FluidSolidPorousMaterials in FourNodeQuad elements. To model the effects of liquefaction with
PyLiq1, it is necessary to use the material stage updating command:

| updateMaterialStage —material $matNum —stage $sNum

where the argument matNum is the material number (for PyLig1) and the argument sNum is the
desired stage (valid values are 0 & 1). With sNum=0, the PyLig1 behavior will be independent of
any pore pressure in the specified solidElem’s. When updateMaterialStage first sets sNum=1,
PyLig1 will obtain the average mean effective stress in the two solidElem’s and treat it as the
initial consolidation stress prior to undrained loading. Thereafter, the behavior of PyLig1 will
depend on the mean effective stresses (and hence excess pore pressures) in the solidElem’s.
The default value of sNum is 0 (i.e., sNum=0 if updateMaterialStage is not called). Note that the
updateMaterialStage command is used with some soil material models, and that sNum=0
generally corresponds to the application of gravity loads (e.g., elastic behavior with no excess
pore pressure development) and sNum=1 generally corresponds to undrained loading (e.g.,
plastic behavior with excess pore pressure development). The analysis for gravity loading
cannot use the "algorithm Linear" command because the relevant soil materials do not currently
work properly with this command. Instead, the "algorithm Newton" or some other option must be
used.

TzLiq1 Material

This command is used to construct a PyLig1 uniaxial material object.

uniaxialMaterial TzLiq1 $matTag $soilType $tult $z50 $c $solidElem1

$solidElem2.
$matTag Unique material object integer tag.
$tzType tzType = 1 Backbone of t-z curve approximates Reese and

O’Neill (1987) relation.

tzType = 2 Backbone of t-z curve approximates Mosher (1984)
relation.

Chapter 11 Limit State Material 110

$tult Ultimate capacity of the t-z material. Note that “t” or “tult” are
distributed loads [force per length of pile] in common design
equations, but are both loads for this uniaxialMaterial [i.e.,
distributed load times the tributary length of the pile].

$250 Displacement at which 50% of tult is mobilized in monotonic
loading.
$c The viscous damping term (dashpot) on the far-field (elastic)

component of the displacement rate (velocity). Default = 0.0.
Nonzero c values are used to represent radiation damping
effects.

$solidElem1 Element object integer tag for a solid element from which TzLiqg1
will obtain mean effective stresses and pore pressures.

$solidElem2 Element object integer tag for a solid element from which TzLig1
will obtain mean effective stresses and pore pressures.

NOTE: Full documentation of the TzLig1 command is included in: TzLiq1_Documentation.pdf
(http://peer.berkeley.edu/~silvia/OpenSees/manual/documents/PyTzQzMats/TzLiq1_documentat
ion.pdf)

NOTE: The implementation of TzLiq1 requires that the specified soil elements consist of
FluidSolidPorousMaterials in FourNodeQuad elements. To model the effects of liquefaction with
TzLig1, it is necessary to use the material stage updating command:

| updateMaterialStage —material $matNum —stage $sNum

where the argument matNum is the material number (for TzLiq1) and the argument sNum is the
desired stage (valid values are 0 & 1). With sNum=0, the TzLiq1 behavior will be independent of
any pore pressure in the specified solidElem’s. When updateMaterialStage first sets sNum=1,
TzLig1 will obtain the average mean effective stress in the two solidElem’s and treat it as the
initial consolidation stress prior to undrained loading. Thereafter, the behavior of TzLig1 will
depend on the mean effective stress (and hence excess pore pressures) in the solidElem’s. The
default value of sNum is 0 (i.e., sSNum=0 if updateMaterialStage is not called). Note that the
updateMaterialStage command is used with some soil material models, and that sNum=0
generally corresponds to the application of gravity loads (e.g., elastic behavior with no excess
pore pressure development) and sNum=1 generally corresponds to undrained loading (e.g.,
plastic behavior with excess pore pressures development). The analysis for gravity loading
cannot use the "algorithm Linear" command because the relevant soil materials do not currently
work properly with this command. Instead, the "algorithm Newton" or some other option must be
used.

Chapter 11 Limit State Material 111

PySimple1Gen Command

This command is used to construct output files containing material properties for PySimple1
uniaxial materials. The PySimple1Gen command constructs PySimple1 materials (Boulanger,
2003) for pre-defined zeroLength elements.

| PySimple1Gen $file1 $file2 $file3 $filed $file5 <$file6>

$filet The name of an input file containing soil and pile properties
required to define the PySimple1 materials.

$file2 The name of an input file containing information about nodes
that define the mesh in the domain.

$file3 The name of an input file containing information about the
zeroLength elements to be assigned PySimple1 materials
(hereafter called p-y elements).

$filed The name of an input file containing information about the beam
column elements that are attached to p-y elements.

$file5 The name of the output file to which the PySimple1 materials
are written.

$file6 The name of the output file to which the applied patterns are

written (optional).

The command has been structured such that $File2, $File3, $File4, $File5 and $File6 can be
sourced directly by OpenSees from within a master tcl file. Hence $File2, $File3 and $File4
serve two purposes:

1 They provide information to PySimple1Gen to create the PySimple1 materials.

2 They can be sourced directly in a master tcl file to define the nodes, zeroLength elements for
p-y materials, and pile elements, respectively.

Furthermore, $File5 and $File 6 serve the following purpose:

1 They can be sourced by OpenSees from within a master tcl file to define the PySimple1
materials and the applied patterns, respectively.

The intended use of the files is demonstrated in an example problem in the Appendix:

PySimple 1GenDocumentation.pdf
(http://peer.berkeley.edu/~silvia/OpenSees/manual/documents/PyTzQzMats/PySimple1GenDoc
umentation.pdf)

Chapter 11 Limit State Material 112

TzSimple1Gen Command

The TzSimple1Gen command constructs TzSimple1 materials (Boulanger, 2003) for pre-defined
zeroLength elements.

|TzSimpIe1Gen $file1 $file2 S$file3 $filed $file5 <S$file6>

$filel The name of an input file containing soil and pile properties
required to define the TzSimple1 materials.

$file2 The name of an input file containing information about the
nodes that define the mesh in the domain.

$file3 The name of an input file containing information about the
zeroLength elements that are to be assigned TzSimple1
materials (hereafter called tz elements).

$filed The name of an input file containing information about the beam
column elements that are attached to tz elements.

$file5 The name of the output file to which the TzSimple1 materials
are written.

$file6 The name of the output file to which the applied patterns are

written (optional).

The command has been structured such that $File2, $File3, $File4, $File5 and $File6 can be
sourced directly from within a master tcl file. Hence $File2, $File3 and $File4 serve two
purposes:

1 They provide information to TzSimple1Gen to create the TzSimple1 materials.

2 They can be sourced directly in a master tcl file to define the nodes, zeroLength elements for
tz materials, and pile elements, respectively.

Furthermore, $File5 and $File6 serve the following purpose:

1 They can be sourced directly in a master tcl file to define the TzSimple1 materials and the
applied patterns.

Chapter 11 Limit State Material 113

The dual use of the files is demonstrated in an example problem in the Appendix:

TzSimple 1GenDocumentation.pdf
(http://peer.berkeley.edu/~silvia/OpenSees/manual/documents/PyTzQzMats/TzSimple1GenDoc
umentation.pdf)

Reinforcing Steel Material

Contact Authors: Jon Mohle M.S., P.E.

Sashi Kunnath:
http://cee.engr.ucdavis.edu/faculty/kunnath/kunnath.htm

This command is used to construct a ReinforcingSteel uniaxial material object. This object is
intended to be used in a reinforced concrete fiber section as the steel reinforcing material.

uniaxialMaterial ReinforcingSteel $matTag $fy $fu $Es $Esh $esh $eult
< -GABuck $iIsr $beta $r $gama > < -DMBuck $lsr < $alpha >>

< -CMFatigue $Cf $alpha $Cd > < -IsoHard <$a1 <$limit> > >

$matTag unique material object integer tag

$fy Yield stress in tension (see Figure 1)

$fu Ultimate stress in tension

$Es Initial elastic tangent

$Esh Tangent at initial strain hardening

$esh Strain corresponding to initial strain hardening
$eult Strain at peak stress

-GABuck Buckling Model Based on Gomes and Appleton (1997)

Chapter 11 Limit State Material 114

-DMBuck

-CMFatigue

-IsoHard

-MPCurveParams

$lsr Slenderness Ratio (see Figure 2)

$beta Amplification factor for the buckled stress strain curve. (see
Figure 3)

$r Buckling reduction factor

r can be a real number between [0.0 and 1.0]
r=1.0 full reduction (no buckling)
r=0.0 no reduction

0.0<r<1.0 linear interpolation between buckled and unbuckled
curves

$gamma Buckling constant (see Figures 3 and 4)
Buckling model based on Dhakal and Maekawa (2002)
$lsr Slenderness Ratio (see Figure 2)
$alpha Adjustment Constant usually between 0.75 and 1.0
Default: alpha=1.0, this parameter is optional.
Coffin-Manson Fatigue and Strength Reduction
$Cf Coffin-Manson constant C (see Figure 5)
$alpha Coffin-Manson constant a (see Figure 5)
$Cd Cyclic strength reduction constant
(see Figure 6 and Equation 3)
Isotropic Hardening / Diminishing Yield Plateau
$a1 Hardening constant (default = 4.3)

$limit Limit for the reduction of the yield plateau. % of original
plateau length to remain (0.01 < limit < 1.0)

Limit =1.0, then no reduction takes place (default =0.01)

R

R=R,(1.0-Re¢)(e,)

Menegotto and Pinto Curve Parameters see Fig 6b
$R1 (default = 0.333)
$R2 (default = 18)

$R3 (default = 4)

Chapter 11 Limit State Material 115

NOTE: This simulation is based on the Chang and Mander(1994) uniaxial steel model. The
simulation has incorporated additional reversal memory locations to better control stress
overshooting (default is 10 branches but this can be easily modified by changing the variable
“LastRule_RS” within the header file “ReinforcingSteel.h”). The cycle counting method
implemented in the routine achieves the same result as rainflow counting. Fatigue parameters
are based on the Coffin-Manson equation for plastic strain amplitude as indicated in Figure 6a.
The buckling simulations incorporated consist of a variation on Gomes and Appleton(1997) and
Dhakal and Maekawa(2002). The buckling and fatigue portions of this simulation are still being
further enhanced and refined. Additional buckling and fatigue options should be available in the
near future.

Linear _Liders Strain or . Strain Softening or
Elastic Yield Plateau Strain Hardening Postultimate Strain

/ s
/ / Esh
v

8

=

Engineering Stress

€

sh 8su

Engineering Strain

Figure 1: Material Constants

BACKBONE CURVE: The backbone curve shown in Figure 1 is used as a bounding surface for
the reinforcing bar simulation. This backbone curve is shifted as described by Chang and
Mander (1994) to account for Isotropic hardening. This backbone can be obtained by utilizing
simple tension test data. Within the material class, the backbone curve is transformed from
engineering stress space to natural stress space (accounting for change in area as the bar is
stressed.) This allows the single backbone to represent both tensile and compressive stress-
strain relations. The tension and compression backbone curves are not the same in engineering
stress space for this model! This transformation assumes small strain relations described by
Dodd and Restrepo-Posada (1995)

The softening region (strain greater than eult), shown in Figure 1, is a localization effect due to
necking and is a function of the gage length used during measurement. This geometric effect is
ignored in this simulation. In this simulation, it is assumed that there is no softening in natural
stress space. Because the simulation always converts back to engineering stress space, you
will observe some softening in the tension response due to the reduction in area, however this
will be much smaller than that shown in the original backbone curve proposed by Chang and
Mander.

Chapter 11 Limit State Material 116

DIMINISHING YIELD PLATEAU: It has been observed that when a reinforcing bar is subjected
to plastic strain reversals within the yield plateau, strain hardening will initiate at a lower strain
that that of the same bar loaded monotonically. Additionally, isotropic hardening can result from
repeated strain reversals and is commonly related to accumulated plastic strain. These two
aspects of the stress-strain behavior of steel bars are somewhat related and that by shortening
the yield plateau as a function of accumulated plastic strain, the model will have some capability
to simulate both the diminishing yield plateau and isotropic hardening. The Chang and Mander
model, on which this formulation is based, models only anisotropic hardening by shifting the
backbone curves and by targeting previous reversal points on the backbone curves. By adding
a component of isotropic hardening, the model has additional capabilities and is able to more
accurately simulate test data.

Accumulated plastic strain is tracked within the material model for each branch, plateau
adjustments are made only in the outer branches for simplicity. The plastic strain due to the
backbone curve is ignored so that a monotonically loaded sample can be calibrated to a
monotonic test sample more easily.

d, = Bar Diameter
L = Unsupported Length

Figure 2: Slenderness Defined

Chapter 11 Limit State Material 117

J32

37xlg, \/gly - &,

Qh=ﬂ

Q, +
o =11, = 11, =o)

r=ON
..--"'-,/,\
.7 - , \
r=20. ,// \
A

r=1.0 Unbuckled o vs. ¢

Figure 3: Buckling Parameters

GOMES AND APPLETON BUCKLED CURVE: Figure 3 describes the use of the buckling
parameters modified from Gomes and Appleton(1997). B is an amplification factor that allows
the user to scale the buckling curve. This is useful to adjust the location of the bifurcation point.
The r factor is used to adjust the curve between the buckled curve and the unbuckled curve.
The variable r can only be a real number between 0.0 and 1.0.

Chapter 11 Limit State Material 118

The vy factor is the positive stress location about which the buckling factor is initiated. This factor
was introduced to avoid kinks in the reloading branch. The implementation of the y factor is
shown in Figure 3. The basic idea is that the stress strain curves are reduced toward the
positive stress f... vy should be between 0.0 and 1.0. A vy of 0.0 will factor to the zero stress axis.
This will usually produce a kink in the reloading curve at the zero stress location. Good results

have been obtained using the following values for the buckling constants.

B 1.0 B 2.0
r 04 r 0.0
14 0.5 or 14 0.5

Figure 4 displays the buckling behavior due to the variation of the different constants. The
response shown on the upper left is the unbuckled case. In each of the other cases, buckling

behavior is defined by the constants shown.

Stress
Stress

Iy, =6.0

£=10
r=0.0

Strain r=1.0 Strain

Stress
Stress

£=10
r=04

r=0.0 Strain

Strain

Chapter 11 Limit State Material 119

Figure 4: Effect of Sample Parameters in the Gomes and Appleton Buckling Model

DHAKAL AND MAEKAWA BUCKLED CURVE: The buckling model described in this section is
based on Dhakal and Maekawa(2002). This model takes two terms, Isr and a. Isris the
slenderness ratio as described in Figure 2 and a is an amplification factor. Dhakal and Maekawa
suggest a value of a =1.0 for linear strain hardening and a =0.75 for elastic perfectly plastic
material behavior. The material model in this implementation is neither linear strain hardening
nor elastic perfectly plastic. However, since the material model does include strain hardening
a=1.0 has been assumed as the default value. Figure 5 shows the unbuckled vs buckled stress

strain response curves.

Stress
Stress

Strain Strain

Chapter 11 Limit State Material 120

Figure 5: Effect of Suggested Parameters in the Dhakal and Maekawa Buckling Model

CYCLIC DEGRADATION: C, and a are factors used to relate the number of half cycles to
fracture to the half cycle plastic strain amplitude (Figure 6a). Plastic strain half cycle amplitude

is defined by Equation 1. The total half cycle strain amplitude,gf, is shown in Figure 6b as the

change in strain from reversal A to reversal B. C; and a are used to define a cumulative damage
factor, D, as described in Equation 2.

log (NHG ICycles)

Chapter 11 Limit State Material 121

Figure 6a: Coffin-Manson Constants Figure 6b: Half Cycle Terms Defined

(@)

The cumulative damage factor is zero at no damage and 1.0 at fracture. Once a bar has been
determined to have fractured, the strength is rapidly degraded to zero.

SR O'B

¢

B
Stress-Strain curve
w/odamage /ﬂ-'_:.j S
N

Strength reduced
by the factor @, from
the undamaged curve

Chapter 11 Limit State Material 122

Figure 7: Strength Reduction

A degrade constant, K,, is used to describe loss in strength due to damage or other
phenomenon resulting in softening due to plastic reversals. The degradation is currently
assumed to have a simple linear relationship with D. This is used to correlate strength
degradation to the cumulative damage factor. This linear relationship is shown in Equation 3.

O = K\D (3)

Alternately this simple linear equation can be rewritten in a way that makes the strength
degradation independent of the number of half cycles to failure. Keeping the failure and
degradation terms independent is convenient for calibration. Equation 3 is rewritten below
utilizing the strength degradation constant C..

! (5)

Suggested starting values have been obtained from data reported by Brown and Kunnath (2000)
for bars with a slenderness of 6. Keep in mind that this experimental data is limited and
additional calibration may be necessary to capture realistic behavior in a reinforcing bar
embedded in concrete and influenced by other factors such as confinement.

Chapter 11 Limit State Material 123

a: 0.506
C: 0.26
Ca: 0.389

Sample Simulations of Degradation behavior

a is best obtained from calibration of test results. a is used to relate damage from one strain
range to an equivalent damage at another strain range. This is usually constant for a material

type.

C: is the ductility constant used to adjust the number of cycles to failure. A higher value for C;
will result in a lower damage for each cycle. A higher value C; translates to a larger number of
cycles to failure.

C. is the strength reduction constant. A larger value for C, will result in a lower reduction of
strength for each cycle. The four charts shown in Figure 8 demonstrate the effect that some of
the variables have on the cyclic response.

Chapter 11

Limit State Material

124

Stress

Stress

Strain

Strain

a =0.506
C, =0.260
C, =0.000

C, =0.600

Stress

Stress

Strain

a =0.506
C, =0.260
C,=0.389

Strain

C, =0.389

Chapter 11 Limit State Material 125

Figure 8: Fatigue and Degradation Parameter Examples

In Figure 8, the upper left response contains no strength degradation by setting the C, variable
to 0.0. The upper right response shows strength degradation due to the suggested values of C,,
a, and C.. The response shown on the lower left demonstrates the change in the response
when the suggested values of G, and a are used with C.=0.6. Making the value of C, larger
results in less strength reduction due to damage. The response on the lower right once again
returns to the suggested values but C; is changed to 0.15. This results in a more rapid
accumulation of damage causing the bar to fail sooner. Note however that the strength
degradation is unaffected by the more rapid accumulation of damage. The strength reduction
and failure are not interdependent making the model easier to calibrate.

References

1 Chang, G. and Mander, J. (1994). “Seismic Energy Based Fatigue Damage Analysis of
Bridge Columns: Part | — Evaluation of Seismic Capacity.” NCEER Technical Report 94-
0006.

2 Dodd, L. and Restrepo-Posada, J. (1995). “Model for Predicting Cyclic Behavior of
Reinforcing Steel” J. Struct. Eng., 121(3), 433-445.

3 Gomes, A., and Appleton, J. (1997). “Nonlinear Cyclic Stress-Strain Relationship of
Reinforcing Bars Including Buckling.” Eng. Struct., 19(10), 822—-826.

4 Brown, J. and Kunnath, S.K. (2000). “Low Cycle Fatigue Behavior of Longitudinal
Reinforcement in Reinforced Concrete Bridge Columns.” NCEER Technical Report 00-0007.

5 Dhakal, R. and Maekawa, K. (2002). “Modeling for Postyield Buckled of Reinforcement” J.
Struct. Eng., 128(9), 1139-1147.

126

CHAPTER 12

ReinforcingSteel -- Material
Behavior

Each material was subjected to a series of ten uniaxial tension and compression strain histories.
The following is the response of this material to such strain excursions. The data shown are the
normalized stresses versus strain. In the normalization, the steel stress was divided by the yield
stress Fy and the concrete stress was divided by the absolute value of compressive strength fc -
- to maintain positive tension and negative compression. The first figure shows all 10 load
patterns together, which are subsequently shown individually.

File Mok
Found

File Mok
Found

File Mok
Found

File Mok
Found

File Mok
Found

File Mok
Found

File Mok
Found

File Mok
Found

Elastic Material

This command is used to construct an elastic uniaxial material object.

| uniaxialMaterial Elastic $matTag $E <$eta>

$matTag unique material object integer tag
$E tangent
$eta damping tangent (optional, default=0.0)

Chapter 12 ReinforcingSteel -- Material Behavior 127

Figure 8: Elastic
Material

L

TE

stress or force

, L
strain or deformation

Elastic-Perfectly Plastic Material

This command is used to construct an elastic perfectly-plastic uniaxial material object.

| uniaxialMaterial ElasticPP $matTag $E $epsyP <$epsyN $eps0>

$matTag unique material object integer tag
$E tangent

Chapter 12 ReinforcingSteel -- Material Behavior 128

$epsyP strain or deformation at which material reaches plastic state in
tension
$epsyN strain at which material reaches plastic state in compression
(optional, default: tension value)
$eps0O initial strain (optional, default: zero)
S4 ’
'5 A
o !
© s |8E
E !
fepsh :

I
4 FepsP strain or deformation
$epsﬂ

Chapter 12 ReinforcingSteel -- Material Behavior 129

Figure 9: Elastic-
Perfectly Plastic
Material

Elastic-Perfectly Plastic Gap Material

This command is used to construct an elastic perfectly-plastic gap uniaxial material object.

| uniaxialMaterial ElasticPPGap $matTag $E $Fy $gap <$eta> <damage>

$matTag unique material object integer tag

$E tangent stiffness

$Fy stress or force at which material reaches plastic state

$gap initial gap (strain or deformation)

$eta hardening ratio (=Eh/E), which can be negative

damage a switch to accumulate damage in the material. If damage is
omitted, default value, the gap material "re-centers" on load
reversal.

NOTE: To create a compression-only gap element, NEGATIVE values need to be specified for
$Fy and $gap.

Chapter 12 ReinforcingSteel -- Material Behavior 130

Figure 10: Elastic-

Perfectly Plastic Gap
Material
nk}
i) =
S & =) §
b =
o w
'1.:-_. W
! Foap| (negative value)
1o IR - : >
strain or defarmation
tE
i ; » EFy (negative walue)
» strain or deformation
Foap
TENSION GAP COMPRESSION GAP

Elastic-No Tension Material

This command is used to construct a uniaxial elastic-no tension material object.

uniaxialMaterial ENT $matTag $E

Chapter 12 ReinforcingSteel -- Material Behavior 131

$matTag unique material object integer tag
$E elastic model in compression

In tension, there is zero stress.

Figure 11: Elastic-No
Tension Material

A

- Ll
strain or defarmation

HE

Chapter 12 ReinforcingSteel -- Material Behavior 132

Parallel Material

This command is used to construct a parallel material object made up of an arbitrary number of
previously-constructed UniaxialMaterial (page 47) objects.

| uniaxialMaterial Parallel $matTag $tag1 $tag2 ...

unique material object integer tag

$matTag
identification of materials making up the material model

$tagl $tag2 ...

The parallel material is represented graphically:

Figure 12: Parallel
Material

FrmatTag

Chapter 12 ReinforcingSteel -- Material Behavior 133

In a parallel model, strains are equal and stresses and stiffnesses are
additive:

i | FrnatTag

stress ar force
stress or force

btag?

N

htag2

strain or defarmation strain or defurmatEn

Series Material

This command is used to construct a series material object made up of an arbitrary number of
previously-constructed UniaxialMaterial (page 47) objects.

| uniaxialMaterial Series $matTag $tag1 $tag? ...

$matTag unique material object integer tag
$tag1 $tag2 ... identification of materials making up the material model

Chapter 12 ReinforcingSteel -- Material Behavior 134

The series material is represented graphically:

Stag1 $tagz

g

frnatTag

Figure 13: Series
Material

In a series model, stresses are equal and strains and flexibilities are additive:

F &

stress or force
stress aor force

Ftag1
bmatTag

Ftag2

o
strain or defurmatEn / strain or deformation

Chapter 12 ReinforcingSteel -- Material Behavior 135

Figure 14: Series
Material Relationship

Hardening Material

This command is used to construct a uniaxial material object with combined linear kinematic and
isotropic hardening. The model includes optional visco-plasticity using a Perzyna formulation
(REF?7??)

| uniaxialMaterial Hardening $matTag $E $sigma¥ $H_iso $H_kin <$eta>

$matTag unique material object integer tag

$E tangent stiffness

$sigmayY yield stress or force

$H_iso isotropic hardening Modulus

$H_kin kinematic hardening Modulus

$eta visco-plastic coefficient (optional, default=0.0)
E Fy
% _.

| === TRE$H_iso+EH_kin)
$siomay | ___ FE+TH_iso+§H_kin

$E 1E

strain or defurmatﬁn

=T Faigrray
FEF(EH_iso+FH_Kim
FE+FH_iso+FH_Kin

Figure 15: Hardening
Material

Chapter 12 ReinforcingSteel -- Material Behavior 136

Concrete01 Material -- Zero Tensile Strength

This command is used to construct a uniaxial Kent-Scott-Park concrete material object with
degraded linear unloading/reloading stiffness according to the work of Karsan-Jirsa and no
tensile strength. (REF: Fedeas).

| uniaxialMaterial Concrete01 $matTag $fpc $epsc0 $fpcu $epsU

$matTag unique material object integer tag

$fpc concrete compressive strength at 28 days (compression is
negative)*

$epsco concrete strain at maximum strength*

$fpcu concrete crushing strength *

$epsU concrete strain at crushing strength*

*NOTE: Compressive concrete parameters should be input as negative values.
The initial slope for this model is (2*$fpc/$epsc0)

Chapter 12 ReinforcingSteel -- Material Behavior 137

Figure 16: Concrete01
Material -- Material

Parameters
[ay]
] F Y
i
FepscO
$e;pSU FJI -
! ' strain
= |
1 1
1 1
1 1
1 1
1 1
! 1
! 1
! 1
1 1
! '
————————————— =F4----1%¥fpcu
- Hpe
2*ppcffepscO

Concrete01 Material -- Material Parameters

Chapter 12 ReinforcingSteel -- Material Behavior

138

Concrete Stress [Ksi)

IHFN

T 1 T~

T TS
||
NIV AED
7 =

Concrete Strain [infin]

Chapter 12 ReinforcingSteel -- Material Behavior 139

Figure 17: Typical
Hysteretic Stress-
Strain Relation of
Concrete 1 Model

Typical Hysteretic Stress-Strain Relation of Concrete_1 Model

140

CHAPTER 13

Concrete01 -- Material Behavior

Each material was subjected to a series of ten uniaxial tension and compression strain histories.
The following is the response of this material to such strain excursions. The data shown are the
normalized stresses versus strain. In the normalization, the steel stress was divided by the yield
stress Fy and the concrete stress was divided by the absolute value of compressive strength fc -
- to maintain positive tension and negative compression. The first figure shows all 10 load
patterns together, which are subsequently shown individually.

File Mok
Found

Concrete02 Material -- Linear Tension
Softening

This command is used to construct a uniaxial concrete material object with tensile strength and
linear tension softening. This is a Fedeas Material and the source code may not be available,
yet.

uniaxialMaterial Concrete02 $matTag $fpc $epsc0 $fpcu $epscu $lambda $ft

$Ets
$matTag unique material object integer tag
$fpc compressive strength*
$epsc0O strain at compressive strength*
$fpcu crushing strength*
$epsU strain at crushing strength*
$lambda ratio between unloading slope at $epscu and initial slope
$ft tensile strength
$Ets tension softening stiffness (absolute value) (slope of the linear

tension softening branch)

Chapter 13 Concrete01 -- Material Behavior 141

*NOTE: Compressive concrete parameters should be input as negative values.

Chapter 13 Concrete01 -- Material Behavior

142

The initial slope for this model is (2*$fpc/$epscO)

Figure 18: Concrete02
Material -- Material
parameters

¢,
B 4
-
FlarbdaE, [- <t
- 3 P

(Fepsl) Bfoclly

ihepscl $pc)
HEF2* ¥ poifepsc

Concrete02 Material -- Material parameters

Chapter 13 Concrete01 -- Material Behavior

143

Concrete Stress [ksi]
- (X} £a = Ln

/)
/)

i
b
-

| ———

—

004 0.006 0.008 0o 0z o4 0.046

Concrete Strain [infin]

Chapter 13 Concrete01 -- Material Behavior

144

Figure 19: Typical
Hysteretic Stress-
Strain Relation of
Concrete 2 Model

Typical Hysteretic Stress-Strain Relation of Concrete_2 Model

7

Ve

7\

v

Concrete Stress [ksi]
[X]

/i
)/

==t/

0.005 0004 -0.003

Figure 20: Hysteretic
Stress-Strain Relation
of Concrete_2 Model in
Tension-Compression

Hysteretic Stress-Strain Relation of Concrete_2 Model in Tension-Compression

0002 O G0 0 0002 0003

Concrete Strain [infin]

0.004

0.005

Chapter 13 Concrete01 -- Material Behavior 145

Stress [ksi]

: Il
fﬁ |
[/

#ﬁ
h\\\

=
ka
.
——
e |

15
- 00E -0.004 0003 0002 -0MH 0.0 00 0.002 0003

Strain [inin]

Chapter 13 Concrete01 -- Material Behavior 146

Figure 21: Hysteretic
Stress-Strain Relation
of Concrete_2 Model in
Tension-Compression
(Detail)

Hysteretic Stress-Strain Relation of Concrete_2 Model in Tension-Compression (Detail)

&

j // / ﬁ\ el
[N
AL LA

Concrete Stress [ksi]

-1
1002 0.000 0.002 0.004 0.006 0.008 0.040 0.2 0.4 0.6

Concrete Strain [infin]

Figure 22: Comparison
of Hysteretic Behavior
of Concrete_1 and
Concrete_2 model

Comparison of Hysteretic Behavior of Concrete_1 and Concrete_2 model

147

CHAPTER 14

Concrete02 -- Material Behavior

Each material was subjected to a series of ten uniaxial tension and compression strain histories.
The following is the response of this material to such strain excursions. The data shown are the
normalized stresses versus strain. In the normalization, the steel stress was divided by the yield
stress Fy and the concrete stress was divided by the absolute value of compressive strength fc -
- to maintain positive tension and negative compression. The first figure shows all 10 load
patterns together, which are subsequently shown individually.

File Mok
Found

Concrete03 Material -- Nonlinear Tension
Softening

This command is used to construct a uniaxial concrete material object with tensile strength and
nonlinear tension softening. This is a Fedeas Material and the source code may not be available,
yet.

uniaxialMaterial Concrete03 $matTag $fpc $epsc0 $fpcu $epscu $lambda $ft
$epst0 $ft0 $beta $epstu

$matTag unique material object integer tag

$fpc compressive strength*

$epsc0O strain at compressive strength*

$fpcu crushing strength*

$epsU strain at crushing strength*

$lambda ratio between unloading slope at $epscu and initial slope
(=2*$fpc/$epscO)

$ft tensile strength

$epst0 tensile strain at the transition from nonlinear to linear softening

Chapter 14 Concrete02 -- Material Behavior 148

$ft0 tensile stress at the transition from nonlinear to linear softening
$beta exponent of the tension softening curve
$epstu ultimate tensile strain

Chapter 14 Concrete02 -- Material Behavior

149

*NOTE: Compressive concrete parameters should be input as negative values.

Figure 23: Concrete03
Material -- Material
Parameters

Fheta exponent

(Fepstl A0,

(hepsl) Sfpcll)

(hepscl $hc)
NEF2*¥pcrfepsc

Concrete03 Material -- Material Parameters

Chapter 14 Concrete02 -- Material Behavior 150

Stress [ksi]

f /1
I

—1—/

.00 0004 0003 1.2 -0.001 0000 0.0 0002 0003 0004

Strain [infin]

Chapter 14 Concrete02 -- Material Behavior

151

Figure 24: Hysteretic
stress-strain relation of
Concrete_3 model in
Tension-Compression

Hysteretic stress-strain relation of Concrete_3 model in Tension-Compression

10

08

05

04

e |

!E'

o

n 02

g

?]

0o
===.=.-=-=fd____,_...--=="‘=='

a2 "-—":”]

04

208

0005 00M 008 002 00M 0000 0001 0.002
Strain [in/in]

Figure 25: Hysteretic
stress-strain relation of
Concrete_3 model in
Tension-Compression
(Detail)

Hysteretic stress-strain relation of Concrete_3 model in Tension-Compression (Detail)

0003

152

CHAPTER 15

Concrete03 -- Material Behavior

Each material was subjected to a series of ten uniaxial tension and compression strain histories.
The following is the response of this material to such strain excursions. The data shown are the
normalized stresses versus strain. In the normalization, the steel stress was divided by the yield
stress Fy and the concrete stress was divided by the absolute value of compressive strength fc -
- to maintain positive tension and negative compression. The first figure shows all 10 load
patterns together, which are subsequently shown individually.

Steel01 Material

This command is used to construct a uniaxial bilinear steel material object with kinematic
hardening and optional isotropic hardening described by a non-linear evolution equation (REF:
Fedeas).

| uniaxialMaterial Steel01 $matTag $Fy $EO0 $b <$al1 $a2 $a3 $ad> |

$matTag unique material object integer tag

$Fy yield strength

$EO initial elastic tangent

$b strain-hardening ratio (ratio between post-yield tangent and

initial elastic tangent)

$al, $a2, $a3, $a4 isotropic hardening parameters: (optional, default: no isotropic
hardening)

$a1 isotropic hardening parameter, increase of compression
yield envelope as proportion of yield strength after a
plastic strain of $a2*($Fy/E0).

$a2 isotropic hardening parameter (see explanation under

$at)

Chapter 15 Concrete03 -- Material Behavior

153

$a3

$ad

isotropic hardening parameter, increase of tension yield
envelope as proportion of yield strength after a plastic
strain of $a4*($Fy/EQ)

isotropic hardening parameter (see explanation under
$a3)

Chapter 15 Concrete03 -- Material Behavior 154

stress or force

H=FED

=3
B3]
=

FED

strain or defurmatEn

----Fy

BBED

Chapter 15 Concrete03 -- Material Behavior 155

Figure 26: Steel01
Material -- Material
Parameters of
Monotonic Envelope

Steel01 Material -- Material Parameters of Monotonic Envelope

" I [] N
i) I
_ Pl 1

Stress [ksi]
i
—

80 _,_|r_._ll-l-—-—-'—'_'_'_-'_._h_
20
-100
-0.010 0.000 0.010 0.020 0020 0.040 0.050
Strain [infin]

Figure 27: SteelO1
Material -- Hysteretic
Behavior of Model w/o
Isotropic Hardening

Steel01 Material -- Hysteretic Behavior of Model w/o Isotropic Hardening

Chapter 15 Concrete03 -- Material Behavior 156

Figure 28: Hysteretic

Behavior of Model with
Isotropic Hardening in
Compression
100
B0 T — =
I I
o] I
I
ﬁ 20
]l {! ll]H
=0
ol I 1]
a1
-m-nﬂ.tlm 2.0040 0.0140 0.020 0.020 0040 0.050 0.080
Strain [infin]

Steel01 Material -- Hysteretic Behavior of Model with Isotropic Hardening in Compression

Chapter 15 Concrete03 -- Material Behavior 157

Figure 29: SteelO1
Material -- Hysteretic
Behavior of Steel 1
Model with Isotropic
Hardening in Tension

&
%=-=-===-==
-___“______‘_-_"—\—_‘_‘—

——
]

Stress [ksi

i S
T
]

NN NI
NN N IEENES
L

-850
0010 0000 0010 0020 0030 0040 0050 0.080
Strain [infin]

Steel01 Material -- Hysteretic Behavior of Steel_1 Model with Isotropic Hardening in Tension

Chapter 15 Concrete03 -- Material Behavior 158

159

CHAPTER 16

Steel01 -- Material Behavior

Each material was subjected to a series of ten uniaxial tension and compression strain histories.
The following is the response of this material to such strain excursions. The data shown are the
normalized stresses versus strain. In the normalization, the steel stress was divided by the yield
stress Fy and the concrete stress was divided by the absolute value of compressive strength fc -
- to maintain positive tension and negative compression. The first figure shows all 10 load
patterns together, which are subsequently shown individually.

Chapter 16 Steel01 -- Material Behavior 160

Steel02 Material -- Giuffre-Menegotto-Pinto
Model with Isotropic Strain Hardening

This command is used to construct a uniaxial Giuffre-Menegotto-Pinto steel material object with
isotropic strain hardening.

| uniaxialMaterial Steel02 $matTag $Fy $E $b $RO $cR1 $cR2 $a1 $a2 $a3 $ad |

$matTag unique material object integer tag

$Fy yield strength

$E initial elastic tangent

$b strain-hardening ratio (ratio between post-yield tangent and

initial elastic tangent)

$RO0, $cR1, $cR2 control the transition from elastic to plastic branches.
Recommended values:
$R0=between 10 and 20, $cR1=0.925, $cR2=0.15

$al, $a2, $a3, $a4 isotropic hardening parameters: (optional, default: no isotropic
hardening)

$a1 isotropic hardening parameter, increase of compression
yield envelope as proportion of yield strength after a
plastic strain of $a2*($Fy/$E).

$a2 isotropic hardening parameter (see explanation under

$at)

$a3 isotropic hardening parameter, increase of tension yield
envelope as proportion of yield strength after a plastic
strain of $a4*($Fy/$E)

$ad4 isotropic hardening parameter (see explanation under
$a3)

Chapter 16 Steel01 -- Material Behavior

161

80
E

. [t s /A — L F

m =
E R=20
m —
o) —
= o

2ﬂ -

0 : L |
0.004 0.006 0.002

0.002

STRAIN [infin]

b]

Chapter 16 Steel01 -- Material Behavior 162

Figure 30: Steel02
Material -- Material
Parameters of
Monotonic Envelope

Steel02 Material -- Material Parameters of Monotonic Envelope

100

A T
W/]

Stress [ksi]
I;
[
]

|
/
S A

-B0
-0.010 0.000 0010 0020 0.020 0.040 0.050 0.080

Strain [indin]

Figure 31: Steel02
Material -- Hysteretic
Behavior of Model w/o
Isotropic Hardening

Steel02 Material -- Hysteretic Behavior of Model w/o Isotropic Hardening

Chapter 16 Steel01 -- Material Behavior

163

Stress [ksi]

. =]
R/]
. i 0|
1 I
. / I
Ny [1/
NI ARV,
5 g‘ ,/-/ //

0010 0000 0010 0E20 003 0040 0050 C.080
Strain [infin]

Chapter 16 Steel01 -- Material Behavior 164

Figure 32: Steel02
Material -- Hysteretic
Behavior of Model with
Isotropic Hardening in
Compression

Steel02 Material -- Hysteretic Behavior of Model with Isotropic Hardening in Compression

m A |)
_. 7] I
= LW [
sl .
N l/] 1/
o / 7

ol

Strain [infin]

Figure 33: Steel02
Material -- Hysteretic
Behavior of Model with
Isotropic Hardening in
Tension

Steel02 Material -- Hysteretic Behavior of Model with Isotropic Hardening in Tension

165

CHAPTER 17

Steel02 -- Material Behavior

Each material was subjected to a series of ten uniaxial tension and compression strain histories.
The following is the response of this material to such strain excursions. The data shown are the
normalized stresses versus strain. In the normalization, the steel stress was divided by the yield
stress Fy and the concrete stress was divided by the absolute value of compressive strength fc -
- to maintain positive tension and negative compression. The first figure shows all 10 load
patterns together, which are subsequently shown individually.

Hysteretic Material

This command is used to construct a uniaxial bilinear hysteretic material object with pinching of
force and deformation, damage due to ductility and energy, and degraded unloading stiffness
based on ductility.

uniaxialMaterial Hysteretic $matTag $s1p $el1p $s2p $e2p <$s3p $e3p> $s1n
$e1n $s2n $e2n <$s3n $e3n> $pinchX $pinchY $damagel1 $damage?2

<$beta>
$matTag unique material object integer tag
$s1ip S$elp stress and strain (or force & deformation) at first point of the
envelope in the positive direction
$s2p $e2p stress and strain (or force & deformation) at second point of the
envelope in the positive direction
$s3p $e3p stress and strain (or force & deformation) at third point of the

envelope in the positive direction (optional)

Chapter 17 Steel02 -- Material Behavior

$s1n $eln

$s2n $e2n

$s3n $e3n

$pinchX
$pinchY
$damage1
$damage2
$beta

stress and strain (or force & deformation) at first point of the
envelope in the negative direction*

stress and strain (or force & deformation) at second point of the
envelope in the negative direction*

stress and strain (or force & deformation) at third point of the
envelope in the negative direction (optional)*

pinching factor for strain (or deformation) during reloading
pinching factor for stress (or force) during reloading
damage due to ductility: D,(mu-1)

damage due to energy: D,(E/E.)

power used to determine the degraded unloading stiffness
based on ductility, mu®*= (optional, default=0.0)

*NOTE: negative backbone points should be entered as negative numeric values

24
=]
=
g (Be2p, oop LveaR s
ﬁ
($elp, 510 e
Ko
”
strain or defarmation
(Feln, $s1n
{$e3n, $53n) ($e2n, $52n

Chapter 17 Steel02 -- Material Behavior 167

Figure 34: Hysteretic
Material

168

CHAPTER 18

Hysteretic -- Material Behavior

Each material was subjected to a series of ten uniaxial tension and compression strain histories.
The following is the response of this material to such strain excursions. The data shown are the
normalized stresses versus strain. In the normalization, the steel stress was divided by the yield
stress Fy and the concrete stress was divided by the absolute value of compressive strength fc -
- to maintain positive tension and negative compression. The first figure shows all 10 load
patterns together, which are subsequently shown individually.

Viscous Material

This command is used to construct a uniaxial material object with a non-linear elastic stress-
strain-rate relation given by:

stress =C(strain-rate)*™.

| uniaxialMaterial Viscous $matTag $C $alpha

$matTag unique material object integer tag
$C tangent
$alpha damping tangent

169

CHAPTER 19

nDMaterial Command

This command is used to construct an NDMaterial object which represents stress-strain
relationships at the integration points of continuum and force-deformation elements.

The valid queries to any ND material when creating an ElementRecorder (page 330) are 'strain,’
'stress,’ and 'tangent.’

In This Chapter

Elastic Isotropic Material............cccccciiiiiiiiiiiiiinnns 175
J2 Plasticity Material..........ccccoeeieiiiiiiiiis 176
Plane Stress Materialcccoooeevviieeviieeeieeeeeeeeeiinen, 176
Plate Fiber Materialccoeeveeieieiiiiee e, 177
Template Elasto-Plastic Materialcccooeeee. 177
FluidSolidPorousMaterial Materialcevvuu.... 182

Elastic Isotropic Material

This command is used to construct an Elasticlsotropic material object.

| nDMaterial Elasticlsotropic $matTag $E $v

$matTag unique material object integer tag
$E elastic Modulus
$v Poisson's ratio

The material formulations for the Elasticlsotropic object are "ThreeDimensional," "PlaneStrain,"
"Plane Stress," "AxiSymmetric," and "PlateFiber." These are the valid strings that can be passed
to the continuum elements (page 231, page 227, page 228, page 226, page 227, page 229) for
the type parameter.

Chapter 19 nDMaterial Command 170

J2 Plasticity Material

This command is used to construct a J2Plasticity material object.

| nDmaterial J2Plasticity $matTag $K $G $sig0 $siginf $delta $H

$matTag unique material object integer tag
$K bulk Modulus

$G shear Modulus

$sig0 initial yield stress

$siginf final saturation yield stress
$delta exponential hardening parameter
$H linear hardening parameter

Plane Stress Material

This command is used to construct a plane-stress material wrapper which converts any three-
dimensional material into a plane stress material via static condensation.

| nDMaterial PlaneStress $matTag $threeDtag

$matTag unique material object integer tag
$threeDTag material tag for a previously-defined three-dimensional material

Chapter 19 nDMaterial Command 171

Plate Fiber Material

This command is used to construct a plate-fiber material wrapper which converts any three-
dimensional material into a plate fiber material (by static condensation) appropriate for shell
analysis.

| nDMaterial PlateFiber $matTag $threeDTag

$matTag unique material object integer tag
$threeDTag material tag for a previously-defined three-dimensional material

Template Elasto-Plastic Material

This command is used to construct the template elasto-plastic material object.

nDMaterial Template3Dep $matTag $ElmatTag -YS $ys -PS $ps -EPS $eps <-
ELS1 $el> <-ELT1 $et>

$matTag unique material object tag
$EImatTag previously defined elastic nDMaterial (such as Elasticlsotropic3D (page

175), PressureDependentElastic3D) tag
yield surface variable, previously defined in Yield Surface (page 178) object

potential surface variable, previously defined in Potential Surface (page
179) object

elasto-plastic state variable, previously defined in EPState (page 182)
object

scalar (isotropic) evolution law variable, previously defined in Evolution
Law (page 181) object

E B EEE

tensorial (kinematic) evolution law variable, previously defined in Evolution
Law (page 181) object

Chapter 19 nDMaterial Command 172

Yield Surface

This command sets the yield surface variable ys to be the specified type. Currently these
include: Drucker-Prager yield surface, Rounded Mohr-Coulomb (Willam-Warnke) yield surface,
von Mises yield surface, Cam-Clay yield surface and Leon yield surface.

| set ys "-YieldSurfaceType <parameter list>"

Valid strings for YieldSurfaceType are DP, VM and CC.

» For Drucker-Prager yield surface

| set ys "-DP"

» For von Mises yield surface

| setys "-VM"

» For rounded Mohr-Coulomb (Willam-Warnke) yield surface

| set ys "-RMCO1"

» For Cam-Clay yield surface

| set ys "-CC $M"

M Slope of the critical state line in p-q space

» For Leon yield surface

| set ys "-Leon $fc $ft $e $c"

compressive strength
tensile strength
excentricity of yield surface (usually 0.6-0.7)

& & 2 &

cohesion

Chapter 19 nDMaterial Command 173

Potential Surface

This command is used to set the potential surface variable $ps to the specific surface (or directly
to the flow directions). Currently included are: Drucker-Prager potential surface, Rounded Mohr-
Coulomb (Willam-Warnke) potential surface, von Mises potential surface, Cam-Clay potential
surface and Leon potential surface.

| set ps "-PotentialSurfaceType <parameter list>"

Valid strings for PotentialSurfaceType are DP, VM and CC.

» For the Drucker-Prager potential surface

| set ps "-DP"

» For the von Mises potential surface

| set ps "-VM"

» For rounded Mohr-Coulomb (Willam-Warnke) potential surface

| set ps "-RMC01"

» For the Cam-Clay potential surface

| set ps "-CC $M"
M Slope of the critical state line in p-q space

» For Leon potential surface

| set ps "-Leon $fc $ft $e $c”
$fc compressive strength

Chapter 19 nDMaterial Command 174

Pt tensile strength
$e excentricity of yield surface (usually 0.6-0.7)
$c cohesion

Evolution Law

This command is used to set the evolution law variable el to the specified type. There are two
types of evolutions laws implemented: scalar (isotropic) evolution and tensorial (kinemartic)
evolution. For scalar evolution law, there are linear scalar evolution law and nonlinear scalar
evolution law. For tensorial evolution law, there are linear tensorial evolution law and nonlinear
tensorial evolution law.

set el "-EvolutionLawType <parameter list>"

Valid strings for EvolutionLawType are Leq, NLp, LEij, and NLEij

» For linear scalar evolution law

| set el "-Leq $a"

» For Cam-Clay type nonlinear scalar evolution law

| set el "-NLp $e_o $lambda $k

> For linear tensorial evolution law

set et "-LEij $a1"

» For Armstrong-Frederick type nonlinear tensorial evolution law

| set et "-NLEij $h_a $C_r"

$a linear hardening coefficient
$e o initial void ratio
$lambda nonlinear evolution law constant (Cam-Clay type)

Chapter 19 nDMaterial Command 175

Sk nonlinear evolution law constant (Cam-Clay type)

$al linear tensorial evolution law constant

$h a nonlinear tensorial evolution law constant (Armstrong-Frederick type)
$C r nonlinear tensorial evolution law constant (Armstrong-Frederick type)
EPState

This command is used to set the Elasto-Plastic State, which includes two states.

> To set the initial stress tensor to variable sts, if —stressp $sts is used in eps:

set sts "$sigma_xx $sigma_xy $sigma_xz $sigma_yx $sigma_yy $sigma_yz
$sigma_zx $sigma_zy $sigma_zz"

» To assign to the Elasto-Plastic state variable eps the specified state
parameters

| set eps "<-NOD $nt> -NOS $ns $scalari $scalar2 ... <-stressp $sts>"

$sigma xx $sigma xy $sigma xz Initial stress tensor components (Default = 0.0),
$sigma yx $sigma vy $sigma yz
$sigma zx $sigma zy $sigma zz

$nt number of tensorial internal variables
$ns number of scalar internal variables
$scalar1 $scalar? ... corresponding initial values of scalar internal variables

Psts initial stresses

Chapter 19 nDMaterial Command 176

FluidSolidPorousMaterial Material

FluidSolidPorousMaterial couples the responses of two phases: fluid and solid. The fluid phase
response is only volumetric and linear elastic. The solid phase can be any NDMaterial (page
175). This material is developed to simulate the response of saturated porous media under fully
undrained condition.

nDMaterial FluidSolidPorousMaterial $tag $nd $soilMatTag
$combinedBulkModul

$tag unique material object integer tag
$nd Number of dimensions, 2 for plane-strain, and 3 for general 3D analysis.
$soilMatTag The material number for the solid phase material (previously defined).
$combinedBulkMod Combined undrained bulk modulus B, relating changes in pore pressure
ul and volumetric strain, may be approximated by:

B.=B,/n

where B; is the bulk modulus of fluid phase (2.2x10° kPa for water
typically), and n the initial porosity.

NOTE:

1. Buoyant unit weight (total unit weight - fluid unit weight) should be used in definition of the
finite elements composed of a FluidSolidPorousMaterial.

2. During the application of gravity (elastic) load, the fluid phase does not contribute to the
material response.

OUTPUT INTERFACE:

The following information may be extracted for this material at given integration point, using the
OpenSees Element Recorder facility (McKenna and Fenves 2001): "stress", "strain", "tangent”,
or "pressure". The "pressure" option records excess pore pressure and excess pore pressure

ratio at a given material integration point.

Chapter 19 nDMaterial Command 177

updateMaterialStage

This command is used to update a PressureDependMultiYield, a PressurelndependMultiYield, or
a FluidSolidPorous (page 182) material. To conduct a seismic analysis, two stages should be
followed. First, during the application of gravity load (and static loads if any), set material stage
to 0, and material behavior is linear elastic (with G, and B, as elastic moduli). A FluidSolidPorous
(page 182) material does not contribute to the material response if its stage is set to 0. After the
application of gravity load, set material stage to 1 or 2. In case of stage 2, all the elastic material
properties are then internally determined at the current effective confinement, and remain
constant thereafter. In the subsequent dynamic (fast) loading phase(s), the deviatoric stress-
strain response is elastic-plastic (stage 1) or linear-elastic (stage 2), and the volumetric response
remains linear-elastic.

| updateMaterialStage -material $tag -stage $sNum

$tag previously-defined material object integer tag
$sNum desired stage:

0 — linear elastic,

1 — plastic,

2 — Linear elastic, with elasticity constants (shear modulus and bulk
modulus) as a function of initial effective confinement.

178

CHAPTER 20

section Command

This command is used to construct a SectionForceDeformation object, hereto referred to as
Section, which represents force-deformation (or resultant stress-strain) relationships at beam-
column and plate sample points.

> Whatis a section?

= A section defines the stress resultant force-deformation response at a cross section of a
beam-column or plate element

= Types of sections:

. Elastic — defined by material and geometric constants

. Resultant — general nonlinear description of force-deformation response, e.g. moment-
curvature

. Fiber — section is discretized into smaller regions for which the material stress-strain

response is integrated to give resultant behavior, e.g. reinforced concrete

The valid queries to any section when creating an ElementRecorder (page 330) are 'force' and
‘deformation.’

element node inteqration points element node

b
[% = - - » |

1

element

force-deformation
[stress-straind

Chapter 20 section Command 179

Figure 35: Section

Representation

In This Chapter

Elastic Section.........ccceviiiiiiiii e 187
Uniaxial SeCON.........uuvviiiiiiiiiiiiiiieieeieeieeeeeeeeeeeeeeeeeees 187
Fiber Section ... 189
Section Aggregator........cccoucuveieiiiieeeeerieee e 199
Elastic Membrane Plate Section...........cccccccvveeiinnns 202
Plate Fiber Section........cccccvvvvvvviiiiiiieeeeee 202
Bidirectional Section...........cooecviiiieieeei e, 203
Isolator2spring Section: Model to include buckling behavior of an
elastomeric bearing ... 204

Elastic Section

This command is used to construct an ElasticSection object.

| section Elastic $secTag $E $A $iz <$ly $G $J>

$secTag unique section object tag

$E Young's Modulus

$A cross-sectional area of section

$iz second moment of area about the local z-axis

Sly second moment of area about the local y-axis (optional, used for
3D analysis)

$G Shear Modulus (optional, used for 3D analysis)

$J torsional moment of inertia of section (optional, used for 3D
analysis)

This command is useful for patch tests of the nonlinear beam-column elements (page 216). It
also allows nonlinear beam-column elements to be used for elastic analysis.

EXAMPLE:

section Elastic 1 29000 100 100000 80000 20000 100000; # create elastic section with
IDtag 1

Chapter 20 section Command 180

Uniaxial Section

This command is used to construct a UniaxialSection object which uses a previously-defined
UniaxialMaterial (page 47) object to represent a single section force-deformation response
quantity. (Formerly known as Generic1d section, which is still accepted by OpenSees)

| section Uniaxial $secTag $matTag $string

$secTag unique section object tag
$matTag previously-defined UniaxialMaterial (page 47) object
$string the force-deformation quantity to be modeled by this section
object. One of the following strings is used:
P Axial force-deformation
Mz Moment-curvature about section local z-axis
Vy Shear force-deformation along section local y-axis
My Moment-curvature about section local y-axis
Vz Shear force-deformation along section local z-axis
T Torsion Force-Deformation

EXAMPLE:

section Uniaxial 1 1 Mz; # create sectionlD-tag 1 from UniaxialMateriallD-tag 1 for the
moment-curvature about section local z-axis.

Chapter 20 section Command 181

Fiber Section

The FiberSection object is composed of Fiber objects.

A fiber section has a general geometric configuration formed by subregions of simpler, regular
shapes (e.g. quadrilateral, circular and triangular regions) called patches. In addition, layers of
reinforcement bars can be specified. The subcommands patch (page 192) and layer (page 197,
page 196) are used to define the discretization of the section into fibers. Individual fibers,
however, can also be defined using the fiber (page 191) command (During generation, the Fiber
objects are associated with uniaxialMaterial (page 47) objects, which enforce Bernoulli beam
assumptions.

The geometric parameters are defined with respect to a planar local coordinate system (y,z).
See figures.

section Fiber $secTag {
fiber <fiber arguments>
patch <patch arguments>

layer <layer arguments>

An example fiber section is shown in the Figure.

Chapter 20 section Command 182

Figure 36: Fiber
Section

radius

Chapter 20 section Command 183

Fiber Command

This command is used to construct a UniaxialFiber object and add it to the section.

| fiber $yLoc $zLoc $A $matTag

$yLoc y coordinate of the fiber in the section (local coordinate system)
$zLoc z coordinate of the fiber in the section (local coordinate system)

$A area of fiber

$matTag material tag of the pre-defined UniaxialMaterial (page 47) object used

to represent the stress-strain for the area of the fiber

NOTE: in 2D (page 37) bending is about the local z-axis

EXAMPLE:

fiber 0.0 0.0 1.0 1; # create a single fiber of area 1.0 at the origin (0,0) of the section, using
materiallDtag 1

Figure 37: Fiber

Command
/ A

[]
. (fvLoc, fzlac)

.

Chapter 20 section Command 184

Quadrilateral Patch Command

This command is used to construct a Patch object with a quadrilateral shape. The geometry of
the patch is defined by four vertices: | J K L, as illustrated in the Figure. The coordinates of each
of the four vertices is specified in sequence -- counter-clockwise.

patch quad $matTag $numSubdivlid $numSubdivJK $yl $z1 $yd $zJ $yK $zK $yL

$zL

$matTag material integer tag of the previously-defined UniaxialMaterial
(page 47) object used to represent the stress-strain for the
area of the fiber

$numSubdiviJ number of subdivisions (fibers) in the IJ direction.

$numSubdivJK number of subdivisions (fibers) in the JK direction.

Syl $zi y & z-coordinates of vertex | (local coordinate system)

$SyJ $zJ y & z-coordinates of vertex J (local coordinate system)

$yK $zK y & z-coordinates of vertex K (local coordinate system)

$yL $zL y & z-coordinates of vertex L (local coordinate system)

Chapter 20 section Command
NOTE: in 2D (page 37) bending is about the local z-axis

EXAMPLE:

patch quad $coreMatTag 8 8 -$b -$h $b -$h $b $h -$b $h; # define core patch with 8
subdivisions within a rectange of width 2b and depth 2h

K (i, $zK)

L (L, $zL3

ylp.nl:pqﬂgmug

=

J (v, Fz0)
il
| (Fyl, Bzl
ki

185

Chapter 20 section Command

186

Figure 38:
Quadrilateral Patch

Circular Patch Command

This command is used to construct a Patch object with a circular shape.

patch circ $matTag $numSubdivCirc $numSubdivRad $yCenter $zCenter
$intRad $extRad <$startAng $endAng>

$matTag

$numSubdivCirc

$numSubdivRad
$yCenter $zCenter
$intRad

$extRad

$startAng

$endAng

material integer tag of the previously-defined UniaxialMaterial
(page 47) object used to represent the stress-strain for the
area of the fiber

number of subdivisions (fibers) in the circumferential
direction.

number of subdivisions (fibers) in the radial direction.
y & z-coordinates of the center of the circle

internal radius

external radius

starting angle (optional. default=0.0)

ending angle (optional. default=360.0)

NOTE: in 2D (page 37) bending is about the local z-axis

Chapter 20 section Command 187

EXAMPLE:

patch circ $coreMatTag 8 8 0.0 0.0 0.0 $h; # define core patch with 8 subdivisions within a
whole circle of diameter 2h

§rumsubdivGira=4

Chapter 20 section Command 188

Figure 39: Circular
Patch

Straight Layer Command

This command is used to construct a straight layer of reinforcing bars.

| layer straight $matTag $numBars $areaBar $yStart $zStart $yEnd $zEnd

$matTag material integer tag of the previously-defined UniaxialMaterial
(page 47) object used to represent the stress-strain for the area
of the fiber

$numBars number of reinforcing bars along layer

$areaBar area of individual reinforcing bar

$yStart $zStart y and z-coordinates of starting point of reinforcing layer (local
coordinate system)

$yEnd $zEnd y and z-coordinates of ending point of reinforcing layer (local
coordinate system)

NOTE: in 2D (page 37) bending is about the local z-axis

EXAMPLE:

layer straight $steelMatTag 10 0.11 -b -h b -h; # define steel layer of 10 bars with area 0.11
at bottom of section of width 2b by 2h

Chapter 20 section Command 189

Figure 40: Straight
Layer

R
FrnumBars=*5 =" (ByEnd, 5zEnd)

Circular Layer Command

This command is used to construct a circular layer of reinforcing bars.

layer circ $matTag $numBar $areaBar $yCenter $zCenter $radius <$startAng

$endAng>
$matTag material integer tag of the previously-defined
UniaxialMaterial (page 47) object used to represent the
stress-strain for the area of the fiber
$numBar number of reinforcing bars along layer

$areaBar area of individual reinforcing bar

Chapter 20 section Command 190

$yCenter $zCenter y and z-coordinates of center of reinforcing layer (local
coordinate system)

$radius radius of reinforcing layer

$startAng $endAng starting and ending angle of reinforcing layer, respectively.
(Optional, Default: a full circle is assumed 0-360)

NOTE: in 2D (page 37) bending is about the local z-axis

EXAMPLE:

layer circ $steelMatTag 10 0.11 0.0 0.0 $h 0 360; # define circular steel layer of 10 bars with
area 0.11 uniformly distributed along circumference of circle of diameter 2h

i

. '}wCemer, FzCenter)

Chapter 20 section Command 191

Figure 41: Circular
Reinforcing Layer

Section Aggregator

This command is used to construct a SectionAggregator object which groups previously-defined
UniaxialMaterial (page 47) objects into a single section force-deformation model.

section Aggregator $secTag $matTag1 $string1 $matTag2 $string2 <-
section $sectionTag>

$secTag unique section object integer tag
$matTag1, previously-defined UniaxialMaterial (page 47) objects
$matTag2 ...

$string1, $string2 the force-deformation quantities corresponding to each section
- object. One of the following strings is used:

P Axial force-deformation
Mz Moment-curvature about section local z-axis
Vy Shear force-deformation along section local y-axis
My Moment-curvature about section local y-axis
Vz Shear force-deformation along section local z-axis
T Torsion Force-Deformation
<-section specifies a previously-defined Section (page 185) object
$sectionTag> (identified by the argument $sectionTag) to which these

UniaxialMaterial (page 47) objects may be added to recursively
define a new Section (page 185) object

NOTE: The UniaxialMaterial (page 47) objects aggregated in this Section (page 185) object are
uncoupled from each other as well as from the Section (page 185) object represented by
$sectionTag, if present.

There are two main tasks that can be performed using the Section Aggregator:

Chapter 20 section Command 192

» 1. Group previously defined uniaxial materials to describe stress resultant
section behavior

Figure 42: Section
Aggregator 1

o
v + = o
oo b, -

EXAMPLE:

section Aggregator 1 2 Vy 5 Mz; #create new section with IDtag 1, taking the existing material
tag 2 to represent the shear and the existing material tag 5 to represent the moment.

Chapter 20 section Command 193

» 2. Add to an existing section

Figure 43: Section
Aggregator 2

Vy
| > ﬂ}%
P, Mz, Vy
0 @
P, Mz
EXAMPLE:

section Aggregator 2 2 Vy -section 4; # create new section with IDtag 2, taking the existing
material tag 2 to represent the shear and adding it to the existing section tag 4, which may be a
fiber section where the interaction betweeen axial force and flexure is already considered.

Chapter 20 section Command 194

Elastic Membrane Plate Section

This command is used to construct an ElasticMembranePlateSection object, which is an
isotropic section appropriate for plate and shell analysis.

| section ElasticMembranePlateSection $secTag $E $nu $h $rho

$secTag unique section object tag

$E Elastic Modulus

$nu Poisson's Ratio

$h thickness of the plate section

$rho mass density of the material (per unit volume)

Plate Fiber Section

The plate fiber section takes any plate fiber material (page 177) and, by thickness integration,
creates a plate section appropriate for shell analysis.

| section PlateFiber $secTag $fiberTag $h

$secTag unique section object tag for section being constructed
$fiberTag material tag for a previously-defined plate fiber material (page
177)

$h thickness of the plate section

Chapter 20 section Command 195

Bidirectional Section

This command is used to construct a Bidirectional section object which is the two-dimensional
generalization of a one-dimensional elasto-plastic model with linear hardening.

| section Bidirectional $matTag $E $sigY $H_iso $H_kin

$matTag unique section object integer tag
$E Elastic Modulus

$sigY yield stress

$H_iso isotropic hardening Modulus
$H_kin kinematic hardening Modulus

Chapter 20 section Command 196

Isolator2spring Section: Model to include
buckling behavior of an elastomeric bearing

Author: Keri L. Ryan

Assistant Professor, Utah State University

Contact: http://www.engineering.usu.edu/cee/faculty/kryan/

This command is used to construct an Isolator2spring section object, which represents the
buckling behavior of an elastomeric bearing for two-dimensional analysis in the lateral and
vertical plane. An Isolator2spring section represents the resultant force-deformation behavior of
the bearing, and should be used with a zeroLengthSection element. The bearing should be
constrained against rotation.

| section Iso2spring $matTag $tol $k1 $Fyo $k20 $kvo $hb $PE <$Po>

$matTag unique section object integer tag
S$tol tolerance for convergence of the element state. Suggested

value: E-12 to E-10. OpenSees will warn if convergence is not
achieved, however this usually does not prevent global

convergence.
$k1 initial stiffness for lateral force-deformation
$Fyo nominal yield strength for lateral force-deformation
$k20 nominal postyield stiffness for lateral force-deformation
kvo nominal stiffness in the vertical direction
$hb total height of elastomeric bearing
$PE Euler Buckling load for the bearing
$Po axial load at which nominal yield strength is achieved (optional,

default = 0.0, i.e. no strength degradation)

Chapter 20 section Command 197

Model Characteristic:

This material model is based on a two-spring mechanical model of an elastomeric bearing,
originally developed by Koh and Kelly [1987] (Figure 1). The model yields the approximate
results as predicted by stability analysis of a multi-layer bearing. The axial flexibility of the
bearing is modeled by an additional vertical spring in series (not shown in Figure 1). The original
model included only linear material behavior. The rotational stiffness is given by K, = Pfhﬁ
7 EI,
A —

where ? is the Euler buckling load as a function of bending stiffness Els and
GA
Ky =—
bearing height hb. The nominal shear stiffness L and the vertical

© _EA

[oE

stiffness L , Where G is the shear modulus, Ec is the compression modulus, A is the
cross-sectional area, and tr is the total height of rubber. Ec and G can be related by the bearing
shape factor S [Kelly 1997].

Kb

Chapter 20 section Command 198

Figure 1: Two-spring model of an isolation bearing in the undeformed and deformed
configuration.

In this implementation, the linear shear spring has been replaced by a bilinear spring to
represent the nonlinear behavior observed in elastomeric and lead-rubber bearings [Ryan et. al
2005] (Figure 2). The nonlinear behavior is implemented by rate-independent plasticity with
kinematic hardening [Simo and Hughes 1998]. The behavior of the nonlinear spring is controlled
by the initial stiffness k1, yield strength Fyo, and postyield stiffness k20.

Force

Deformation

Figure 2: Bilinear shear spring and parameters.

Also included is an optional variation of strength with axial load, to represent the inability
of lead-plug bearings to achieve their full strength when lightly loaded, as has been
experimentally observed. An empirical equation for the yield strength as a function of
compressive load has been developed from experimental data:

E,(t)=F, (1-exp(-P/P))

Chapter 20 section Command 199

where P is the compressive load on the bearing and Po is the axial load at which approximately
63% of the nominal strength is achieved (Figure 3). The bearing is assumed to have an acting
yield strength of zero in tension. If not specified, Po = 0, which means that the strength equals
the nominal yield strength and no strength degradation occurs.

F

Figure 3: Empirical model for yield strength degradation.

The equilibrium equations and kinematic constraints for the two-spring model form a system of
five nonlinear equations (below) which are solved by an internal iterative Newton algorithm (this
is iteration within the material object). The stiffness matrix is formed by taking differentials of the
equilibrium and kinematic equations. The return mapping algorithm is implemented at each
iteration to determine the state of the shear spring.

F,—f.(s)+P8=0

F,h, — P h,0+ P(s+ h,6)=0
P-K v=0

u, =s+h,0

-

f
14

U, =v+s6+

i

Chapter 20 section Command 200

Not defined previously, v is the deformation due to the vertical spring and ubv is the total vertical
deformation, including the geometric effect of tilting.

Analysis of the linear two-spring model leads to the following approximate coupled lateral
force-deformation and vertical force-deformation equations:

Fi

F,=Ku, =K, l—i U,

oo)

P P =.[PK, h
cr where ¢’ E7789"% s the critical buckling load for

the bearing, and

P, (K, h, + Pu;
K P.h,

v

HE.'V =

That is, lateral stiffness decreases as the axial load on the bearing approaches the critical load,
and vertical flexibility increases in the laterally deformed configuration.

Example:

The following example demonstrates a simple cyclic lateral load test, and was used to produce
the lateral force deformation behavior shown in Figure 4 by variation of the parameters P/Pcr
and P/Po in the script file (page 210).

Chapter 20 section Command 201

0.3 : : : : : 0.3
0.2t 0.2
Z o1 Z 01
= =
g g
S 0t S 0
L L
= =
= 01} = 01
— —
0.2} 0.2
. . . . 0.8 . . .
-30 -20 -10 0 10 20 30 -30 -20 -10 0
Lateral Deformation {cm) Lateral Deformation (cm)

Figure 4: Cyclic lateral force deformation behavior of a bearing as a function of axial load: (a)
postyield stiffness degrades as axial load P approaches the critical load Pcr, (b) yield strength
degrades as axial load decreases relative to Po.

References:

Ryan, Keri L., James M. Kelly and Anil K. Chopra (2005). “Nonlinear model for lead-rubber
bearings including axial-load effects” Journal of Engineering Mechanics, ASCE, 131(12).

Kelly, James M. (1997). Earthquake-Resistant Design with Rubber. Springer-Verlag.

Koh, C.-G. and Kelly, J. M. (1987). “Effects of axial load on elastomeric isolation bearings”, Rep.
No. UCB/EERC-86/12. Earthquake Engineering Research Center, University of California,
Berkeley.

Kelly, James M. (2003). “Tension buckling in multilayer elastomeric bearings”, Journal of
Engineering Mechanics, ASCE, 129(12):1363-1368.

Simo, J. C and T. J. R. Hughes (1998). Computational Inelasticity. New York, NY, Springer.

CyclicLoading_lso2spring.tcl

Test Example for ISOLATOR2SPRING material
Written: K. Ryan

Date: November 22, 2005

#

Description: A Single DOF isolator supporting a rigid mass. Generates lateral force deformation through

Chapter 20 section Command

202

application of a pseudo-static cyclic (sinusoidal) lateral force. Force deformation behavior varies
as a function of the axial load P and normalized values of P/Pcr and P/Po

#

Units: cm, dimensionless

set g 982.0
set Pl [expr 2.0 * asin(1.0)]

Define the model builder
model BasicBuilder -ndm 2 -ndf 3

Assumed parameters which define system

Period associated with second stiffness k20

set Tb 2.5

Normalized axial load parameter P/Pcr. Vary to produce data for Figure 4a
set PPcr 0.001

Normalized axial load paramter P/Po. Vary to produce data for Figure 4b
set PPo 0.25

Unit mass

setM 1.0

Bearing shape factor

set S 20.0

Yield displacement

setuy 1.0

Strength coefficient (determines yield strength)

set mu 0.1

set tol 1.0e-10

Parameters computed from the assumed ones
set wb [expr (2.0*$PI/$Tb)]

set k20 [expr $wb*$wb*$M]

set Fyo [expr $mu*$M*$g + $k20*$uy]
set k1 [expr $Fyo/$uy]

set kvo [expr 6.0*$S*$S*$k20]

set Pcr [expr $M*$g/$PPcr]

set Pe [expr 50.0*$Pcr]

set Ps [expr 1.0/50.0*$Pcr]

set hb [expr $Ps/$k20]

set Po [expr $M*$g/$PPo]

Define nodes
node1 0.0 0.0
node2 0.0 0.0

Define single point constraints (Constrain the isolator against rotation)
fix1 111
fix2 001

Create Iso2spring section

section Iso2spring 1 $tol $k1 $Fyo $k20 $kvo $hb $Pe $Po
id ndl ndJ mattag

element zeroLengthSection 1 1 2 1

Apply gravity load on isolated mass
set P [expr $M*$g]
pattern Plain 1 "Linear" {
load 2 0.0 -[expr $P] 0.0
}

system BandSPD

Chapter 20

section Command

203

constraints Plain

numberer Plain

test Energylncr 1.0e-15 100
algorithm Newton

integrator LoadControl 0.1 1 0.1 0.1
analysis Static

initialize

analyze 10

loadConst -time 0.0

Estimated postyield stiffness degradation
set k2oest [expr $k20*(1.0-$PPcr*$PPcr)]
Estimated yield strength degradation

set Fyoest [expr $Fyo*(1.0-exp(-$PPo))]

Define amplitude of cyclic force to induce approx. 20 cm deformation
set Fu [expr $Fyoest + $k20est*20.0]
Apply sinusoidal lateral load
set SinePath "Trig 0.0 1.5 1.0"
pattern Plain 2 $SinePath {
load 2 $Fu 0.0 0.0
}

wipeAnalysis
recorder Node -file Node2.out -node 2 -dof 1 disp
recorder Element 1 -file Elem1.out force

system BandGeneral

constraints Plain

numberer Plain

test Energylncr 1.0e-15 100

algorithm Newton

integrator LoadControl 0.01 1 0.001 0.1
analysis Static

analyze 1500

print ele 1
print node 2

204

CHAPTER 21

element Command

This command is used to construct an Element object.

In This Chapter

Truss Elementcoooueiiieiiiieee e 213
Corotational Truss Elementccceeviiivieiiiiiinnnnnes 214
Elastic Beam Column Element............cccoeevvevveieneene. 215
NonLinear Beam-Column Elementsc..cccoueeeenneee. 216
Zero-Length Elements.........cccccoiiiii, 222
Quadrilateral Elements.........ccooveviiieeiiiiiieeeeeeeeeee 226
Brick EIemMentsc..oiieiiiiieee e 229
FourNodeQuadUP Element.........cccceeviveieiiiiiiininennns. 237
BeamColumndJoint Element...........ccooveiviiiiiiiiiinnnnen. 238

Truss Element

This command is used to construct a truss element object. There are two ways to construct a
truss element object:

One way is to specify an area and a UniaxialMaterial (page 47) identifier:

| element truss $eleTag $iNode $jNode $A $matTag

the other is to specify a Section (page 185) identifier:

| element truss $eleTag $iNode $jNode $secTag

$eleTag unique element object tag

$iNode $jNode end nodes

$A cross-sectional area of element

$matTag E;a% associated with previously-defined UniaxialMaterial (page

$secTag tag associated with previously-defined Section (page 185)

Chapter 21 element Command 205

When constructed with a UniaxialMaterial (page 47) object, the truss element considers strain-
rate effects, and is thus suitable for use as a damping element.

The valid queries to a truss element when creating an ElementRecorder (page 330) object are
‘axialForce,' 'stiff,' deformations,' 'material matArg1 matArg2...,' 'section sectArg1 sectArg2...'
There will be more queries after the interface for the methods involved have been developed
further.

Corotational Truss Element

This command is used to construct a Corotational Truss (CorotTruss) element object. A
corotational formulation adopts a set of corotational axes which rotate with the element, thus
taking into account an exact geometric transformation between local and global frames of
reference.

There are two ways to construct a Corotational Truss element object:

One way is to specify an area and a UniaxialMaterial (page 47) identifier:

| element corotTruss $eleTag $iNode $jNode $A $matTag

the other is to specify a Section (page 185) identifier:

| element corotTruss $eleTag $iNode $jNode $secTag

$eleTag unique element object tag

$iNode $jNode end nodes

$A cross-sectional area of element

$matTag tag associated with previously-defined UniaxialMaterial (page
47) object

$secTag tabg associated with previously-defined Section (page 185)
object

NOTE: When constructed with a UniaxialMaterial (page 47) object, the truss element considers
strain-rate effects, and is thus suitable for use as a damping element.

The valid queries to a corotational truss element when creating an ElementRecorder (page 330)
object are 'axialForce,' 'stiff,' 'material $matNum matArg1 matArg2...," 'section $secNum
sectArg1 sectArg2...'

Chapter 21 element Command 206

Elastic Beam Column Element

This command is used to construct an elasticBeamColumn element object. The arguments for
the construction of an elastic beam-column element depend on the dimension of the problem,
ndm (page 31):

For a two-dimensional problem:

| element elasticBeamColumn $eleTag $iNode $jNode $A $E $lz $transfTag

For a three-dimensional problem:

element elasticBeamColumn $eleTag $iNode $jNode $A $E $G $J $ly $iz

$transfTag
$eleTag unique element object tag
$iNode $jNode end nodes
$A cross-sectional area of element
$E Young's Modulus
$G Shear Modulus
$J torsional moment of inertia of cross section
$iz second moment of area about the local z-axis
Sly second moment of area about the local y-axis
$transfTag identifier for previously-defined coordinate-transformation (page

302) (CrdTransf) object

The valid queries to an elastic beam-column element when creating an ElementRecorder (page
330) object are 'stiffness' and 'force.'

Chapter 21 element Command 207

NonLinear Beam-Column Elements

There are basically two types of Nonlinear Beam-Column Elements

» Force based elements
= Distributed plasticity (nonlinearBeamColumn (page 216))
= Concentrated plasticity with elastic interior (beamWithHinges (page 218))

» Displacement based element
= Distributed plasticity with linear curvature distribution (dispBeamColumn (page 222))

Nonlinear Beam Column Element

This command is used to construct a nonlinearBeamColumn element object, which is based on
the non-iterative (or iterative) force formulation, and considers the spread of plasticity along the

element.

element nonlinearBeamColumn $eleTag $iNode $jNode $numintgrPts $secTag
$transfTag <-mass $massDens> <-iter $maxliters $tol>

$eleTag

$iNode $jNode
$numintgrPts
$secTag
$transfTag

$massDens
$maxlters

$tol

unique element object tag

end nodes

number of integration points along the element.

identifier for previously-defined section (page 185) object

identifier for previously-defined coordinate-transformation (page
302) (CrdTransf) object

element mass density (per unit length), from which a lumped-
mass matrix is formed (optional, default=0.0)

maximum number of iterations to undertake to satisfy element
compatibility (optional, default=1)

tolerance for satisfaction of element compatibility (optional,
default=10"°)

The integration along the element is based on Gauss-Lobatto quadrature rule (two integration
points at the element ends).

Chapter 21 element Command 208

The element is prismatic, i.e. the beam is represented by the section (page 185) model identified
by $secTag at each integration point.

The -iter switch enables the iterative form of the flexibility formulation. Note that the iterative
form can improve the rate of global convergence at the expense of more local element
computation.

The valid queries to a nonlinear beam-column element when creating an ElementRecorder
(page 330) object are 'force,' 'stiffness," and 'section $secNum secArg1 secArg2...' Where
$secNum refers to the integration point whose data is to be output.

Useful references for this element are found in the References (page 473, http://www.) chapter.

Beam With Hinges Element

Contact Author: Michael H. Scott
Oregon State University

http://web.engr.oregonstate.edu/~mhscott/

This command is used to construct a beamWithHinges element object, which is based on the
non-iterative (or iterative) flexibility formulation, and considers plasticity to be concentrated over
specified hinge lengths at the element ends.

Note, the beamWithHinges element localize plastic hinging at the element ends only.

This type of element divides the element in three parts: two hinges at the ends, and a linear-

eleastic region in the middle. The hinges are defined by assigning to each a previously-defined
section. The length of the each hinge is also specified by the user:

user-defined sections

node i node j

Linear Elastic +

L

Chapter 21 element Command 209

While the integration of distributed-plasticity force-base elements distributes the gauss points
along the entire element length, the beamWithHinges element localizes the integration points in
the hinge regions. Two integration points per hinge are used to be able represent the curvature
distribution accurately -- Gauss-Radau Integration:

2Lp; Eozl Ztej e
. P s3-L- T S 4-
| = =2__
=1, 0 3 1 1
1 1 1 1
i i i i
| — Linear Elastic
i i i
1 1 1
1 I : [
Lp; _BLpi 3ij ij
B =— E"E'T 53=T By=—

Two integration points per hinge, however, require too much computational overhead. A
Modified Gauss-Radau Integration, developed by Scott et al., would apply the Gauss-Radau
hinge integration over 4Lp instead of Lp. Elastic properties are then applied to the interior
integration points, where a closed-form solution is used:

Eij

g Lp;
£4=0 %2=_| Ea=l-— EaL

1 1 2 1 2 1
1 [} 1 1
LI] L] 1
1 [) : 1

I . .

qlrx Linear Elastic i
| - + +

[} 1 1
LI ! ! 1
Y (N

Chapter 21 element Command 210

There are many advantages to this formulation over the other types of beamWithHinges:

Nonlinear behavior is confined to the integration points at the element ends.
The user only needs to specify the length of each hinge.

Captures largest bending moment at the ends.

Represents linear curvature distributions exactly.

Characteristic length is equal to Lp when deformations localize.

The arguments for the construction of the element depend on the dimension of the problem,
ndm (page 31).

For a two-dimensional problem:

element beamWithHinges $eleTag $iNode $jNode $secTagl $Lpi $secTagd $Lpj
$E $A $lz $transfTag <-mass $massDens> <-iter $maxlters $tol>

For a three-dimensional problem:

element beamWithHinges $eleTag $iNode $jNode $secTagl $Lpi $secTagd $Lpj
$E $A $lz $ly $G $J $transfTag <-mass $massDens> <-iter $maxliters

$tol>

$eleTag unique element object tag

$iNode $jNode end nodes

$secTagl identifier for previously-defined section (page 185) object
corresponding to node i

$Lpi hinge length at node i

$secTagJ identifier for previously-defined section (page 185) object
corresponding to node j

$Lpj hinge length at node |

$E Young's Modulus

$A area of element cross-section

$lz section moment of inertia about the section local z-axis

Sly section moment of inertia about the section local y-axis

$G Shear Modulus

$J torsional moment of inertia of cross section

Chapter 21 element Command 211

$transfTag identifier for previously-defined coordinate-transformation (page
302) (CrdTransf) object
$massDens element mass density (per unit length), from which a lumped-

mass matrix is formed (optional, default=0.0)

$maxliters maximum number of iterations to undertake to satisfy element
compatibility (optional, default=1)

$tol tolerance for satisfaction of element compatibility (optional,
default=10"°)

The -iter switch enables the iterative form of the flexibility formulation. Note that the iterative
form can improve the rate of global convergence at the expense of more local element
computation.

NOTE: The elastic properties are integrated only over the beam interior, which is considered to
be linear-elastic.

The valid queries to a beamWithHinges element when creating an ElementRecorder (page 330)
object are 'force,' 'stiffness,’ 'rotation’ (hinge rotation), or 'section $secNum secArg1 secArg2..."
Where $secNum refers to the integration point whose data is to be output.

NOTE: The beamWithHinges element used here has four elastic sections and two fiber section
at the end. Therefore for output in specifying $secNum:

$secNum=1: hinge at node i

$secNum=6: hinge at node j

Reference:

Scott, M.H. and G.L. Fenves. "Plastic Hinge Integration Methods for Force-Based Beam-Column
Elements”, Journal of Structural Engineering, ASCE, 132(2):244-252, February 2006.

Displacement-Based Beam-Column Element

This command is used to construct a dispBeamColumn element object, which is a distributed-
plasticity, displacement-based beam-column element.

element dispBeamColumn $eleTag $iNode $jNode $numintgrPts $secTag
$transfTag <-mass $massDens>

Chapter 21 element Command 212

$eleTag unique element object tag

$iNode $jNode end nodes

$numintgrPts number of integration points along the element.

$secTag identifier for previously-defined section (page 185) object

$transfTag identifier for previously-defined coordinate-transformation (page
302) (CrdTransf) object

$massDens element mass density (per unit length), from which a lumped-

mass matrix is formed (optional, default=0.0)

The integration along the element is based on the Gauss-Legendre quadrature rule (REF??77?).

The element is prismatic, i.e. the beam is represented by the section model identified by
$secTag at each integration point.

The valid queries to a displacement-based beam-column element when creating an
ElementRecorder (page 330) object are 'force,' 'stiffness,’ and 'section $secNum secArg1
secArg2...' Where $secNum refers to the integration point whose data is to be output.

Zero-Length Elements

Zero-length elements connect two points at the same coordinate.

Zero-Length Element

This command is used to construct a zeroLength element object, which is defined by two nodes
at the same location. The nodes are connected by multiple UniaxialMaterial (page 47) objects to
represent the force-deformation relationship for the element.

element zeroLength $eleTag $iNode $jNode -mat $matTag1 $matTag2 ... -dir
$dir1 $dir2 ... <-orient $x1 $x2 $x3 $yp1 $yp2 $yp3>

$eleTag unique element object tag
$iNode $jNode end nodes
$matTag1 tags associated with previously-defined UniaxialMaterials (page
$matTag?2 ... 47)
$dir1 $dir2 ... material directions:
1,2,3 translation along local x,y,z axes,

respectively

Chapter 21 element Command 213

4,5,6 rotation about local x,y,z axes, respectively

the orientation vectors can be specified for the element (optional):

$x1 $x2 $x3 vector components in global coordinates defining local x-axis
(vector x)
$yp1 $yp2 $yp3 vector components in global coordinates defining vector yp

which lies in the local x-y plane for the element:

the local z-axis is defined by the cross product
between the vectors x and yp

If the optional orientation vectors are not specified, the local element axes coincide with the
global axes.

The valid queries to a zero-length element when creating an ElementRecorder (page 330) object
are 'force,' 'deformation,’ 'stiff,' and 'material $matNum matArg1 matArg2 ...' Where $matNum is
the tag associated with the material whose data is to be output.

Zero-Length ND Element

This command is used to construct a zeroLengthND element object, which is defined by two
nodes at the same location. The nodes are connected by a single NDMaterial (page 175) object
to represent the force-deformation relationship for the element.

element zeroLengthND $eleTag $iNode $jNode $matTag <$uniTag> <-orient
$x1 $x2 $x3 $yp1 $yp2 $yp3>

$eleTag unique element object tag

$iNode $jNode end nodes

$matTag tag associated with previously-defined NDMaterial (page 175)
object

$uniTag tag associated with previously-defined UniaxialMaterial (page

47) object which may be used to represent uncoupled behavior
orthogonal to the plane of the NDmaterial response.

If the NDMaterial (page 175) object is of order two, the response
lies in the element local x-y plane and the UniaxialMaterial
object may be used to represent the uncoupled behavior
orthogonal to this plane, i.e. along the local z-axis.

If the NDMaterial (page 175) object is of order three, the
response is along each of the element local exes.

the orientation vectors can be specified for the element (optional):

Chapter 21 element Command 214

$x1 $x2 $x3 vector components in global coordinates defining local x-axis
(vector x)
$yp1 $yp2 $yp3 vector components in global coordinates defining vector yp

which lies in the local x-y plane for the element:

the local z-axis is defined by the cross product
between the vectors x and yp

If the optional orientation vectors are not specified, the local element axes coincide with the
global axes.

NOTE: The zeroLengthND element only represents translational response between its nodes

The valid queries to a zero-length element when creating an ElementRecorder (page 330) object
are 'force,' 'deformation,' 'stiffness,' and 'material matArg1 matArg2 ...'

Zero-Length Section Element

This command is used to construct a zeroLengthSection element object, which is defined by two
nodes at the same location. The nodes are connected by a single SectionForceDeformation
(page 185) object to represent the force-deformation relationship for the element.

element zeroLengthSection $eleTag $iNode $jNode $secTag <-orient $x1 $x2
$x3 $yp1 $yp2 $yp3>

$eleTag unique element object tag

$iNode $jNode end nodes

$secTag tag associated with previously-defined Section (page 185)
object

the orientation vectors can be specified for the element (optional):

$x1 $x2 $x3 vector components in global coordinates defining local x-axis
(vector x)
$yp1 $yp2 $yp3 vector components in global coordinates defining vector yp

which lies in the local x-y plane for the element:

the local z-axis is defined by the cross product
between the vectors x and yp

If the optional orientation vectors are not specified, the local element axes coincide with the
global axes.

The section (page 185) force-deformation response represented by section string P acts along
the element local x-axis, and the response for code Vy along the local y-axis. The other modes
of section response follow from this orientation.

Chapter 21 element Command 215

The valid queries to a zero-length element when creating an ElementRecorder (page 330) object
are 'force,' 'deformation,’ 'stiffness,' and 'section secArg1 secArg2'

NOTE: the ZeroLength section element only has 1 section therefore you do not need to identify
the section in the recorder command .. Example:

recorder Element -file Element1.out -time -ele 1 section fiber 0.10 0.10 stressStrain

Quadrilateral Elements

Quad Element

This command is used to construct a FourNodeQuad element object which uses a bilinear
isoparametric formulation.

element quad $eleTag $iNode $jNode $kNode $INode $thick $type $matTag
<$pressure $rho $b1 $b2>

$eleTag unique element object tag

$iNode $jNode four nodes defining element boundaries, input in counter-
$kNode $INode clockwise order around the element.

$thick element thickness (constant)

$type string representing material behavior.

Valid options depend on the NDMaterial (page 175) object and
its available material formulations. The type parameter can be
either "PlaneStrain" or "PlaneStress."

$matTag tag associated with previously-defined NDMaterial (page 175)
object

$pressure surface pressure (???7? sign convention???7?****)

$rho element mass density (per unit volume) from which a lumped

element mass matrix is computed (optional, default=0.0)

$b1 $b2 constant body forces defined in the isoparametric domain
(optional, default=0.0)

Consistent nodal loads are computed from the pressure and body forces.

Chapter 21 element Command 216

The valid queries to a Quad element when creating an ElementRecorder (page 330) object are
force,’ 'stiffness,’ and 'material $matNum matArg1 matArg2 ..." Where $matNum refers to the
material object at the integration point corresponding to the node numbers in the isoparametric
domain.

Shell Element

This command is used to construct a ShellMITC4 element object, which uses a bilinear
isoparametric formulation in combination with a modified shear interpolation to improve thin-plate
bending performance.

| element ShellMITC4 $eleTag $iNode $jNode $kNode $INode $secTag

$eleTag unique element object tag

$iNode $jNode four nodes defining element boundaries, input in counter-
$kNode $INode clockwise order around the element.

$secTag tag associated with previously-defined

SectionForceDeformation (page 185) object.

Typically, corresponds to some PlateFiberSection (page 202),
elastic or otherwise

Should the element be required to compute a mass matrix, a consistent translational element
mass matrix is computed. Rotational-inertia terms are ignored.

The valid queries to a shell element when creating an ElementRecorder (page 330) object are
force," 'stiffness,' and 'material matArg1 matArg2 ..."

Chapter 21 element Command 217

Bbar Plane Strain Quadrilateral Element

This command is used to construct a four-node quadrilateral element object, which uses a
bilinear isoparametric formulation along with a mixed volume/pressure B-bar assumption. This
element is for plane strain problems only.

| element bbarQuad $eleTag $iNode $jNode $kNode $INode $matTag

$eleTag unique element object tag

$iNode $jNode four nodes defining element boundaries, input in counter-

$kNode $INode clockwise order around the element

$matTag tag associated with previously-defined NDMaterial (page 175)
object

Should the element be required to compute a mass matrix, a consistent translational element
mass matrix is computed. Rotational-inertia terms are ignored.

Enhanced Strain Quadrilateral Element

This command is used to construct a four-node quadrilateral element, which uses a bilinear
isoparametric formulation with enhanced strain modes.

| element enhancedQuad $eleTag $iNode $jNode $kNode $INode type $matTag

$eleTag unique element object tag

$iNode $jNode four nodes defining element boundaries, input in counter-
$kNode $INode clockwise order around the element.

type string representing material behavior.

Valid options depend on the NDMaterial (page 175) object and
its available material formulations. The type parameter can be
either "PlaneStrain" or "PlaneStress."

$matTag tag associated with previously-defined NDMaterial (page 175)
object

Chapter 21 element Command 218

Should the element be required to compute a mass matrix, a consistent translational element
mass matrix is computed. Rotational-inertia terms are ignored.

The valid queries to a zero-length element when creating an ElementRecorder (page 330) object
are 'force," 'stiffness,' and 'material matArg1 matArg2 ..."

Brick Elements

Standard Brick Element

This element is used to construct an eight-node brick element object, which uses a trilinear
isoparametric formulation.

element stdBrick $eleTag $node1 $node2 $node3 $node4 $node5 $nodeb
$node7 $node8 $matTag

$eleTag

$nodel1 $node2
$node3 $node4
$node5 $nodeb
$node7 $node8

$matTag

unique element object tag

eight nodes defining element boundaries, input order is shown
in the figure

tag associated with previously-defined NDMaterial (page 175)
object

Chapter 21 element Command 219

Should the element be required to compute a mass matrix, a consistent translational element
mass matrix is computed. Rotational-inertia terms are ignored.

Figure 44: Node-
Numbering for
Standard Brick
Element

node T node 6

node 5

r F

"
X ri.me-"l node 1

Note: Node numbering for this element is different from that for the eight-node brick (page 232)
(Brick8N) element.

Chapter 21 element Command 220

Bbar Brick Element

This command is used to construct an eight-node mixed volume/pressure brick element object,
which uses a trilinear isoparametric formulation.

element bbarBrick $eleTag $node1 $node2 $node3 $node4 $node5 $nodeb

$node7 $node8 $matTag
$eleTag unique element object tag
$nodel $node2 eight nodes defining element boundaries, input order is shown
$node3 $node4d in the figure
$node5 $nodeb
$node7 $node8
$matTag tag associated with previously-defined NDMaterial (page 175)
object

Should the element be required to compute a mass matrix, a consistent translational element
mass matrix is computed. Rotational-inertia terms are ignored

r 3
t
node 3 node 2
I
|
node :
i node 1
I i
! 5
I
1
£ i _____________
.+ node¥ node 6
Y P

kX node 8 node 5

Chapter 21 element Command 221

Figure 45: Node
Numbering for Eight-
Node Three-
Dimensional Element

Eight Node Brick Element

The command is used to construct an eight-node three dimensional brick element object, which
is based on tensor operation.

element Brick8N $eletag $node1 $node2 $node3 $noded $node5 $nodeb
$node7 $node8 $matTag $bf1 $bf2 $bf3 $massDens

$eletag unique element object tag

$nodel $node2 eight node coordinates, input order is shown in the figure

$node3 $noded

$node5 $nodeb

$node7 $node8

$matTag material tag associated with previsouly-defined NDMaterial
object

$bf1 $bf2 $bf3 body force in the direction of global coordinates x, y and z

$massDens mass density (mass/volume)

The valid queries to a Brick8N element when creating an ElementRecorder (page 330) object
are 'force," 'stiffness,' stress', 'gausspoint’ or 'plastic'. The output is given as follows:

'stress' the six stress components from each Gauss points are output by
the order: sigma_xx, sigma_yy, sigma_zz, sigma_xy,
sigma_xz,sigma_yz

'gausspoint’ the coordinates of all Gauss points are printed out

'plastic’ the equivalent deviatoric plastic strain from each Gauss point is
output in the same order as the coordinates are printed

Chapter 21 element Command 222

Figure 46: Node
Numbering for Eight-
Node Three-
Dimensional Element

F 3
t
node 3 node 2

I
|

node :
; node 1
i s
|
|

I, o Sl | I
L+ node¥ node 6
y |-

FX node & node 5

Chapter 21 element Command 223

Twenty Node Brick Element

The element is used to construct a twenty-node three dimensional element object

element Brick20N $eletag $node1 $node2 $node3 $noded $node5 $nodeb
$node7 $node8 $node9 $node10 $node11 $node12 $node13 $node14
$node15 $node16 $nodel17 $node18 $node19 $node20 $matTag $bf1

$bf2 $bf3 $massDen
$eletag unique element object tag
$nodel $node2 twenty node coordinates, input order is shown in the figure
$node3 $node4d
$node5 $nodeb
$node7 $node8
$node9 $nodel0
$node11 $nodel12
$node13 $nodels
$node15 $nodel16
$node17 $nodel18
$node19 $node20
$matTag material tag associated with previsouly-defined NDMaterial
(page 175) object
$bf1 $bf2 $bf3 body force in the direction of global coordinates x, y and z
$massDen mass density (mass/volume)

The valid queries to a Brick20N element when creating an ElementRecorder (page 330) object
are 'force," 'stiffness,' stress', 'gausspoint’ or 'plastic'. The output is given as follows:

'stress' the six stress components from each Gauss points are output by
the order: sigma_xx, sigma_yy, sigma_zz, sigma_xy,
sigma_xz,sigma_yz

'gausspoint’ the coordinates of all Gauss points are printed out

'plastic’ the equivalent deviatoric plastic strain from each Gauss point is
output in the same order as the coordinates are printed

Chapter 21 element Command 224

Figure 47: Node
Numbering for Twenty-
Node Three-
Dimensional Element

Chapter 21 element Command 225

u-p-U element

This command is used to construct a u-p-U element object, which include two types: eight node
element and twenty node element.

= For eight-node element:

element Brick8N_u_p_U $eleTag $node1 $node2 $node3 $node4 $node5
$nodeb6 $node7 $node8 $matTag $bf1 $bf2 $bf3 $n $alpha $soildDens
$fluidDens $k1 $k2 $k3 $K_fluid $P

= For twenty-node element:

element Brick20N_u_p_U $eleTag $node1 $node2 $node3 $node4d $node5
$nodeb $node7 $node8 $node9 $node10 $nodel11 $node12 $node13
$nodei14 $node15 $node16 $nodel17 $nodel18 $node19 $node20
$matTag $bf1 $bf2 $bf3 $n $alpha $soildDens $fluidDens $k1 $k2 $k3

$K_fluid $P
$eleTag unique element object tag
$nodel $node2 node coordinate (either eight or twenty), input order is shown in
$node3 $node4d the figure
$node5 $nodeb
$node7 $nodes
$matTag material tag associated with previsouly-difined NDMaterial

object

$bf1 $bf2 $bf3 body force in the direction of global coordinates x, y and z
$n porosity
$alpha 1-Ks/Kt (ratio of void space =1 for soils, =0.6 for concrete...)
$soildDens solid density
$fluidDens fluid density
$k1 $k1 $k3 coefficient of permeability in the direction of x, y and z
$K_fluid fluid bulk modulus

$P pressure... not used currently (set to 0.0)

Chapter 21 element Command 226

The valid queries to a Brick8N_u_p_U and Brick20N_u_p_U elements when creating an
ElementRecorder (page 330) object are 'force," 'stiffness,' stress', 'gausspoint’ or 'plastic'. The
output is given as follows:

'stress'

'gausspoint’
'plastic’

the six stress components from each Gauss points are output by
the order: sigma_xx, sigma_yy, sigma_zz, sigma_xy,
sigma_xz,sigma_yz

the coordinates of all Gauss points are printed out

the equivalent deviatoric plastic strain from each Gauss point is
output in the same order as the coordinates are printed

FourNodeQuadUP Element

FourNodeQuadUP is a four-node plane-strain element using bilinear isoparametric formulation.
This element is implemented for simulating dynamic response of solid-fluid fully coupled
material, based on Biot's theory of porous medium. Each element node has 3 degrees-of-
freedom (DOF): DOF 1 and 2 for solid displacement (u) and DOF 3 for fluid pressure (p).

element quadUP $eleTag $iNode $jNode $kNode $INode $thick $type
$matTag $bulk $fmass $hPerm $vPerm <$b1 $b2 $t>

$eleTag

$iNode, $jNode,
$kNode, $INode

$thick

$type
$matTag

$bulk

$fmass
$hPerm
$vPerm

unique element object tag

Four element node (previously defined) numbers in counter-clockwise order
around the element

Element thickness
The string "PlaneStrain”

Tag of an NDMaterial object (previously defined) of which the element is
composed

Combined undrained bulk modulus B, relating changes in pore pressure and
volumetric strain, may be approximated by:

B.=B,/n

where B; is the bulk modulus of fluid phase (2.2x10° kPa for water), and n the
initial porosity.

Fluid mass density

Permeability coefficient in horizontal direction

Permeability coefficient in vertical direction

Chapter 21 element Command 227

$b1, $b2 Optional body forces in horizontal and vertical directions respectively (defaults
are 0.0)
$t Optional uniform element normal traction, positive in tension (default is 0.0)

TYPICAL RANGE OF PERMEABILITY COEFFICIENT (m/s)

Gravel Sand Silty Sand Silt Clay

>1.0x10° 31.0X10'5 ~ 1.0x10 51.Ox10‘7 ~1.0x10 71.Ox10‘9 ~1.0x10 | <1.0x10°

OUTPUT INTERFACE:
Pore pressure can be recorded at an element node using OpenSees Node Recorder (page 326):
recorder Node <-file $fileName> <-time> <-node ($node1 $node2 ...)> -dof 3 vel

Note: dof 3 is for pore pressure output.

The valid queries to a quadUP element when creating an ElementRecorder (page 330) are
'force’, 'stiffness', or 'material matNum matArg1 matArg2 ...", where matNum represents the
material object at the corresponding integration point.

BeamColumndJoint Element

This command is used to construct a two-dimensional beam-column-joint element object. The
element may be used with both two-dimensional and three-dimensional structures; however,
load is transferred only in the plane of the element.

element beamColumndJoint $eleTag $Nd1 $Nd2 $Nd3 $Nd4 $Mat1 $Mat2 $Mat3
$Mat4 $Mat5 $Mat6 $Mat7 $Mat8 $Mat9 $Mat10 $Mat11 $Mat12 $Mat13
<$eleHeightFac $eleWidthFac>

$eleTag an integer identifying the element tag in the domain
$Nd1,$Nd2,$Nd3,$ tag associated with previously defined nodes

Nd4

$Mat1 uniaxial material tag for left bar-slip spring at node 1

$Mat2 uniaxial material tag for right bar-slip spring at node 1

Chapter 21 element Command

228

$Mat3
$Mat4
$Mat5
$Mat6
$Mat7
$Mat8
$Mat9
$Mat10
$Mat11
$Mat12
$Mat13
$eleHeightFac

$eleWidthFac

uniaxial material tag for interface-shear spring at node 1
uniaxial material tag for lower bar-slip spring at node 2
uniaxial material tag for upper bar-slip spring at node 2
uniaxial material tag for interface-shear spring at node 2
uniaxial material tag for left bar-slip spring at node 3
uniaxial material tag for right bar-slip spring at node 3
uniaxial material tag for interface-shear spring at node 3
uniaxial material tag for lower bar-slip spring at node 4
uniaxial material tag for upper bar-slip spring at node 4
uniaxial material tag for interface-shear spring at node 4
uniaxial material tag for shear-panel

floating point value (as a ratio to the total height of the element)
to be considered for determination of the distance in between
the tension-compression couples (optional, default: 1.0)

floating point value (as a ratio to the total width of the element)
to be considered for determination of the distance in between
the tension-compression couples (optional, default: 1.0)

Chapter 21 element Command 229

NOTE:

Node 3
external node bar-slip
/ spring (typ.)
Node 4) shear panel Node 2
/*r\
internal node
Node 1 interface-shear

spring (typ.)

Chapter 21 element Command 230

Figure 48:
BeamColumndJoint
Element

The valid queries to a BeamColumndoint element when creating an ElementRecorder (page
330) are as follows:

‘internalDisplacement’ - returns the displacements of the internal joint nodes.
‘externalDisplacement’ - returns the displacement of the external joint nodes.
‘deformation’ - generates a four-column matrix in which the first column is the contribution to
the total joint shear deformation of all of the bar-slip components of the joint, the second is the
deformation contribution of the interface shear springs, the third is the deformation contribution
of the shear-panel and the fourth is the total shear deformation of the joint.

‘node1BarSlipL’ - returns the load-deformation response history of the Bar-Slip spring on
the Left at node 1.

‘node1BarSlipR’ - returns the load-deformation response history of the Bar-Slip spring on
the Right at node 1.

‘node1InterfaceShear’- returns the load-deformation response history of the Interface-Shear
spring at node 1.

‘node2BarSlipB’ - returns the load-deformation response history of the Bar-Slip spring on
the Bottom at node 2.

‘node2BarSlipT’ - returns the load-deformation response history of the Bar-Slip spring on
the Top at node 2.

‘node2InterfaceShear’- returns the load-deformation response history of the Interface Shear
spring at node 1.

‘'node3BarSlipL’ - returns the load-deformation response history of the Bar-Slip spring on
the Left at node 3.

‘node3BarSlipR’ - returns the load-deformation response history of the Bar-Slip spring on
the Right at node 3.

‘node3InterfaceShear’- returns the load-deformation response history of the Interface-Shear
spring at node 3.

‘node4BarSlipB’ - returns the load-deformation response history of the Bar-Slip spring on
the Bottom at node 4.

‘node4BarSlipT’ - returns the load-deformation response history of the Bar-Slip spring on
the Top at node 4.

Chapter 21 element Command 231

‘node4InterfaceShear’- returns the load-deformation response history of the Interface Shear
spring at node 4.

‘shearPanel’ - returns the load-deformation response history of the Shear-Panel spring.

» EXAMPLE:
main input file:

= PR1.tcl (page 247)
supporting files:

= procMKPC.tcl (page 257)
= procUniaxialPinching.tcl (page 106)
= procRC.tcl (page 259)

References:

Lowes, Laura N.; Mitra, Nilanjan; Altoontash, Arash A beam-column joint model for simulating
the earthquake response of reinforced concrete frames PEER-2003/10
(http://nisee.berkeley.edu/elibrary/getdoc?id=1288878) Pacific Earthquake Engineering
Research Center, University of California, Berkeley 2003 59 pages (400/P33/2003-10)

Chapter 21 Beam-Column Joint Element Discussion 232

Beam-Column Joint Element Discussion

Beam-Column Joint Element
Discussion

The example files (PR1.tcl (page 247), procMKPC.tcl (page 257), procUniaxialPinching.tcl (page
106), procRC.tcl (page 259)) create a model of a RC beam column sub-assemblage (Figure 1).
The cruciform is subjected to constant gravity load at nodes 4 and 7 and pseudo-static cyclic
lateral load under displacement control at node 10. The beam-column-joint region (element
number 7) is represented using a beamColumndJoint element (Figure 2), and the beams and
columns (element numbers 1 through 6) are modeled using the nonlinearBeamColumn element.
The beam-column joint consists of 13 components that may have different material constitutive
models; in this example 9 of the 13 components utilize the nonlinear material model — Pinching4.
Figure 3 shows the displacement history for node 10.

& Mode

’/(‘. nonlinear beam-column
C’D Element

GravityI|:|:5||:19 @ Gravity load

beam-column joint

Chapter 21 Beam-Column Joint Element Discussion

233

Figure 49: Cruciform
model

Figure 1: Cruciform model

Element Node 3 =
Structural Node 9

bar-slip
spring (typ.)

external node

WMo

Element Hoded = Element Hode 2 =
Structural Node 5 J shear panel (Structural Node §

o —W-

internal node

Element Node inteface-shear
Structural Node 2 spring (typ.)

Figure 50: Beam
Column Joint Element

Figure 2: Beam Column Joint Element

234

Beam-Column Joint Element Discussion

Chapter 21

Figure 51:

Displacement history

for Node 10

130

100f-------

W wy P amasedsg

wr
T 1 Ve
1 -
' =
'
[
'
'
i S Ly
'
'
1
'
'
'
PEE n
i o
'
'
1
'
'
'
1} [=1
R o
' 0
' w
' E
' -
1 (=]
i =}
]
' i
s il
'
'
1
'
'
'
1
EEEEE R -
|
'
1
'
'
'
1
' w
e e =1
'
1
'
'
'
1
'
L =)
] 2
" 0

Figure 3: Displacement history for Node 10

Chapter 21 Beam-Column Joint Element Discussion 235

Tcl Scripts:
The following tcl script files are used to run the examples:
PR1.tcl (page 247)
procMKPC.tcl (page 257)
procUniaxialPinching.tcl (page 106)
procRC.tcl (page 259)
The p-delta response of cruciform, along with the response of each of the nonlinear joint

components is shown below. The shear panel response shows the moment-curvature

relationships whereas the bar slips at the beam top and bottom are represented by the force-slip
plots (Figure 4).

Chapter 21 Beam-Column Joint Element Discussion 236

Figure 52: Nonlinear
Joint component
response

Figure 4: Nonlinear Joint component response

Foree in N

Displacement In mm

Figure 53: P-delta
response of the
cruciform

Figure 5. P-delta response of the cruciform

PR1.tcl
B R
Test example for BEAM COLUMN ELEMENT JOINT ------- PARK RUITONG TEST SPECIMEN Unit 1

Written: N.Mitra
Description: 4 noded 12 dof element having 12 springs and a shear panel
Date: Feb 16 2003

Model consisting of a crucifix with beams and columns and a joint

Chapter 21 Beam-Column Joint Element Discussion

237

File Name: PR1.tcl
refer to Beam-Column-Joint Element.doc for full explanation of the parameters
A

#create the ModelBuilder object

model BasicBuilder -ndm 2 -ndf 3

unit name ---- PR1
set fName "PR1";

source procMKPC.tcl
source procUniaxialPinching.tcl

source procRC.tcl

all dimensions are in here as MPa (conversion factors are required in certain places)
set Strfactor 145; set Lenfactor [expr 1/25.4];

Y taken as the inplane dim. against which the bending takes place
set colY 406; set colZ 305;
set bmY 457; set bmZ 229;

covers
set colCov 43; set bmCov1 42; set bmCov2 33; set bmCov $bmCovi;

y,z,x dimension of the joint respectively
set JointWidth [expr $colY]; set JointHeight [expr $bmY]; set JointDepth $colZ ;
set BeamLengthln 645; set BeamLengthOut 1271; set ColumnLengthClear 1008;

set JointVolume [expr $JointWidth*$JointHeight*$JointDepth];

HHHHHH R

A material properties of column section
AR

set CUnconfFc -45.9; set CUnconfEc -0.002;
set CTSspace 60; set CTSlength 1853.53; set CTSFy 282; set CTSarea 28.3;
set CFy 498.0; set CEs 196600.0; set CsHratio 0.004216; set CAs 201.06;

procMKPC $CUnconfFc $CUnconfEc $colY $colZ $colCov $CTSspace $CTSlength $CTSFy $CTSarea $Strfactor

$Lenfactor

Chapter 21 Beam-Column Joint Element Discussion 238

set CUnconfFcu [lindex $concreteProp 2]; set CUnconfEcu [lindex $concreteProp 3];
set CConfFc [lindex $concreteProp 4]; set CConfEc [lindex $concreteProp 5];

set CConfFcu [lindex $concreteProp 6]; set CConfEcu [lindex $concreteProp 7];

HHHH R

HHHHHHHHHHEHAHA A material properties of beam section
A

set BUnconfFc -45.9; set BUnconfEc -0.002;
set BTSspace 80; set BTSlength 1036; set BTSFy 282; set BTSarea 28.3;
set BFy 294.0; set BEs 210400.0; set BAs 201.06; set BsHratio 0.002322;

procMKPC $BUnconfFc $BUnconfEc $bmY $bmZ $bmCov $BTSspace $BTSlength $BTSFy $BTSarea $Strfactor
$Lenfactor

set BUnconfFcu [lindex $concreteProp 2]; set BUnconfEcu [lindex $concreteProp 3];
set BConfFc [lindex $concreteProp 4]; set BConfEc [lindex $concreteProp 5];

set BConfFcu [lindex $concreteProp 6]; set BConfEcu [lindex $concreteProp 7];

HHHH R A

TR details for the material models of bar slip of the beam
HEHHHHEHHEHEHEH A

set bs_fc [expr -$BUnconfFc]; set bs_fs $BFy; set bs_es $BEs; set bs_fsu 434; set bs_dbar 16; set bs_esh [expr
$BsHratio*$BEs];

set bs_wid $colZ; set bs_dep $bmY;
set bsT_nbars 5; set bsB_nbars 2;

set bs_ljoint $colY;

e G G G S g i

A detalls for the material models of bar slip of the column
HEHHHHEHHEHEHAH A

set cs_fc [expr -$CUnconfFc]; set cs_fs $CFy; set cs_es $CEs; set cs_fsu 660; set cs_dbar 16; set cs_esh [expr
$CsHratio*$CEs];

set cs_wid $colZ; set cs_dep $colY;
set cs_nbars 3;

set cs_ljoint $bmY;

HEHR R R R R R

HHHEHHEHEHEHAAEA add nodes - command: node nodeld xCrd yCrd
HHHHHHHHEHHAHHHH R

Chapter 21 Beam-Column Joint Element Discussion 239

node1 0.0 0.0

node 2 0.0 $ColumnLengthClear

node 3 [expr -$BeamLengthOut-$BeamLengthin-$JointWidth/2] [expr $ColumnLengthClear+$JointHeight/2]
node 4 [expr -$BeamLengthin-$JointWidth/2] [expr $ColumnLengthClear+$JointHeight/2]

node 5 [expr -$JointWidth/2] [expr $ColumnLengthClear+$JointHeight/2]

node 6 [expr $JointWidth/2] [expr $ColumnLengthClear+$JointHeight/2]

node 7 [expr $BeamLengthin+$JointWidth/2] [expr $ColumnLengthClear+$JointHeight/2]

node 8 [expr $BeamLengthOut+$BeamLengthin+$JointWidth/2] [expr $ColumnLengthClear+$JointHeight/2]
node 9 0.0 [expr $ColumnLengthClear+$JointHeight]

node 10 0.0 [expr 2*$ColumnLengthClear+$JointHeight]

add material Properties - command: uniaxialMaterial matType matTag ...
#command: uniaxialMaterial Elastic tag? E?
uniaxialMaterial Elastic 1 10000000000.0

A
HitHHHHEHHEHEHE inelastic beam column elements
T
uniaxialMaterial Concrete01 10 $BUnconfFc $BUnconfEc $BUnconfFcu $BUnconfEcu
uniaxialMaterial Concrete01 20 $BConfFc $BConfEc $BConfFcu $BConfEcu
uniaxialMaterial Steel02 30 $BFy $BEs $BsHratio 18.5 0.925 0.15 0.0 0.4 0.0 0.5
uniaxialMaterial Concrete01 40 $CUnconfFc $CUnconfEc $CUnconfFcu $CUnconfEcu
uniaxialMaterial Concrete01 50 $CConfFc $CConfEc $CConfFcu $CConfEcu

uniaxialMaterial Steel02 60 $CFy $CEs $CsHratio 18.5 0.9250.150.0 0.4 0.0 0.5

R for columns /T T T
set z [expr $colZ/2.0]; set y [expr $colY/2.0];

section Fiber 1 {

patch rect 50 8 1 [expr $colCov-3$y] [expr $colCov-$z] [expr $y-$colCov] [expr $z-$colCov]
patchrect4021 [expr -$y] [expr $colCov-$z] [expr $colCov-$y] [expr $z-$colCov]
patch rect 4021 [expr $y-$colCov] [expr $colCov-$z] [expr $y] [expr $z-$colCov]

Chapter 21 Beam-Column Joint Element Discussion 240

patch rect 40 81 [expr -$y] [expr -$z] [expr $y] [expr $colCov-$z]
patch rect 40 81 [expr -$y] [expr $z-$colCov] [expr $y] [expr $z]

layer straight 60 3 $CAs [expr $y-$colCov] [expr $colCov-$z] [expr $y-$colCov] [expr $z-$colCov]
layer straight 60 2 $CAs 0.0 [expr $colCov-$z] 0.0 [expr $z-$colCov]

layer straight 60 3 $CAs [expr $colCov-$y] [expr $colCov-$z] [expr $colCov-$y] [expr $z-$colCov]
}

HHEHEHHEEHEEHHEHEAAE for beams /TN T
set z [expr $bmZ/2.0]; set y [expr $bmY/2.0];

section Fiber 2 {
patch rect 208 1 [expr $omCov1-$y] [expr $omCov1-$z] [expr $y-$bmCovi] [expr $z-$bmCov1]

patchrect 1021 [expr -$y] [expr $omCov1-$z] [expr $bmCovi-$y] [expr $z-$bmCov1]
patchrect 1021 [expr $y-$bmCov1] [expr $omCovi1-$z] [expr $y] [expr $z-$bmCov1]

patch rect 108 1 [expr -$y] [expr -$z] [expr $y] [expr $bmCov1-$z]

patch rect 108 1 [expr -$y] [expr $z-$bmCov1] [expr $y] [expr $z]

layer straight 30 3 $BAs [expr $y-$bmCov1] [expr $omCovi1-$z] [expr $y-$bmCovi] [expr $z -
$bmCov1]

layer straight 30 2 $BAs [expr $y-$bmCov1-$bmCov2] [expr $omCovi-$z] [expr $y-$bmCovi-$bmCov2]
[expr $z - $bmCov1]

layer straight 30 2 $BAs [expr $bmCov1-$y] [expr $omCov1-$z] [expr $bmCov1-$y] [expr $z -
$bmCov1]

}

FEHEHEEHEHEHES T T
add geometric transformation -command: geomTransf transfType ...
geomTransf Linear tag?

geomTransf Linear 1

geomTransf Linear 2

element nonlinearBeamColumn 112512

element nonlinearBeamColumn 291051 2

Chapter 21 Beam-Column Joint Element Discussion 241

element nonlinearBeamColumn 334 3 2 1
element nonlinearBeamColumn 445221
element nonlinearBeamColumn 56722 1

element nonlinearBeamColumn 6 78 3 2 1

end element formation as well as material defination for beams and columns #######HHHHHHHHHHEHEHE
A

for beam bottom
set matiD1 21
set matiD2 22

uniaxialMaterial BarSlip $matID1 $bs_fc $bs_fs $bs_es $bs_fsu $bs_esh $bs_dbar $bs_ljoint $bsB_nbars $bs_wid
$bs_dep strong beamBot

uniaxialMaterial BarSlip $matID2 $bs_fc $bs_fs $bs_es $bs_fsu $bs_esh $bs_dbar $bs_ljoint $bsB_nbars $bs_wid
$bs_dep strong beamBot

Yo% %% %% Y% %% %% %% equivalent statement can be made in other way

#uniaxialMaterial BarSlip $matID1 $bs_fc $bs_fs $bs_es $bs_fsu $bs_esh $bs_dbar $bs_ljoint $bsB_nbars $bs_wid
$bs_dep 1.0 strong beamBot damage

#uniaxialMaterial BarSlip $matID2 $bs_fc $bs_fs $bs_es $bs_fsu $bs_esh $bs_dbar $bs_ljoint $bsB_nbars $bs_wid
$bs_dep 1.0 strong beamBot damage

for beam top
set matID3 31
set matiD4 32

uniaxialMaterial BarSlip $matID3 $bs_fc $bs_fs $bs_es $bs_fsu $bs_esh $bs_dbar $bs_ljoint $bsT_nbars $bs_wid
$bs_dep strong beamTop

uniaxialMaterial BarSlip $matiD4 $bs_fc $bs_fs $bs_es $bs_fsu $bs_esh $bs_dbar $bs_ljoint $bsT_nbars $bs_wid
$bs_dep strong beamTop

Yo% %% %% Y% %% %% %% equivalent statement can be made in other way

#uniaxialMaterial BarSlip $matID3 $bs_fc $bs_fs $bs_es $bs_fsu $bs_esh $bs_dbar $bs_ljoint $bsT_nbars $bs_wid
$bs_dep 1.0 strong beamTop damage

#uniaxialMaterial BarSlip $matlD4 $bs_fc $bs_fs $bs_es $bs_fsu $bs_esh $bs_dbar $bs_ljoint $bsT_nbars $bs_wid
$bs_dep 1.0 strong beamTop damage

for columns

set matID5 41

Chapter 21 Beam-Column Joint Element Discussion 242

set matlD6 42
set matiD7 43
set matiD8 44

uniaxialMaterial BarSlip $matID5 $cs_fc $cs_fs $cs_es $cs_fsu $cs_esh $cs_dbar $cs_ljoint $cs_nbars $cs_wid
$cs_dep strong column

uniaxialMaterial BarSlip $matlD6 $cs_fc $cs_fs $cs_es $cs_fsu $cs_esh $cs_dbar $cs_ljoint $cs_nbars $cs_wid
$cs_dep strong column

uniaxialMaterial BarSlip $matID7 $cs_fc $cs_fs $cs_es $cs_fsu $cs_esh $cs_dbar $cs_ljoint $cs_nbars $cs_wid
$cs_dep strong column

uniaxialMaterial BarSlip $matID8 $cs_fc $cs_fs $cs_es $cs_fsu $cs_esh $cs_dbar $cs_ljoint $cs_nbars $cs_wid
$cs_dep strong column

H## Yo% % %Yo YoY% %% % % % equivalent statement can be made in other way

#uniaxialMaterial BarSlip $matlD5 $cs_fc $cs_fs $cs_es $cs_fsu $cs_esh $cs_dbar $cs_ljoint $cs_nbars $cs_wid
$cs_dep 1.0 strong column damage

#uniaxialMaterial BarSlip $matlD6 $cs_fc $cs_fs $cs_es $cs_fsu $cs_esh $cs_dbar $cs_ljoint $cs_nbars $cs_wid
$cs_dep 1.0 strong column damage

#uniaxialMaterial BarSlip $matID7 $cs_fc $cs_fs $cs_es $cs_fsu $cs_esh $cs_dbar $cs_ljoint $cs_nbars $cs_wid
$cs_dep 1.0 strong column damage

#uniaxialMaterial BarSlip $matID8 $cs_fc $cs_fs $cs_es $cs_fsu $cs_esh $cs_dbar $cs_ljoint $cs_nbars $cs_wid
$cs_dep 1.0 strong column damage

AR end material formation for bar slip
AR

A A material for shear panel
HHHHHEHHE A

Positive/Negative envelope Stress
set p1 2.1932; set p2 4.0872; set p3 4.4862; set p4 [expr $p3*1e-3];

stress1 stress2 stress3 stress4

set pEnvStrsp [list [expr $p1*$JointVolume] [expr $p2*$JointVolume] [expr $p3*$JointVolume] [expr
$p4*$JointVolume]]

set nEnvStrsp [list [expr -$p1*$JointVolume] [expr -$p2*$JointVolume] [expr -$p3*$JointVolume] [expr -
$p4*$JointVolume]]

Positive/Negative envelope Strain

strain1 strain2 strain3 strain4

set pEnvStnsp [list 0.0002 0.004465 0.0131 0.0269]
set nEnvStnsp [list -0.0002 -0.004465 -0.0131 -0.0269]

Chapter 21 Beam-Column Joint Element Discussion

243

Ratio of maximum deformation at which reloading begins
Pos_env. Neg_env.
set rDispsp [list 0.25 0.25]

Ratio of envelope force (corresponding to maximum deformation) at which reloading begins
#HitH Pos_env. Neg_env.
set rForcesp [list 0.15 0.15]

Ratio of monotonic strength developed upon unloading
#i# Pos_env. Neg_env.

set uForcesp [list 0.0 0.0]

Coefficients for Unloading Stiffness degradation

gammaK1 gammaK2 gammaK3 gammak4 gammakKLimit

set gammakKsp [list 1.13364492409642 0.0 0.10111033064469 0.0 0.91652498468618]
#set gammaKsp [list 0.0 0.0 0.0 0.0 0.0]

###t# Coefficients for Reloading Stiffness degradation

#i# gammaD1 gammaD2 gammaD3 gammaD4 gammaDLimit
set gammaDsp [list 0.12 0.0 0.23 0.0 0.95]

#set gammaDsp [list 0.0 0.0 0.0 0.0 0.0]

#i### Coefficients for Strength degradation

i gammaF1 gammaF2 gammaF3 gammaF4 gammaFLimit
set gammakFsp [list 1.11 0.0 0.319 0.0 0.125]

#set gammaFsp [list 0.0 0.0 0.0 0.0 0.0]

set gammaEsp 10.0

uniaxialMaterial Pinching4 5 [lindex $pEnvStrsp 0] [lindex $pEnvStnsp 0]\
[lindex $pEnvStrsp 1] [lindex $pEnvStnsp 1] [lindex $pEnvStrsp 2]\
[lindex $pEnvStnsp 2] [lindex $pEnvStrsp 3] [lindex $pEnvStnsp 3]\
[lindex $nEnvStrsp 0] [lindex $nEnvStnsp 0] \

Chapter 21 Beam-Column Joint Element Discussion 244

[lindex $nEnvStrsp 1] [lindex $nEnvStnsp 1] [lindex $nEnvStrsp 2] \

[lindex $nEnvStnsp 2] [lindex $nEnvStrsp 3] [lindex $nEnvStnsp 3]\

[lindex $rDispsp 0] [lindex $rForcesp 0] [lindex $uForcesp 0] \

[lindex $rDispsp 1] [lindex $rForcesp 1] [lindex $uForcesp 1]\

[lindex $gammakKsp 0] [lindex $gammaKsp 1] [lindex $gammakKsp 2] [lindex $gammaKsp 3] [lindex $gammakKsp 4] \
[lindex $gammaDsp 0] [lindex $gammaDsp 1] [lindex $gammaDsp 2] [lindex $gammaDsp 3] [lindex $gammaDsp 4] \
[lindex $gammaFsp 0] [lindex $gammaFsp 1] [lindex $gammaFsp 2] [lindex $gammaFsp 3] [lindex $gammaFsp 4] \

$gammakEsp energy

HHHHHHEHHAAHHHEHEHE end material formation for shear panel
A

##element BeamColumnJoint tag? iNode? jNode? kNode? INode? matTag1? matTag2? matTag3? matTag4?

#i# matTag5? matTag6? matTag7? matTag8? matTag9? matTag10? matTag11? matTag12? matTag13?
#i# <element Height factor?> <element Width factor?>

please note: the four nodes are in anticlockwise direction around the element

requires material tags for all 13 different components within the element.

the first 12 being that of spring and the last of the shear panel

element beamColumndoint 726 95414212131143441223215
#telement beamColumndoint726951111111111111

H#H Y6%0%0 Y% Yo%o % YoY% Y% %% Y% equivalent statement can be made in other way
#element beamColumndoint 726 954142121311434412232151.01.0
#element beamColumndoint 7269511111111111111.01.0

set the boundary conditions - command: fix nodelD xResrnt? yRestrnt?
fix1110
fix2000
fix3010
fix4000
fix5000
fix6000
fix7000
fix8010
fix9000

Chapter 21

Beam-Column Joint Element Discussion

245

fix10000

pattern Plain 2 Linear {
load 4 0 -55000 0 -const
load 7 0 -55000 0 -const

system ProfileSPD
constraints Plain

integrator LoadControl 01 0 0
test NormDisplncr 1e-8 150
algorithm Newton

numberer RCM

analysis Static

analyze 1

loadConst -time 0.0

pattern Plain 1 Linear {
#load nd? Fx? Fy? Mz?
load 10100

set rbbt "_RBbt"; set rbtp "_RBtp"; set dicbr "_DLCbr"; set sp "_Sp"; set jdf "_Jdf";

set Ibbt "_LBbt"; set Ibtp "_LBtp"; set drcbr "_DRCbr"; set ulcbr "_ULCbr"; set urcbr "_URCbr";

set RBbt [concat $fName$rbbt]; set RBtp [concat $fName$rbtp]; set Sp [concat $fName$sp];

set LBbt [concat $fName$Ibbt]; set LBtp [concat $fName$Ibtp]; set DLCbr [concat $fName$dicbr];

set DRCbr [concat $fName$drcbr]; set URCbr [concat $fName$urcbr]; set ULCbr [concat $fName$ulcbr];

set Jdf [concat $fName$jdf];

recorder Node $fName.out disp -load -node 10 -dof 1

recorder Element 7 -file $RBbt.out node2BarSlipB stressStrain

recorder Element 7 -file $RBtp.out node2BarSlipT stressStrain

recorder Element 7 -file $LBbt.out node4BarSlipB stressStrain

recorder Element 7 -file $LBtp.out node4BarSlipT stressStrain

recorder Element 7 -file $DLCbr.out node1BarSlipL stressStrain

recorder Element 7 -file $DRCbr.out node1BarSlipR stressStrain

recorder Element 7 -file $ULCbr.out node3BarSlipL stressStrain

Chapter 21 Beam-Column Joint Element Discussion 246

recorder Element 7 -file $URCbr.out node3BarSlipR stressStrain
recorder Element 7 -file $Sp.out shearpanel stressStrain

recorder Element 7 -file $Jdf.out deformation

set peakpts [list 0.1 10 10 30 30 45 45 60 60 75 75 90 90 105 105]
set increment 10

set nodeTag 10

set dofTag 1

procRC $increment $nodeTag $dofTag $peakpts

print the results at node and at all elements
print node

#print element

procMKPC.tcl

R A
A

#

procMKPC.tcl

procedure for evaluating the confined concrete material envelope points based upon the modified
kent park procedure. The procedure takes in the unconfined concrete and confining steel properties.
created : NM (nmitra@u.washington.edu) dated: Dec. 2002

R A
I

proc procMKPC { CUnconfFc CUnconfEc Y Z Cov TSspace TSlength TSFy TSarea Strfactor Lenfactor } {

set CUnconfEcu -0.004;

set SecWid [expr $Lenfactor*$Z]; set SecDep [expr $Lenfactor*$Y]; set cover [expr $Lenfactor*$Cov];
set UFc [expr -$Strfactor*$CUnconfFc]; set Ue0 [expr -$CUnconfEc]; set Uecu [expr -$CUnconfEcul;
set hoopSpc [expr $Lenfactor*$TSspace]; set hoopLngth [expr $Lenfactor*$TSlength];

set hoopFy [expr $Strfactor*$TSFy]; set hoopArea [expr $TSarea*$Lenfactor*$Lenfactor];

ratio of volume of rectangular steel hoops to volumne of concrete core measured to outside of peripheral hoops
set rhoS [expr ($hoopLngth*$hoopArea)/(($SecWid-2*$cover)*($SecDep-2*$cover)*$hoopSpc)];

width of concrete core measured to outside of peripheral hoop
set b [expr $SecWid - 2*$cover];

Chapter 21 Beam-Column Joint Element Discussion 247

set temp [expr $b/$hoopSpc]

set e50u [expr (3+0.002*$UFc)/($UFc - 1000)]; set e50h [expr 3*$rhoS*pow($temp,0.5)/4];
set Zm [expr 0.5*($UFc-1000)/(3+0.002*$UFc)]; set Z [expr 0.5/($e50u + $e50h - $Ue0)];
set K [expr (1 + $rhoS*$hoopFy/$UFc)];

unconfined ultimate compressive strength
set UFcu [expr -$UFc*(1-$Zm*($Uecu-$Ue0))/$Strfactor];
#cracking strain in confined concrete
set Ce0 [expr -$K*$Ue0];
cracking stress in confined concrete
set CFc [expr -$K*$UFc/$Strfactor];
ultimate stress in confined concrete
set CFcu [expr 0.2*$CFc];
ultimate strain in confined concrete
set Cecu [expr -(0.8/$Z - $Ce0)];

global concreteProp;

set concreteProp [list $CUnconfFc $CUnconfEc $UFcu $CUnconfEcu $CFc $Ce0 $CFcu $Cecul;

#puts [lindex $concreteProp 0]

return $concreteProp;

}

procUniaxialPinching.tcl

R A
A

##

procUniaxialPinching.tcl

procedure for activating the pinching material given its parameters in the form of list

created NM (nmitra@u.washington.edu) dated : Feb 2002

R A
R

Chapter 21 Beam-Column Joint Element Discussion 248

proc procUniaxialPinching { materialTag pEnvelopeStress nEnvelopeStress pEnvelopeStrain nEnvelopeStrain rDisp
rForce uForce gammaK gammaD gammaF gammaE damage} {

add material - command: uniaxialMaterial paramaters as shown

#uniaxialMaterial Pinching4 tag

#it#H stress1P strain1P stress2P strain2P stress3P strain3P stress4P strain4P

stress1N strain1N stress2N strain2N stress3N strain3N stress4N straindN

#i#t## rDispP rForceP uForceP rDispN rForceN uForceN

gammaK1 gammaK2 gammakK3 gammaK4 gammakKLimit

gammaD1 gammaD2 gammaD3 gammaD4 gammaDLimit

gammaF1 gammaF2 gammaF3 gammaF4 gammaFLimit gammaE $damage

uniaxialMaterial Pinching4 $materialTag [lindex $pEnvelopeStress 0] [lindex $pEnvelopeStrain 0] [lindex
$pEnvelopeStress 1] [lindex $pEnvelopeStrain 1] [lindex $pEnvelopeStress 2] [lindex $pEnvelopeStrain 2] [lindex
$pEnvelopeStress 3] [lindex $pEnvelopeStrain 3] [lindex $nEnvelopeStress 0] [lindex $nEnvelopeStrain 0] [lindex
$nEnvelopeStress 1] [lindex $nEnvelopeStrain 1] [lindex $nEnvelopeStress 2] [lindex $nEnvelopeStrain 2] [lindex
$nEnvelopeStress 3] [lindex $nEnvelopeStrain 3] [lindex $rDisp 0] [lindex $rForce 0] [lindex $uForce 0] [lindex $rDisp
1] [lindex $rForce 1] [lindex $uForce 1] [lindex $gammakK 0] [lindex $gammaK 1] [lindex $gammaK 2] [lindex
$gammak 3] [lindex $gammakK 4] [lindex $gammaD 0] [lindex $gammaD 1] [lindex $gammaD 2] [lindex $gammaD 3]
[lindex $gammaD 4] [lindex $gammaF 0] [lindex $gammaF 1] [lindex $gammaF 2] [lindex $gammaF 3] [lindex
$gammaF 4] $gammaE $damage

procRC.tcl

R A
HHHHHEHEH

Chapter 21 Beam-Column Joint Element Discussion 249

#

procRC.tcl

procedure for setting up a reversed cycle loading scheme. The input are mainly the

peak points for the loading.

The procedure primarily uses Displacement control for loading, if it fails uses ArcLength control
#i# created : NM (nmitra@u.washington.edu) dated: Sep 2002

HH
A

proc procRC { incre nodeTag dofTag peakpts } {

set displayTag 0;

set numTimes 150;

set x [lindex $peakpts 0];

set dU [expr $x/$incre];

#set dUO [expr $dU/1000];

set dUO [expr $dU/10000];

integrator DisplacementControl $nodeTag $dofTag 0.0 1 $dU $dU
analysis Static

analyze $incre

integrator DisplacementControl $nodeTag $dofTag 0.0 1 [expr -$dU] [expr -$dU]

analyze [expr 2*$incre]

integrator DisplacementControl $nodeTag $dofTag 0.0 1 $dU $dU

analyze $incre

end the first peak pt start for others

for {set j 1} {$j < [llength $peakpts]} {incrj 1} {
set y [lindex $peakpts $j]
set dSt [expr $y/$dU]

set dS [expr int($dSt)]

test NormDisplncr 1e-8 $numTimes $displayTag

Chapter 21 Beam-Column Joint Element Discussion 250

algorithm Newton

H#HHHHEHHAA start loading cycle ###H#HEHHEHHHEHHEH
settO;

while {$t |= $dS} {
integrator DisplacementControl $nodeTag $dofTag 0.0 1 $dU $dU
set ok [analyze 1]

incrt1;

if {$ok != 0} {
if {$t == $dS} {break};
puts "Displacement control failed trying Arc-Length control”
set currentDisp [nodeDisp $nodeTag $dofTag]
puts "Current Displacement is $currentDisp"
algorithm Linear
test NormDisplncr 1e-6 $numTimes $displayTag
#algorithm ModifiedNewton
integrator DisplacementControl $nodeTag $dofTag 0.0 1 $dU0 $dUO
integrator DisplacementControl $nodeTag $dofTag 0.0 10 $dU0 $dUO
integrator ArcLength [expr $dUQ] 1.0
set ok [analyze 1]
analyze 1
}
puts "that worked back to regular Newton "
test NormDisplIncr 1e-8 $numTimes $displayTag
algorithm Newton

HiHHHHHEHAERHAHAAHAE end of loading cycle, start unloading cycle ########

sett0;

while {$t != [expr 2*$dS]} {

integrator DisplacementControl $nodeTag $dofTag 0.0 1 [expr -$dU] [expr -$dU]

set ok [analyze 1]

incrt1;

Chapter 21 Beam-Column Joint Element Discussion 251

if {$ok != 0} {
if {$t == [expr 2*$dS]} {break};
puts "Displacement control failed trying Arc-Length control”
set currentDisp [nodeDisp $nodeTag $dofTag]
puts "Current Displacement is $currentDisp"

algorithm Linear

test NormDisplncr 1e-6 $numTimes $displayTag
#algorithm ModifiedNewton

integrator DisplacementControl $nodeTag $dofTag 0.0 1 [expr -$dUQ] [expr -
$dU0]
integrator DisplacementControl $nodeTag $dofTag 0.0 10 [expr -$dUO0] [expr -
$dUQ]

integrator ArcLength [expr $dUQ] 1.0
set ok [analyze 1]

analyze 1

}

puts "that worked back to regular Newton "

test NormDisplIncr 1e-8 $numTimes $displayTag

algorithm Newton

H#iHHHHHEHAAEHAE end of unloading cycle, start reloading cycle #####HH##HHE

settO;

while {$t = $dS} {

integrator DisplacementControl $nodeTag $dofTag 0.0 1 $dU $dU

set ok [analyze 1]

incrt1;
if {$ok != 0} {
if {$t == $dS} {break};
puts "Displacement control failed trying Arc-Length control”
set currentDisp [nodeDisp $nodeTag $dofTag]
puts "Current Displacement is $currentDisp”
algorithm Linear

test NormDisplncr 1e-6 $numTimes $displayTag
#algorithm ModifiedNewton

Chapter 21 Beam-Column Joint Element Discussion 252

integrator DisplacementControl $nodeTag $dofTag 0.0 1 $dU0 $dUO
integrator DisplacementControl $nodeTag $dofTag 0.0 10 $dU0 $dUO
integrator ArcLength [expr $dU0] 1.0

set ok [analyze 1]
analyze 1
}
puts "that worked back to regular Newton "

test NormDisplncr 1e-8 $numTimes $displayTag
algorithm Newton

#i##HHHHEE reloading cycle completed #HHHHHHHHEHHEHEHHHHHHHEHEHE

if {$ok == 0} {
puts "analysis succesful at $y mm displacement”;
} else {

puts "analysis could not proceed fine beyond $y mm displacement”;

253

CHAPTER 22

Soil Models and Solid-Fluid Fully
Coupled Elements

This chapter describes the user interfaces for: 1) a number of NDMaterial models developed for
simulating nonlinear, drained/undrained soil response under general 3D cyclic loading
conditions, and 2) a number of 2D and 3D solid-fluid fully coupled elements for simulating pore
water pressure dissipation/redistribution.

Please visit http://cyclic.ucsd.edu/opensees (http://cyclic.ucsd.edu/opensees) for examples.
This documentation is last updated at 8/5/2005 by Zhaohui Yang (zhyang@ucsd.edu

(mailto:zhyang@ucsd.edu)) and Ahmed Elgamal (elgamal@ucsd.edu
(mailto:elgamal@ucsd.edu)).

In This Chapter

PressureDependMultiYieldccccooiiiiiiiinninnnnns 265
PressureDependMultiYield02...........ccovvevveiiiiennnnn. 272
PressurelndependMultiYield..........ccccovvveeiiiiiiiennnnn. 277
updateMaterialStagecccooeiiiiiiiiiiii 283
updateParameter..........cccuueuueveiriniiiiiiiiiiiieaeeens 284
FluidSolidPorousMaterial...........ccccccooviciiieieenneeninnnns 285
FourNodeQuadUP..........coovviviiiiiiiiiiieeeeeeeeeeee 286
Nine_Four Node QuadUPcooovveiiviiiiiiiieieinnnn. 288
BFCKUP . 290

Twenty_Eight_Node_BrickUP ..., 292

Chapter 22 Soil Models and Solid-Fluid Fully Coupled Elements 254

PressureDependMultiYield

PressureDependMultiYield material is an elastic-plastic material for simulating the essential

response characteristics of pressure sensitive soil materials under general loading conditions.
Such characteristics include dilatancy (shear-induced volume contraction or dilation) and non-
flow liquefaction (cyclic mobility), typically exhibited in sands or silts during monotonic or cyclic
loading. Please visit http://cyclic.ucsd.edu/opensees (http://cyclic.ucsd.edu/opensees) for

examples.

When this material is employed in regular solid elements (e.g., FourNodeQuad, Brick), it
simulates drained soil response. To simulate soil response under fully undrained condition, this
material may be either embedded in a FluidSolidPorousMaterial (see below), or used with one
of the solid-fluid fully coupled elements (see below) with very low permeability. To simulate
partially drained soil response, this material should be used with a solid-fluid fully coupled
element with proper permeability values.

During the application of gravity load (and static loads if any), material behavior is linear elastic.
In the subsequent dynamic (fast) loading phase(s), the stress-strain response is elastic-plastic
(see MATERIAL STAGE UPDATE below). Plasticity is formulated based on the multi-surface
(nested surfaces) concept, with a non-associative flow rule to reproduce dilatancy effect. The
yield surfaces are of the Drucker-Prager type.

OUTPUT INTERFACE:

The following information may be extracted for this material at a given integration point, using
the OpenSees Element Recorder facility (McKenna and Fenves 2001): "stress", "strain",
"backbone", or "tangent".

For 2D problems, the stress output follows this order: o, o,,, 6.., ., N,, Where 1 is the ratio
between the shear (deviatoric) stress and peak shear strength at the current confinement
(0<=m<=1.0). The strain output follows this order: €., €, -

For 3D problems, the stress output follows this order: o, o,,, 6.., G, G, G., N;, and the strain
output follows this order: €., €,, €., Y, Yer Yo

The "backbone" option records (secant) shear modulus reduction curves at one or more given
confinements. The specific recorder command is as follows:

recorder Element —ele $eleNum -file $fName -dT $deltaT material $GaussNum backbone
$p1 <$p2...>

Chapter 22 Soil Models and Solid-Fluid Fully Coupled Elements 255

where p1, p2, ... are the confinements at which modulus reduction curves are recorded. In the
output file, corresponding to each given confinement there are two columns: shear strain y and
secant modulus G,. The number of rows equals the number of yield surfaces.

nDMaterial PressureDependMultiYield $tag $nd $rho $refShearModul
$refBulkModul $frictionAng $peakShearStra $refPress
$pressDependCoe $PTAng $contrac $dilat1 $dilat2 S$liquefact
$liquefac2 $liquefac3 <$noYieldSurf=20 <$r1 $Gs1 ...> $e=0.6
$cs1=0.9 $¢s2=0.02 $¢s3=0.7 $p.=101>

Octahedral
shear stress 1
A
$’Cf ____________ |
|
|
| Shear stress-strain at p',
|
|
|
|
| Octahedral
$G, | shear strain y
>
$Ymax
$tag A positive integer uniquely identifying the material among all
nDMaterials.

$nd Number of dimensions, 2 for plane-strain, and 3 for 3D analysis.

$rho Saturated soil mass density.

$refShearModul Reference low-strain shear modulus, specified at a reference mean

(Gr) effective confining pressure refPress of p’, (see below).

$refBulkModul (Br) Reference bulk modulus, specified at a reference mean effective
confining pressure refPress of p’, (see below).

$frictionAng (f) Friction angle at peak shear strength, in degrees.

Chapter 22 Soil Models and Solid-Fluid Fully Coupled Elements 256

$peakShearStra An octahedral shear strain at which the maximum shear strength is
(gmax) reached, specified at a reference mean effective confining pressure
refPress of p’. (see below).

Octahedral shear strain is defined as:

2 1/2
7 = g [(gxx - gyy + (gyy - gzz)2 + (gxx - gzz)2 + 68}3}! + 68)2'1 + 6831]

$refPress (p’) Reference mean effective confining pressure at which G,, B,, and ... are
defined.
$pressDependCoe A positive constant defining variations of G and B as a function of
(d) instantaneous effective confinement p’:
G=G,Ly B=B,(L)
r pr
$PTANG (¢er) Phase transformation angle, in degrees.
$contrac A non-negative constant defining the rate of shear-induced volume

decrease (contraction) or pore pressure buildup. A larger value
corresponds to faster contraction rate.

$dilat1, $dilat2 Non-negative constants defining the rate of shear-induced volume
increase (dilation). Larger values correspond to stronger dilation rate.
$I§quefac1, Parameters controlling the mechanism of liquefaction-induced perfectly
$I!quefa02, plastic shear strain accumulation, i.e., cyclic mobility. Set liquefac1 =0
$liquefac3 to deactivate this mechanism altogether. liquefaci defines the

effective confining pressure (e.g., 10 kPa) below which the mechanism
is in effect. Smaller values should be assigned to denser sands.
liquefac2 defines the maximum amount of perfectly plastic shear strain
developed at zero effective confinement during each loading phase.
Smaller values should be assigned to denser sands. liquefac3 defines
the maximum amount of biased perfectly plastic shear strain v,
accumulated at each loading phase under biased shear loading
conditions, as y.=liquefac2 x liquefac3. Typically, liquefac3 takes a value
between 0.0 and 3.0. Smaller values should be assigned to denser
sands. See the references listed at the end of this chapter for more
information.

$noYieldSurf Number of yield surfaces, optional (must be less than 40, default is 20).
The surfaces are generated based on the hyperbolic relation defined in
Note 2 below.

Chapter 22 Soil Models and Solid-Fluid Fully Coupled Elements 257

$r, $Gs Instead of automatic surfaces generation (Note 2), you can define
yield surfaces directly based on desired shear modulus reduction
curve. To do so, add a minus sign in front of noYieldSurf, then provide
noYieldSurf pairs of shear strain (y) and modulus ratio (G;) values. For
example, to define 10 surfaces:

'1071 G31 ’Ylo Gs10

See Note 3 below for some important notes.

$e Initial void ratio, optional (default is 0.6).
3081, $cs2, $es3, Parameters defining a straight critical-state line e, in e-p’ space.
pa
If cs3=0,

e. =csl—cs2 log(p’/ p,)
else (Li and Wang, JGGE, 124(12)),

e, = csl—cs2(p'/pa)cs3

where p, is atmospheric pressure for normalization (typically 101 kPa in
Sl units). All four constants are optional (default values: ¢s1=0.9,
cs2=0.02, cs3=0.7, p. =101).

NOTE:

The friction angle ¢ defines the variation of peak (octahedral) shear strength t; as a function of
current effective confinement p’:

Zﬁsingb ,
= P
3—sing

Octahedral shear stress is defined as:

r= % [(O-xx -0,)2 + (O-yy -0,)2 + (O-xx -0)2 + 60-5)’ + 60-)2’1 + 60_51]1/2

Chapter 22 Soil Models and Solid-Fluid Fully Coupled Elements 258

1 (Automatic surface generation) At a constant confinement p’, the shear stress 1 (octahedral)
- shear strain y (octahedral) nonlinearity is defined by a hyperbolic curve (backbone curve):

Gy
~Nd
Al
v, \p

where v, satisfies the following equation at p’.:

T=

— 2\/§SIH¢ ’ Gr }/max

T 3 sing U T 1wy 17

(User defined surfaces) The user specified friction angle f is ignored. Instead, f is defined as
follows:

330,/p]
6+~30,/p

sing =

where s, is the product of the last modulus and strain pair in the modulus reduction curve.
Therefore, it is important to adjust the backbone curve so as to render an appropriate f. If the
resulting f is smaller than the phase transformation angle f-, fr is set equal to f.

Also remember that improper modulus reduction curves can result in strain softening response
(negative tangent shear modulus), which is not allowed in the current model formulation. Finally,
note that the backbone curve varies with confinement, although the variations are small within
commonly interested confinement ranges. Backbone curves at different confinements can be
obtained using the OpenSees element recorder facility (see OUTPUT INTERFACE above).

1 The last five optional parameters are needed when critical-state response (flow liquefaction)
is anticipated. Upon reaching the critical-state line, material dilatancy is set to zero.

1 SUGGESTED PARAMETER VALUES

Chapter 22 Soil Models and Solid-Fluid Fully Coupled Elements 259

For user convenience, a table is provided below as a quick reference for selecting parameter
values. However, use of this table should be of great caution, and other information should be

incorporated wherever possible.

Loose Sand
(15%-35%)

Medium Sand
(35%-65%)

Medium-dense
Sand (65%-85%)

Dense Sand
(85%-100%)

Chapter 22 Soil Models and Solid-Fluid Fully Coupled Elements

260

rho (ton/m?) 1.7 1.9 2.0 2.1
refShearModul (kPa, | 5.5x10* 7.5x10* 1.0x10° 1.3x10°
at p’=80 kPa)

refBulkModu (kPa, 1.5x10° 2.0x10° 3.0x10° 3.9x10°
at p’=80 kPa)

frictionAng 29 33 37 40
peakShearStra (at 0.1 0.1 0.1 0.1
p’=80 kPa)

refPress (p’,, kPa) 80 80 80 80
pressDependCoe 0.5 0.5 0.5 0.5
PTAng 29 27 27 27
contrac 0.21 0.07 0.05 0.03
dilat1 0. 0.4 0.6 0.8
dilat2 0 2 3 5
liquefac1 (kPa) 10 10 5 0
liquefac2 0.02 0.01 0.003 0
liquefac3 1 1 1 0

e 0.85 0.7 0.55 0.45

Chapter 22 Soil Models and Solid-Fluid Fully Coupled Elements 261

PressureDependMultiYield02

PressureDependMultiYield02 material is modified from PressureDependMultiYield material,
with: 1) additional parameters ($contrac3 and $dilat3) to account for Ko effect, 2) a parameter to
account for the influence of previous dilation history on subsequent contraction phase
($contrac2), and 3) modified logic related to permanent shear strain accumulation ($liquefact
and $liquefac2). Please visit http://cyclic.ucsd.edu/opensees
(http://cyclic.ucsd.edu/opensees) for examples.

nDMaterial PressureDependMultiYield02 $tag $nd $rho $refShearModul
$refBulkModul $frictionAng $peakShearStra $refPress
$pressDependCoe $PTAng $contrac1 $contrac3 $dilat1 $dilat3
<$noYieldSurf=20 <$r1 $Gs1 ...> $contrac2=5. $dilat2=3.
$liquefac1=1. S$liquefac2=0. $e=0.6 $cs1=0.9 $c¢s2=0.02 $cs3=0.7

$p.=101>
$contrac3 A non-negative constant reflecting Ko effect.
$dilat3 A non-negative constant reflecting Ko effect.
$contrac2 A non-negative constant reflecting dilation history on contraction tendency.

Damage parameter to define accumulated permanent shear strain as a
$liquefact function of dilation history. (Redefined and different from
PressureDependMultiYield material).

Chapter 22 Soil Models and Solid-Fluid Fully Coupled Elements 262

Damage parameter to define biased accumulation of permanent shear strain
$liquefac2 as a function of load reversal history. (Redefined and different from
PressureDependMultiYield material).

Others See PressureDependMultiYield material above.

Chapter 22 Soil Models and Solid-Fluid Fully Coupled Elements 263

Chapter 22 Soil Models and Solid-Fluid Fully Coupled Elements 264

NOTE:

The following values are suggested for the model parameters.

Dr=30%

Dr=40%

Dr=50%

Dr=60%

Dr=75%

Chapter 22 Soil Models and Solid-Fluid Fully Coupled Elements 265

rho (ton/m3) 1.7 1.8 1.9 2.0 2.1
refShearModul
(kPa, at p’=80 6x10* 9x10* 10x10* 11x10* 13x10*
kPa)
refBulkModu (kPa, | 16x10* 22x10¢ 23.3x10* 24x10¢ 26x10*
at p’=80 kPa)

(K,=0.5) (Ko=0.47) (Ko=0.45) (Ko=0.43) (Ko=0.4)
frictionAng 31 32 33.5 35 36.5
PTAng 31 26 255 26 26
peakShearStra (at | 0.1
p’=101 kPa)
refPress (p’, kPa) | 101
pressDependCoe | 0.5
Contract 0.087 0.067 0.045 0.028 0.013
Contrac3 0.18 0.23 0.15 0.05 0.0
dilat1 0. 0.06 0.06 0.1 0.3
dilat3 0.0 0.27 0.15 0.05 0.0
e 0.85 0.77 0.7 0.65 0.55

Chapter 22 Soil Models and Solid-Fluid Fully Coupled Elements 266

PressurelndependMultiYield

PressurelndependMultiYield material is an elastic-plastic material in which plasticity exhibits
only in the deviatoric stress-strain response. The volumetric stress-strain response is linear-
elastic and is independent of the deviatoric response. This material is implemented to simulate
monotonic or cyclic response of materials whose shear behavior is insensitive to the
confinement change. Such materials include, for example, organic soils or clay under fast
(undrained) loading conditions. Please visit http://cyclic.ucsd.edu/opensees
(http://cyclic.ucsd.edu/opensees) for examples.

During the application of gravity load (and static loads if any), material behavior is linear elastic.
In the subsequent dynamic (fast) loading phase(s), the stress-strain response is elastic-plastic
(see MATERIAL STAGE UPDATE below). Plasticity is formulated based on the multi-surface
(nested surfaces) concept, with an associative flow rule. The yield surfaces are of the Von Mises

type.

OUTPUT INTERFACE:

The following information may be extracted for this material at a given integration point, using

the OpenSees Element Recorder facility (McKenna and Fenves 2001): "stress", "strain",
"backbone", or "tangent".

For 2D problems, the stress output follows this order: o, o,,, 6.., G, N,, Where 1 is the ratio
between the shear (deviatoric) stress and peak shear strength at the current confinement
(0<=m<=1.0). The strain output follows this order: €., €, -

For 3D problems, the stress output follows this order: o, 6, 6.., Gy, G, G, M:, and the strain
output follows this order: €., €,, €., Y, Ver Yor-

The "backbone" option records (secant) shear modulus reduction curves at one or more given
confinements. The specific recorder command is as follows:

recorder Element —ele $eleNum -file $fName -dT $deltaT material $GaussNum backbone
$p1 <$p2...>

where p1, p2, ... are the confinements at which modulus reduction curves are recorded. In the
output file, corresponding to each given confinement there are two columns: shear strain y and
secant modulus G.. The number of rows equals the number of yield surfaces.

Chapter 22 Soil Models and Solid-Fluid Fully Coupled Elements 267

nDmaterial PressurelndependMultiYield $tag $nd $rho $refShearModul
$refBulkModul $cohesi $peakShearStra <$frictionAng=0.
$refPress=100. $pressDependCoe=0. $noYieldSurf=20 <$r1 $Gs1 ...>

>
Octahedral
shear stress t
A
$Tf ____________ |
|
|
| Shear stress-strain at p',
|
|
|
|
| Octahedral
$G, ! shear strain y
>
$'Ymax
$tag A positive integer uniquely identifying the material among all
nDMaterials.
$nd Number of dimensions, 2 for plane-strain, and 3 for 3D analysis
$rho Saturated soil mass density.
$refShearModul Reference low-strain shear modulus, specified at a reference mean
(Gr) effective confining pressure refPress of p’, (see below).

$refBulkModul (Br) Reference bulk modulus, specified at a reference mean effective
confining pressure refPress of p’, (see below).

$cohesi (c) Apparent cohesion at zero effective confinement.

$peakShearStra An octahedral shear strain at which the maximum shear strength is

(gmax) reached, specified at a reference mean effective confining pressure
refPress of p’, (see below).

$frictionAng (f) Friction angle at peak shear strength in degrees, optional (default is
0.0).

$retPress (p’) Reference mean effective confining pressure at which G,, B,, and ... are

defined, optional (default is 100.).

Chapter 22 Soil Models and Solid-Fluid Fully Coupled Elements 268

$pressDependCoe ap optional non-negative constant defining variations of G and B as a
(d) function of initial effective confinement p’; (default is 0.0):

’ ’

G=Gr(pi)d B=Br(pi)d

’

r r

If $=0, d is reset to 0.0.

$noYieldSurf Number of yield surfaces, optional (must be less than 40, default is 20).
The surfaces are generated based on the hyperbolic relation defined in
Note 2 below.

$r, $Gs Instead of automatic surfaces generation (Note 2), you can define

yield surfaces directly based on desired shear modulus reduction
curve. To do so, add a minus sign in front of noYieldSurf, then provide
noYieldSurf pairs of shear strain (y) and modulus ratio (G;) values. For
example, to define 10 surfaces:

'10 Yl GS1 'YIO Gsﬂ)

See Note 3 below for some important notes.

NOTE:

1 The friction angle ¢ and cohesion c¢ define the variation of peak (octahedral) shear strength
as a function of initial effective confinement p’::

2\2sing , 242
T, = - p; + c
3—sing 3

1 Automatic surface generation: at a constant confinement p’, the shear stress 1 (octahedral) -
shear strain y (octahedral) nonlinearity is defined by a hyperbolic curve (backbone curve):

_ 6y
N\d
3l
V.\ P

where v, satisfies the following equation at p’,:

T=

T _2\/§SIH¢ /+2\/§C_ Gr }/max
T3 sing T3 “Tixy_ iy

Chapter 22 Soil Models and Solid-Fluid Fully Coupled Elements 269

(User defined surfaces) If the user specifies f=0, cohesion ¢ will be ignored. Instead, c is defined
by c=sqrt(3)*s./2, where s, is the product of the last modulus and strain pair in the modulus
reduction curve. Therefore, it is important to adjust the backbone curve so as to render an
appropriate c.

If the user specifies >0, this f will be ignored. Instead, f is defined as follows:

. 3(W30, =20/ p.
sing = ;
6+(KW3o0,-2c)!p.

If the resulting f<0, we set f=0 and c=sqrt(3)*s./2.

Also remember that improper modulus reduction curves can result in strain softening response
(negative tangent shear modulus), which is not allowed in the current model formulation. Finally,
note that the backbone curve varies with confinement, although the variation is small within
commonly interested confinement ranges. Backbone curves at different confinements can be
obtained using the OpenSees element recorder facility (see OUTPUT INTERFACE above).

1 SUGGESTED PARAMETER VALUES

For user convenience, a table is provided below as a quick reference for selecting parameter
values. However, use of this table should be of great caution, and other information should be
incorporated wherever possible.

Soft Clay Medium Clay | Stiff Clay

Chapter 22 Soil Models and Solid-Fluid Fully Coupled Elements

270

rho (ton/m?) 1.3 1.5 1.8
refShearModul (kPa) | 1.3x10* 6.0x10* 1.5x10°
refBulkModu (kPa) 6.5x10* 3.0x10° 7.5x10°
cohesi (kPa) 18 37 75
peakShearStra 0.1 0.1 0.1
frictionAng 0 0 0
pressDependCoe 0 0 0

Chapter 22 Soil Models and Solid-Fluid Fully Coupled Elements 271

Chapter 22 Soil Models and Solid-Fluid Fully Coupled Elements 272

updateMaterialStage

This command is used to update a PressureDependMultiYield,
PressureDependMultiYield02, PressurelndependMultiYield, or FluidSolidPorous material.
To conduct a seismic analysis, two stages should be followed. First, during the application of
gravity load (and static loads if any), set material stage to 0, and material behavior is linear
elastic (with G, and B, as elastic moduli). A FluidSolidPorous material does not contribute to the
material response if its stage is set to 0. After the application of gravity load, set material stage to
1 or 2. In case of stage 2, all the elastic material properties are then internally determined at the
current effective confinement, and remain constant thereafter. In the subsequent dynamic (fast)
loading phase(s), the deviatoric stress-strain response is elastic-plastic (stage 1) or linear-elastic
(stage 2), and the volumetric response remains linear-elastic. Please visit
http://cyclic.ucsd.edu/opensees (http://cyclic.ucsd.edu/opensees) for examples.

| updateMaterialStage -material $tag -stage $sNum

$tag Material number.
$sNum desired stage:
0 - linear elastic,
1 — plastic,

2 - Linear elastic, with elasticity constants (shear modulus and bulk
modulus) as a function of initial effective confinement.

Chapter 22 Soil Models and Solid-Fluid Fully Coupled Elements 273

updateParameter

This command is used to update:

1. Parameters of PressureDependMultiYield or PressurelndependMultiYield material.
Currently, two material parameters, reference low-strain shear modulus G. and reference bulk
modulus B,, can be modified during an analysis.

2. Permeability parameters of solid-fluid fully coupled elements including FourNodeQuadUP,
Nine_Four_Node_QuadUP, BrickUP, and Twenty_ Eight_Node_BrickUP.

Please visit http://cyclic.ucsd.edu/opensees (http://cyclic.ucsd.edu/opensees) for examples.

| updateParameter -material $tag -refG $newVal |

| updateParameter -material $tag -refB $newVal |

| updateParameter -element $tag -hPerm $newVal |

| updateParameter -element $tag -vPerm $newVal |

$tag Material/element number.

$newVal New parameter value.

Chapter 22 Soil Models and Solid-Fluid Fully Coupled Elements 274

FluidSolidPorousMaterial

FluidSolidPorousMaterial couples the responses of two phases: fluid and solid. The fluid
phase response is only volumetric and linear elastic. The solid phase can be any NDMaterial.
This material is developed to simulate the response of saturated porous media under fully
undrained condition. Please visit http://cyclic.ucsd.edu/opensees
(http://cyclic.ucsd.edu/opensees) for examples.

OUTPUT INTERFACE:

The following information may be extracted for this material at given integration point, using the
OpenSees Element Recorder facility (McKenna and Fenves 2001): "stress", "strain", "tangent",
or "pressure". The "pressure" option records excess pore pressure and excess pore pressure
ratio at a given material integration point.

nDMaterial FluidSolidPorousMaterial $tag $nd $soilMatTag
$combinedBulkModul

$tag A positive integer uniquely identifying the material among all nDMaterials
$nd Number of dimensions, 2 for plane-strain, and 3 for general 3D analysis.
$soilMatTag The material number for the solid phase material (previously defined).

$combinBulkModul combined undrained bulk modulus B, relating changes in pore pressure
and volumetric strain, may be approximated by:

B, =B, /n

where B; is the bulk modulus of fluid phase (2.2x10° kPa for water
typically), and n the initial porosity.

1
NOTE:

1 Buoyant unit weight (total unit weight - fluid unit weight) should be used in definition of the
finite elements composed of a FluidSolidPorousMaterial.

2 During the application of gravity (elastic) load, the fluid phase does not contribute to the
material response.

Chapter 22 Soil Models and Solid-Fluid Fully Coupled Elements 275

FourNodeQuadUP

FourNodeQuadUP is a four-node plane-strain element using bilinear isoparametric formulation.
This element is implemented for simulating dynamic response of solid-fluid fully coupled
material, based on Biot's theory of porous medium. Each element node has 3 degrees-of-
freedom (DOF): DOF 1 and 2 for solid displacement (u) and DOF 3 for fluid pressure (p). Please
visit http://cyclic.ucsd.edu/opensees (http://cyclic.ucsd.edu/opensees) for examples.

OUTPUT INTERFACE:

Pore pressure can be recorded at an element node using OpenSees Node Recorder:

recorder Node <-file $fileName> <-time> <-node ($nod1 $nod2 ...)> -dof 3 vel

See OpenSees command manual (McKenna and Fenves 2001) for nodal displacement, velocity,
or acceleration recorders.

The valid queries to a quadUP element when creating an ElementRecorder are 'force’, 'stiffness’,
or 'material matNum matArg1 matArg2 ...", where matNum represents the material object at the
corresponding integration point.

element quadUP $eleTag $iNode $jNode $kNode $INode $thick $matTag
$bulk $fmass $hPerm $vPerm <$b1=0 $b2=0 $t=0>

$eleTag A positive integer uniquely identifying the element among all elements

$iNode, $jNode, Foyr element node (previously defined) numbers in counter-clockwise order
$kNode, $INode 5round the element

$thick Element thickness

$matTag Tag of an NDMaterial object (previously defined) of which the element is
composed

Chapter 22 Soil Models and Solid-Fluid Fully Coupled Elements 276

$bulk

$fmass
$hPerm
$vPerm
$b1, $b2

$t

Combined undrained bulk modulus B. relating changes in pore pressure and
volumetric strain, may be approximated by:

B, =B,/n

where B; is the bulk modulus of fluid phase (2.2x10° kPa for water), and n the
initial porosity.

Fluid mass density

Permeability coefficient in horizontal direction

Permeability coefficient in vertical direction

Optional gravity acceleration components in horizontal and vertical directions
respectively (defaults are 0.0)

Optional uniform element normal traction, positive in tension (default is 0.0)

TYPICAL RANGE OF PERMEABILITY COEFFICIENT (cm/s)

Gravel

Sand

Silty Sand Silt Clay

>1.0x10"

1.0x10° ~ 1.0x10" 1.0x10° ~ 1.0x10° | 1.0x10” ~ 1.0x10° | <1.0x107

Chapter 22 Soil Models and Solid-Fluid Fully Coupled Elements 277

Nine_Four Node QuadUP

Nine_Four_Node_QuadUP is a 9-node quadrilateral plane-strain element. The four corner
nodes have 3 degrees-of-freedom (DOF) each: DOF 1 and 2 for solid displacement (u) and DOF
3 for fluid pressure (p). The other five nodes have 2 DOFs each for solid displacement. This
element is implemented for simulating dynamic response of solid-fluid fully coupled material,
based on Biot's theory of porous medium. Please visit http://cyclic.ucsd.edu/opensees
(http://cyclic.ucsd.edu/opensees) for examples.

OUTPUT INTERFACE:

Pore pressure can be recorded at an element node using OpenSees Node Recorder:
recorder Node <-file $fileName> <-time> <-node ($nod1 $nod2 ...)> -dof 3 vel

See OpenSees command manual (McKenna and Fenves 2001) for nodal displacement, velocity,
or acceleration recorders.

The valid queries to a Nine_Four_Node_QuadUP element when creating an ElementRecorder
are 'force', 'stiffness', or 'material matNum matArg1 matArg2 ...", where matNum represents the
material object at the corresponding integration point.

element 9_4 QuadUP $eleTag $Node1 $Node2 $Node3 $Noded $Node5
$Node6 $Node7 $Node8 $Node9 $thick $matTag $bulk $fmass
$hPerm $vPerm <$b1=0 $b2=0>
® 2 .7 30
[1] o9 6@
1 5 2
@ ® ®
$eleTag A positive integer uniquely identifying the element among all elements
$Nodet,... Nine element node (previously defined) numbers (see figure above for order of

$Node9 numbering).

Chapter 22 Soil Models and Solid-Fluid Fully Coupled Elements 278

$thick
$matTag

$bulk

$fmass

$hPerm,
$vPerm

$b1, $b2

Element thickness

Tag of an NDMaterial object (previously defined) of which the element is
composed

Combined undrained bulk modulus B. relating changes in pore pressure and
volumetric strain, may be approximated by:

B, =B, /n

where B; is the bulk modulus of fluid phase (2.2x10° kPa for water), and n the
initial porosity.

Fluid mass density

Permeability coefficient in horizontal and vertical directions respectively.

Optional gravity acceleration components in horizontal and vertical directions
respectively (defaults are 0.0)

Chapter 22 Soil Models and Solid-Fluid Fully Coupled Elements 279

BrickUP

BrickUP is an 8-node hexahedral linear isoparametric element. Each node has 4 degrees-of-
freedom (DOF): DOFs 1 to 3 for solid displacement (u) and DOF 4 for fluid pressure (p). This
element is implemented for simulating dynamic response of solid-fluid fully coupled material,
based on Biot's theory of porous medium. Please visit http://cyclic.ucsd.edu/opensees
(http://cyclic.ucsd.edu/opensees) for examples.

OUTPUT INTERFACE:

Pore pressure can be recorded at an element node using OpenSees Node Recorder:

recorder Node <-file $fileName> <-time> <-node ($nod1 $nod2 ...)> -dof 3 vel

See OpenSees command manual (McKenna and Fenves 2001) for nodal displacement, velocity,
or acceleration recorders.

The valid queries to a BrickUP element when creating an ElementRecorder are 'force’, 'stiffness’,
or 'material matNum matArg1 matArg2 ...", where matNum represents the material object at the
corresponding integration point.

element brickUP $eleTag $Node1 $Node2 $Node3 $Noded $Node5 $Nodeb
$Node7 $Node8 $matTag $bulk $fmass $PermX $PermY $PermZ
<$bX=0 $bY=0 $bZ=0>

7 6
|
|
8 | 5
|
.
. 4 3
/
v ;

$eleTag A positive integer uniquely identifying the element among all elements

Chapter 22 Soil Models and Solid-Fluid Fully Coupled Elements 280

$Node1,...

$Node8

$matTag

$bulk

$fmass

$permX,
$permY,
$permZ

$bX, $by,
$bZ

Eight element node (previously defined) numbers (see figure above for order of
numbering).

Tag of an NDMaterial object (previously defined) of which the element is
composed

Combined undrained bulk modulus B, relating changes in pore pressure and
volumetric strain, may be approximated by:

B, zBf/n

where B; is the bulk modulus of fluid phase (2.2x10° kPa for water), and n the initial
porosity.

Fluid mass density

Permeability coefficients in x, y, and z directions respectively.

Optional gravity acceleration components in x, y, and z directions directions
respectively (defaults are 0.0)

Chapter 22 Soil Models and Solid-Fluid Fully Coupled Elements 281

Twenty_Eight Node_BrickUP

Twenty_Eight_Node_BrickUP is a 20-node hexahedral isoparametric element. The eight
corner nodes have 4 degrees-of-freedom (DOF) each: DOFs 1 to 3 for solid displacement (u)
and DOF 4 for fluid pressure (p). The other nodes have 3 DOFs each for solid displacement.
This element is implemented for simulating dynamic response of solid-fluid fully coupled
material, based on Biot's theory of porous medium. Please visit
http://cyclic.ucsd.edu/opensees (http:/cyclic.ucsd.edu/opensees) for examples.

OUTPUT INTERFACE:

Pore pressure can be recorded at an element node using OpenSees Node Recorder:
recorder Node <-file $fileName> <-time> <-node ($nod1 $nod2 ...)> -dof 3 vel

See OpenSees command manual (McKenna and Fenves 2001) for nodal displacement, velocity,
or acceleration recorders.

The valid queries to a Twenty_Eight_Node_BrickUP element when creating an
ElementRecorder are 'force’, 'stiffness’, or 'material matNum matArg1 matArg2 ...", where
matNum represents the material object at the corresponding integration point.

element 20_8 BrickUP $eleTag $Node1 ... $Node20 $matTag $bulk $fmass
$PermX $PermY $PermZ <$bX=0 $bY=0 $bZ=0>

7 15. 6
16l
l 14
8 .13 5 .19
0
|
® I .18
17 —— —F —
’.4 .1_1 3
)/12 10
./1 .9 2

$eleTag A positive integer uniquely identifying the element among all elements

Chapter 22 Soil Models and Solid-Fluid Fully Coupled Elements 282

$Nodel,... 20 element node (previously defined) numbers (see figure above for order of

$Node20 numbering).

$matTag Tag of an NDMaterial object (previously defined) of which the element is
composed

$bulk Combined undrained bulk modulus B, relating changes in pore pressure and

volumetric strain, may be approximated by:

B.=B,/In
where B; is the bulk modulus of fluid phase (2.2x10° kPa for water), and n the initial
porosity.

$fmass Fluid mass density

$permX, Permeability coefficients in x, y, and z directions respectively.

$permY,

$permZ

$bX, $by, Optional gravity acceleration components in x, y, and z directions directions

$bz respectively (defaults are 0.0)

Chapter 22 Soil Models and Solid-Fluid Fully Coupled Elements 283

References

Elgamal, A., Lai, T., Yang, Z. and He, L. (2001). "Dynamic Soil Properties, Seismic Downhole
Arrays and Applications in Practice," State-of-the-art paper, Proc., 4th Intl. Conf. on Recent
Advances in Geote. E.Q. Engrg. Soil Dyn. March 26-31, San Diego, CA, S. Prakash (Ed.).

Elgamal, A., Yang, Z. and Parra, E. (2002). "Computational Modeling of Cyclic Mobility and
Post-Liquefaction Site Response,” Soil Dyn. Earthquake Engrg., 22(4), 259-271.

Elgamal, A., Yang, Z., Parra, E. and Ragheb, A. (2003). "Modeling of Cyclic Mobility in
Saturated Cohesionless Soils," Int. J. Plasticity, 19(6), 883-905.

McKenna, F. and Fenves, G. (2001). "The OpenSees Command Language Manual: version
1.2," Pacific Earthquake Engineering Center, Univ. of Calif., Berkeley.
(http://opensees.berkeley.edu).

Parra, E. (1996). "Numerical Modeling of Liquefaction and Lateral Ground Deformation Including
Cyclic Mobility and Dilation Response in Soil Systems," Ph.D. Thesis, Dept. of Civil Engineering,
Rensselaer Polytechnic Institute, Troy, NY.

Yang, Z. (2000). "Numerical Modeling of Earthquake Site Response Including Dilation and
Liquefaction," Ph.D. Thesis, Dept. of Civil Engineering and Engineering Mechanics, Columbia
University, NY, New York.

Yang, Z. and Elgamal, A. (2002). "Influence of Permeability on Liquefaction-Induced Shear
Deformation,” J. Engrg. Mech., ASCE, 128(7), 720-729.

Yang, Z., Elgamal, A. and Parra, E. (2003). "A Computational Model for Liquefaction and
Associated Shear Deformation,” J. Geotechnical and Geoenvironmental Engineering,
ASCE, 129(12), 1119-1127.

284

CHAPTER 23

block Command

The block command is used to generate meshes of quadrilateral or brick finite element.

The block2D (page 296) command generates meshes of quadrilateral elements in two or three
dimensions. In three dimensions, a two-dimensional surface appropriate for shell analysis is
generated.

The block3D (page 298) command generates three-dimensional meshes of eight-node brick
solid element.

In This Chapter

block2D ComMMaANG.....c.uoveeeeeeeee e 296
block3D Command.......coveeeeeeeeee e 298

Chapter 23 block Command 285

block2D Command

The block2D command generates meshes of quadrilateral elements in two or three dimensions.
In three dimensions, a two-dimensional surface appropriate for shell analysis is generated.

block2d $nx $ny $e1 $n1 element (element arguments) {

$x1 $y1 <$z1>

—t

2 $x2 $y2 <$z2>
3 $x3 $y3 <$z3>
4 $x4 $y4 <$z24>
<5> <$x5> <Py5> <$z5>
<6> <$x6> <Py6> <$26>
<7> <$xX7> <$y7> <$27>
<8> <$x8> <Py8> <$28>
<9> <$x9> <$y9> <$29>

}

$nx $ny number of elements in the local x and y directions of the block,
respectively

$e $n1 starting element and node number for generation, respectively

element string defining which quadrilateral element (page 227, page 228,
page 226, page 227) is being used

(element list of data parameters for element being used. This list may

arguments) include, but is not limited to, a $matTag number

{$x1, $x9} {$y1, coordinates of the block elements in two dimensions
... $y9}

{$z1, $29} coordinate of the block elements in third dimension (optional,
default=0.0)

Only the first four nodes (1-4) are required. Nodes 5-9 are used to generate curved meshes. The
user may specify any combination of nodes 5-9, omitting some of them if desired.

Chapter 23 block Command 286

NOTE: this command only recognizes variable substitutions when the command
arguments are placed in quotes rather than braces

EXAMPLE:

block2d $nx $ny $e1 $n1 element (element arguments) {
1 $x1 $y1 <$z1>
2 $x2 $y2 <$z2>
3 $x3 $y3 <$23>
4 $x4 $y4 <$z4>
<5> <$x5> <$y5> <$z5>
<6> <$x6> <Py6> <$z6>
<7> <$X7> <Py7> <$z7>
<8> <$x8> <$y8> <$z8>
<9> <$x9> <$y9> <$29>

Figure 54: Node
Numbering for Nine-

Node block2D
& J 3
gl 9] i

Chapter 23 block Command 287

block3D Command

The block3D command generates three-dimensional meshes of eight-node brick solid element.

block3d $nx $ny $nz $e1 $n1 element elementArgs {
1 $x1 $y1 $z1

$x2 $y2 $z2

$x3 $y3 $z3

$x4 $y4 $z4

$x5 $y5 $z5

$x6 $y6 $z6

$x7 $y7 $z7

$x8 $y8 $z8

<9> <$x9> <Py9> <$29>

0o N o o ~ WD

<27> <$x27> <$y27> <$z27>

}
$nx $ny $nz number of elements in the local x,y and z-direction of the block
$el starting element number for generation
$n1 starting node number for generation
element define which brick element (page 231, page 229) is being used
elementArgs list of data parameters for element being used. This list may

include, but is not limited to, a $matTag number

{$x1, $x27} {$y1, coordinates of the block elements in three dimensions.

. Y27} {$21, ...
$z27}

Chapter 23 block Command 288

NOTE: this command only recognizes variable substitutions when the command

arguments are placed in quotes rather than braces

Only the first eight nodes (1-8) are required. Nodes 9-27 are used to generate curved meshes.
The user may specify any combination of nodes 9-27, omitting some of them if desired.

289

CHAPTER 24

region Command

The region command is used to label a group of nodes and elements. This command is also
used to assign rayleigh damping parameters to the nodes and elements in this region.

region $regTag <-ele ($ele1 $ele2 ...)> <-eleRange $startEle $endEle> <-ele all>
<-node ($node1 $node2 ...)> <-nodeRange $startNode $endNode> <-
node all> <-rayleigh $alphaM $betaK $betaKinit $betaKcomm>

The region is specified by either elements or nodes, not both. If elements are defined, the region
includes these elements and the all connected nodes. If nodes are specified, the region includes
these nodes and all elements whose external nodes are prescribed.

$regTag unique integer tag

$elel $ele2 ... tags of elements -- selected elements in domain (optional,
default: omitted)

$startEle $endEle tag for start and end elements -- range of selected elements in
domain (optional, default: all)

all all elements in domain (optional & default)

$alphaM $betaK Arguments to define Rayleigh damping matrix (optional, default:

$betaKinit zero)

$betaKcomm

OR:

$regTag unique integer tag

$nodel $node2 ... node tags -- select nodes in domain (optional,
default: all)

$startNode tag for start and end nodes -- range of nodes

$endNode in domain (optional, default: all)

all all nodes in domain (optional & default)

$alphaM $betaK Arguments to define Rayleigh damping matrix
$betaKinit (optional, default: zero)
$betaKcomm

The damping matrix D is specified as a combination of stiffness and mass-proportional damping
matrices:

D = $alphaM * M + $betaK * Kcurrent +$betaKinit * Kinit + $betaKcomm * KlastCommit

Chapter 24 region Command

290

The mass and stiffness matrices are defined as:
M mass matrix used to calculate Rayleigh Damping

Kcurrent stiffness matrix at current state determination used to calculate
Rayleigh Damping

Kinit stiffness matrix at initial state determination used to calculate
Rayleigh Damping

KlastCommit stiffness matrix at last-committed state determination used to
calculate Rayleigh Damping

NOTE: a region is defined by either nodes or elements, not both.
EXAMPLE:
region 1 -ele 1 5 -eleRange 10 15

region 2 -node 2 4 6 -nodeRange 9 12

291

CHAPTER 25

Geometric Transformation
Command

The geometric-transformation command (geomTransf) is used to construct a coordinate-
transformation (CrdTransf) object, which transforms beam element stiffness and resisting force
from the basic system to the global-coordinate system. The command has at least one
argument, the transformation type. Each type is outlined below.

In This Chapter

Linear Transformationcoeeeveee e, 302
P-Delta Transformationceoeoveeeeeeeieeee e 308
Corotational Transformationcccoveeeeveieiieeiieiians 309

Linear Transformation

This command is used to construct a linear coordinate transformation (LinearCrdTransf) object,
which performs a linear geometric transformation of beam stiffness and resisting force from the
basic system to the global-coordinate system.

For a two-dimensional problem:

| geomTransf Linear $transfTag <-jntOffset $dXi $dYi $dXj $dYj>

For a three-dimensional problem:

geomTransf Linear $transfTag $vecxzX $vecxzY $vecxzZ <-jntOffset $dXi $dYi
$dzZi $dXj $dYj $dzZj>

$transfTag unique identifier for CrdTransf object

Chapter 25 Geometric Transformation Command 292

$vecxzX $vecxzY
$vecxzZ

$dXi $dYi $dZi

$dXj $dYj $dZj

X, Y, and Z components of vecxz, the vector used to define the
local x-z plane of the local-coordinate system. The local y-axis is
defined by taking the cross product of the x-axis and the vecxz
vector.

These components are specified in the global-coordinate
system X,Y,Z and define a vector that is in a plane parallel to
the x-z plane of the local-coordinate system.

These items need to be specified for the three-dimensional
problem.

joint offset values -- absolute offsets specified with respect to
the global coordinate system for element-end node i (the
number of arguments depends on the dimensions of the current
model) (optional)

joint offset values -- absolute offsets specified with respect to
the global coordinate system for element-end node j (the
number of arguments depends on the dimensions of the current
model) (optional)

The element coordinate system is specified as follows:

Chapter 25 Geometric Transformation Command 293

The x-axis is the axis connecting the two element nodes; the y- and z-axes are then defined
using a vector that lies on a plane parallel to the local x-z plane -- vecxz. The y-axis is defined by
taking the cross product of the x-axis and the vecxz vector. The section is attached to the
element such that the y-z coordinate system used to specify the section corresponds to the y-z
axes of the element.

[WECxEH | verTY | vecxzL)

X

Figure 55: Definition of
the Local Coordinate
System

Chapter 25 Geometric Transformation Command 294

Figure 56: Definition of
Rigid Joint Offset
(note: check sign of
aXi,etc components)

Chapter 25 Geometric Transformation Command 295

The following figures should aid in understanding the vector vecxz definition:

element cross-section:

e i

¥

element 1 element 2

element orientation:

element 2

element 1

Chapter 25 Geometric Transformation Command

296

element xz plane and vectors:

element 2
vectar parallel
to vecxz
i
[P
X Z local
xz plane vecxz for
|
- % ¥ element2
= F=
E =~ Y
£
T
vectar parallel X
tovecxz
A\ S AN

vecxz for element 1

linear transformation command:

element 1:

vecxz = z axis, coords: (00 1)
geomTransf Linear $transfTag 0 0 1
element 2:

vecxz = y axis, coords: (0 -1 0)
geomTransf Linear $transfTag 0-10

Chapter 25 Geometric Transformation Command 297

P-Delta Transformation

This command is used to construct the P-Delta Coordinate Transformation (PDeltaCrdTransf)
object, which performs a linear geometric transformation of beam stiffness and resisting force
from the basic system to the global coordinate system, considering second-order P-Delta
effects.

For a two-dimensional problem:

| geomTransf PDelta $transfTag <-jntOffset $dXi $dYi $dXj $dYj>

For a three-dimensional problem:

geomTransf PDelta $transfTag $vecxzX $vecxzY $vecxzZ <-jntOffset $dXi $dVYi
$dzi $dXj $dYj $dzZj>

The element coordinate system and joint offset values are specified as in the Linear
transformation (page 302).

$transfTag unique identifier for CrdTransf object

$vecxzX $vecxzY X, Y, and Z components of vecxz, the vector used to define the
$vecxzZ local x-z plane of the local-coordinate system. (These items
need to be specified for the three-dimensional problem.)

These components are specified in the global-coordinate
system X,Y,Z and define a vector that is in a plane parallel to
the x-z plane of the local-coordinate system.

These items need to be specified for the three-dimensional
problem.

$dXi $dYi $dZi joint offset values -- absolute offsets specified with respect to
the global coordinate system for element-end node i (the
number of arguments depends on the dimensions of the current
model (page 37)) (optional)

$dXj $dYj $dzj joint offset values -- absolute offsets specified with respect to
the global coordinate system for element-end node j (the
number of arguments depends on the dimensions of the current
model (page 37)) (optional)

Chapter 25 Geometric Transformation Command 298

Corotational Transformation

This command is used to construct the Corotational Coordinate Transformation
(CorotCrdTransf) object, which performs an exact geometric transformation of beam stiffness
and resisting force from the basic system to the global coordinate system.

For a two-dimensional problem:

| geomTransf Corotational $transfTag <-jntOffset $dXi $dYi $dXj $dYj>

For a three-dimensional problem:

geomTransf Corotational $transfTag $vecxzX $vecxzY $vecxzZ <-jntOffset $dXi
$dYi $dZi $dXj $dYj $dZj>

NOTE: The Corotational transformation is only available with the Win32 version of OpenSees
(http://opensees.berkeley.edu/OpenSees/binaries.html).

The element coordinate system and joint offset values are specified as in the Linear
transformation (page 302).

$transfTag unique identifier for CrdTransf object

$vecxzX $vecxzY X, Y, and Z components of vecxz, the vector used to define the
$vecxzZ local x-z plane of the local-coordinate system. (These items
need to be specified for the three-dimensional problem.)

These components are specified in the global-coordinate
system X,Y,Z and define a vector that is in a plane parallel to
the x-z plane of the local-coordinate system.

$dXi $dYi $dzi joint offset values -- absolute offsets specified with respect to
the global coordinate system for element-end node i (the
number of arguments depends on the dimensions of the current
model (page 37)) (optional)

$dXj $dYj $dzj joint offset values -- absolute offsets specified with respect to
the global coordinate system for element-end node j (the
number of arguments depends on the dimensions of the current
model (page 37)) (optional)

299

CHAPTER 26

Time Series

While there is no timeSeries command in the language, a number of commands take as the
argument a list of items which defines the TimeSeries object to be constructed as part of the
command, such as the LoadPattern (page 317) and groundMotion (page 323) objects.

Time series act differently depending on what type of object they are applied to:

LoadPattern (page 317) object:

Load factors are applied to the loads and constraints
groundMotion (page 323) object:

Load factors are applied at the DOF in a ground motion

The type of TimeSeries objects available are presented in this chapter.

NOTE: The TimeSeries objects are handled by the Tcl interpreter as lists. Therefore, they can
be defined a-priori within quotes " and given a variable name. EXAMPLE:

set Gaccel "Series -dt $dt -filePath $outFile -factor $GMfatt"”; # time series information

pattern UniformExcitation 2 1 -accel $Gaccel; # create uniform excitation
In This Chapter

Constant Time Series........cceuvveeeiiieeiieeeiieee e, 312

Linear TiMe SerieSceeviieeeiieeeeeieeieeeeeeeeeree e 313

Rectangular Time Series........cccccviiiiiiiiiiiiiiieeees 314

Sine TiMe SEeriS....uiiiiieeeieeeee e 315

Path Time SerieS....oou e 316

Chapter 26 Time Series 300

Constant Time Series

This command creates a ConstantSeries TimeSeries (page 311) object and associates it to the
LoadPattern (page 317) object being constructed.

| Constant <-factor $cFactor>

$cFactor load-factor coefficient. (optional. default = 1.0)

The load factor to be applied to the loads and constraints in the LoadPattern object is constant
and equal to $cFactor.

Figure 57: Constant
Time Series

factora

cF actar

time

Linear Time Series

This command creates a LinearSeries TimeSeries (page 311) object and associates it to the
LoadPattern (page 317) or groundMotion (page 323) object being constructed.

Linear <-factor $cFactor>

Chapter 26 Time Series 301

$cFactor load-factor coefficient. (optional. default = 1.0)

The load factor to be applied to the loads and constraints in the LoadPattern or groundMotion
object is equal to $cFactor* time

Figure 58: Linear Time
Series

factora

cFactor
1

tirne

Rectangular Time Series

This command creates a RectangularSeries TimeSeries (page 311) object and associates it to
the LoadPattern (page 317) object being constructed.

| Rectangular $tStart $tFinish <-factor $cFactor>

$tStart start time when the load factor is applied
$tFinish end time when the load factor is applied
$cFactor load-factor coefficient. (optional. default = 1.0)

Chapter 26 Time Series 302

The load factor to be applied to the loads and constraints in the LoadPattern object is constant
and equal to $cFactor during the domain time from $tStart to $tFinish

Figure 59: Rectangular
Time Series

factor &

cFactor —

tSt:eu it tF|n:|5h t;‘ﬁqe

Sine Time Series

This command creates a TrigSeries TimeSeries (page 311) object and associates it to the
LoadPattern (page 317) object being constructed.

| Sine $tStart $tFinish $period <-shift $shift> <-factor $cFactor>

$tStart start time when the load factor is applied
$tFinish end time when the load factor is applied
$period characteristic period of sine wave

$shift phase shift (radians) (optional. default = 0.0)
$cFactor load-factor coefficient. (optional. default = 1.0)

The load factor applied to the loads and constraints in the LoadPattern object is equal to:
27 time — tStart)
+ 8
petiod

cFactor sin hift

Chapter 26 Time Series 303

Figure 60: Sine Time
Series

factors

period

{

tStart\/ \/ tFinish _ time

Path Time Series

This command associates a TimeSeries (page 311) object of the type PathSeries or
PathTimeSeries (if the increment is not constant) to a LoadPattern (page 317) object.

There are many ways to specify the load path.

For a load path where the values are specified at constant time intervals:

| Series -dt $dt -values {list_of values} <-factor $cFactor>

where the values are specified in a list included in the command

| Series -dt $dt -filePath $fileName <-factor $cFactor>

where the values are taken from a file specified by $fileName

Chapter 26 Time Series 304

For a load path where the values are specified at non-constant time intervals:

| Series -time {list_of_times} -values {list_of values} <-factor $cFactor> |
where both time and values are specified in a list included in the command

| Series -fileTime $fileName1 -filePath $fileName2 <-factor $cFactor> |

where both time and values are taken from a file specified by $fileName1 (for the time data)
and $fileName2 (for the values data)

$cFactor load-factor coefficient. (optional. default = 1.0)

The load factor to be applied to the loads and constraints in the LoadPattern object is equal to
$cFactor*(user-defined series)

305

CHAPTER 27

pattern Command

The pattern command is used to construct a LoadPattern object, its associated with the
TimeSeries (page 311) object and the Load (page 318) and Constraint (page 339) objects for
the pattern.

In This Chapter

plain Pattern ... 317
UniformExcitation Pattern...........cccccooiiii, 321
MultipleSupport Pattern ... 322

plain Pattern

This command is used to construct an ordinary LoadPattern (page 317) object in the Domain
(page 32).

pattern Plain $patternTag (TimeSeriesType arguments) {
load (load-command arguments)
sp (sp-command arguments)

eleLoad (eleLoad-command arguments)

}

$patternTag unique pattern object tag

TimeSeriesType list which is parsed to construct the TimeSeries (page 311)

arguments object associated with the LoadPattern object.

load ... list of commands to construct nodal loads -- the NodalLoad
(page 318) object

sp ... list of commands to construct single-point constraints -- the
SP_Constraint (page 319) object

eleLoad ... list of commands to construct element loads -- the eleLoad

(page 320) object

Chapter 27 pattern Command 306

NOTE: The TimeSeries object is handled by the Tcl interpreter as a list and can be defined a-
priori and given a variable name.

EXAMPLE

pattern Plain 1 Linear { ; # define LoadPattern 1. impose load in a linear manner
load 3 100 0. 0. 0. 0. 20.; # apply force and moment at node 3

}

load Command

This command is used to construct a NodalLoad object.

| load $nodeTag (ndf $LoadValues)

The nodal load is added to the LoadPattern being defined in the enclosing scope of the pattern
command.

$nodeTag node on which loads act
$LoadValues load values that are to be applied to the node.

Valid range is from 1 through ndf (page 37), the number of
nodal degrees-of-freedom.

EXAMPLE
load 31000.0.0.0.20.; #apply force Fx=100 and moment Mz=20 at node 3

Chapter 27 pattern Command 307

sp Command

This command is used to construct a single-point non-homogeneous constraint (SP_Constraint)
object.

| sp $nodeTag $DOFtag $DOFvalue

$nodeTag node on which the single-point constraint acts
$DOFtag degree-of-freedom at the node being constrained.

Valid range is from 1 through ndf (page 37), the number of
nodal degrees-of-freedom.

$DOFvalue reference value of the constraint to be applied to the DOF at the
node.

EXAMPLE

sp310.1; #impose displacement Dx=0.1 at node 3

Chapter 27 pattern Command 308

eleLoad Command

The elasticBeamColumn (page 215), forceBeamColumn (nonlinearBeamColumn (page 216))
and dispBeamColumn (page 222) elements all handle ele loads.

» The syntax for 2D is as follows:

For uniformly-distributed load:

| eleLoad -ele $eleTag1 <$eleTag?2> -type -beamUniform $Wz <$Wx>

For point load:

| eleLoad -ele $eleTag1 $eleTag2 -type -beamPoint $Pz $xL <$Px>

» The syntax for 3D is as follows:

For uniformly-distributed load:

| eleLoad -ele $eleTag1 <$eleTag?> -type -beamUniform $Wy $Wz <$Wx>

For point load:

| eleLoad -ele $eleTag1 $eleTag2 -type -beamPoint $Py $Pz $xL <$Px>

$eleTag1 previously-defined-element tags

<$eleTag?> additional previously-defined-element tags (optional)

$Wy 3D: uniformly-distributed load in local y direction

$Wz 2D: uniformly-distributed load in direction perpendicular to

element longitudinal axis

3D: uniformly-distributed load in local z direction

Chapter 27 pattern Command 309

$Wx uniformly-distributed load in direction parallel to element
longitudinal axis

$Py 3D: point load in local y direction

$Pz 2D: point load in direction perpendicular to element longitudinal
axis

3D: point load in local z direction
$xL location of point load, prescribed as fraction of element length

$Px point load in direction longitudinal to element longitudinal axis
(applied at the same location as $Pz)

were x axis is along the member.

NOTE: the forceBeamColumn (nonlinearBeamColumn (page 216)) element might have
problems converging; the current code needs to be redone, '"MICHAEL' has promised to get
around to it.

UniformEXxcitation Pattern

This command is used to construct a UniformExcitation load pattern object.

pattern UniformExcitation $patternTag $dir -accel (TimeSeriesType arguments)
<-vel0 $ver0>

$patternTag unique pattern object tag

$dir direction of excitation (1, 2, or 3) used in formulating the
inertial loads for the transient analysis.

TimeSeriesType TimeSeries (page 311) object associated with the

arguments acceleration record used in determining the inertial loads.

$vel0 initial velocity to be assigned to each node (optional, default:
Zero)

NOTE: The TimeSeries object is handled by the Tcl interpreter as a list and can be defined a-
priori and given a variable name.

Chapter 27 pattern Command 310

EXAMPLE:
set Gaccel "Series -dt $dt -filePath $outFile -factor $GMfatt"; # time series information
pattern UniformExcitation 2 1 -accel $Gaccel; # create uniform excitation

with IDtag 2 in direction 1

MultipleSupport Pattern

This command is used to construct a MultipleSupportExcitation load pattern object.

pattern MultipleSupport $patternTag {
groundMotion (groundMotion-command arguments)

imposedMotion (imposedMotion-command arguments)

}
$patternTag unique pattern object tag
groundMotion ... list of commands to construct the GroundMotions (page 323)
object that is then added to the object to define the multiple-
support excitation that is being imposed on the model
imposedMotion ... list of commands to construct the ImposedSupportSP (page

324) constraint object that is then added to the object to define
the multiple-support excitation that is being imposed on the
model

groundMotion Command

The groundMotion command is used to construct a GroundMotion object used by the
ImposedMotionSP (page 324) constraints in a MultipleSupportExcitation (page 322) object.

Chapter 27 pattern Command 311

Plain GroundMotion

This command is used to construct a plain GroundMotion object. Each GroundMotion object is
associated with a number of TimeSeries (page 311) objects, which define the acceleration,
velocity and displacement records.

groundMotion $gMotionTag Plain <-accel (accelSeriesType accelArgs)> <-vel
(velSeriesType velArgs)> <-disp (dispSeriesType dispArgs)> <-int
(IntegratorType intArgs)>

$gMotionTag unique GroundMotion (page 323) object tag
<-accel (accelSeriesType accelArgs)>

TimeSeries (page 311) objects defining the acceleration record
(optional).

<-vel (velSeriesType velArgs)>
TimeSeries (page 311) objects defining the velocity record (optional)
<-disp (dispSeriesType dispArgs)>

TimeSeries (page 311) objects defining the displacement record
(optional)

<-int (IntegratorType intArgs)>
If only the acceleration record is specified, the user has the option of
specifying the TimeSeriesiIntegrator (page 356) that is to be used to

integrate the acceleration record to determine the velocity and
displacement record (optional, default: Trapezoidal)

NOTE: The TimeSeries object is handled by the Tcl interpreter as a list and can be defined a-
priori and given a variable name.

NOTE: Any combination of the acceleration, velocity and displacement time-series can be
specified.

Chapter 27 pattern Command 312

Interpolated GroundMotion

This command is used to construct an InterpolatedGroundMotion object.

groundMotion $gMotionTag Interpolated $gmTag1 $gmTag?2 ... -fact $facti
$fact2 ...

$gMotionTag unique GroundMotion (page 323) object tag

$gmTagl $gmTag2 ground motions which have already been added to the
MultipleSupportExcitation (page 322) object.

$fact1 $fact2 ... factors that are used in the interpolation of the ground motions
to determine the ground motion for this
InterpolatedGroundMotion object.

imposedMotion Command

This command is used to construct an ImposedMotionSP constraint which is used to enforce the
response of a dof at a node in the model. The response enforced at the node at any give time is
obtained from the GroundMotion (page 323) object associated with the constraint.

| imposedMotion $nodeTag $dirn $gMotionTag

$nodeTag node where response is enforced
$dirn dof of enforced response

Valid range is from 1 through ndf (page 37), the number of
nodal degrees-of-freedom.

$gMotionTag pre-defined GroundMotion (page 323) object tag

NOTE: The GroundMotion (page 323) object must be added to the MultipeSupportExcitation
(page 322) pattern before the ImposedMotionSP constraint.

Chapter 27 pattern Command 313

FMK: ADD TIME-SERIES INTEGRATORS

314

CHAPTER 28

Recorder Objects

The recorder commands are used to construct a Recorder object, which is used to monitor items
of interest to the analyst at each commity().

In This Chapter

Node RECOrder.........uuuiiiiiiiiiiiiiiiiieeee e 326
EnvelopeNode Recordercccccvviiiniiieenieeiinnns 328
Drift RECOrder.......uveiiiiiiiiiiieeeee e 329
Element Recorder ... 330
EnvelopeElement Recorder............ccooociiiieiiinnis 332
Display ReCOrder.........coooiiiiiiiiiiiiiiiiieeeeee e 333
Plot RECOrderouiiiiiiiiiiie e 334
playback Command...........cccccooviiiiiiiiniiiee e 335

Node Recorder

The Node type records the displacement, velocity, acceleration and incremental displacement at
the nodes (translational & rotational)

recorder Node <-file $fileName> <-time> <-node ($node1 $node2 ...)> <-
nodeRange $startNode $endNode> <-region $RegionTag> <-node all>
-dof ($dof1 $dof2 ...) $respType

$fileName file where results are stored. Each line of the
file contains the result for a committed state of
the domain (optional, default: screen output)

-time this argument will place the pseudo time of the
as the first entry in the line. (optional, default:
omitted)

$nodel $node2 ... tags nodes where response is being recorded
-- select nodes in domain (optional, default: all)

$startNode tag for start and end nodes where response is

$endNode being recorded -- range of nodes in domain

(optional, default: all)

Chapter 28 Recorder Objects

315

$RegionTag

all

$dof1 $dof2 ...

$respType

tag for previously-defined selection of nodes
defined using the Region command. (optional)

where response is being recorded -- all nodes
in domain (optional & default)

degrees of freedom of response being
recorded.

Valid range is from 1 through ndf (page 37) ,
the number of nodal degrees-of-freedom.

defines response type to be recorded. The
following response types are available:

disp displacement*

vel velocity*

accel acceleration*

incrDisp incremental displacement
"eigen i" eigenvector for mode i
reaction nodal reaction

NOTE: $respType must be the last argument in this command.

Do not forget the double quote in the eigen response type.

*NOTE:

For transient analysis, the response output recorded depends on the input:

UniformExcitation (page 321) Pattern(input acceleration

record):

MultipleSupport (page 322)Pattern (input displacement

record):

Example:

recorder Node -file nodeDisp.out —time —node 1 5 -nodeRange 10 25 -dof 2 disp

recorder Node -file node34.eig -time -node 3 4 -dof 1 2 3 "eigen 2"

recorder Node -file Rnode.out -time -node 1 3 5 -dof 1 2 reaction

Absolute disp, vel and accel

Relative (wrt supports) disp, vel and accel

Chapter 28 Recorder Objects 316

EnvelopeNode Recorder

The Node type records the envelope of displacement, velocity, acceleration and incremental
displacement at the nodes (translational & rotational). The envelope consists of the following:
minimum, maximum and maximum absolute value of specified response type.

recorder EnvelopeNode <-file $fileName> <-node ($nodel $node2 ...)> <-
nodeRange $startNode $endNode> <-region $RegionTag> <-node all>
-dof ($dof1 $dof2 ...) $respType

$fileName file where results are stored. Each line of the file contains the
result for a committed state of the domain (optional, default:
screen output)

$nodel $node2 ... where response is being recorded -- select nodes (optional,
default: all)

$startNode tag for start and end where response is being recorded

$endNode (optional, default: all)

$RegionTag tag for previously-defined selection of nodes defined using the

Region command. (optional)

all where response is being recorded -- all nodes in domain
(optional & default)

$dof1 $dof2 ... degrees of freedom of response being recorded.

Valid range is from 1 through ndf (page 37) , the number of
nodal degrees-of-freedom.

$respType defines response type to be recorded. The following response
types are available:
disp displacement
vel velocity
accel acceleration
incrDisp incremental displacement

NOTE: $respType must be the last argument in this command.
Example:

recorder EnvelopeNode -file EnvelopeNode.out —time —node 1 5 -nodeRange 10 25 -dof 2 disp

Chapter 28 Recorder Objects 317

Drift Recorder

The Drift type records the displacement drift between two nodes. The drift is taken as the ratio
between the prescribed relative displacement and the specified distance between the nodes.

recorder Drift -file $fileName <-time> -iNode ($inode1 $inode2 ...) -jNode
($jnodel $jnode2 ...) -dof ($dof1 $dof2 ...) -perpDirn ($perpDirni
$perpDirn2 ...)

$fileName
-time

($inode1 $inode2
)

($jnode1 $jnode2
)
($dof1 $dof2 ...)

($perpDirni
$perpDirn2 ...)

Example:

file where results are stored. Each line of the file contains the
result for a committed state of the domain

this argument will place the pseudo time of the as the first entry
in the line. (optional, default: omitted)

set of i nodes for which drift is recorded
set of j nodes for which drift is recorded

set of nodal degrees of freedom to monitor for drift

Valid range is from 1 through ndm (page 37), the number of
nodal degrees-of-freedom.

set of perpendicular global directions from which length is
determined to compute drift (1 =X,2 =Y, 3 = 2)

recorder Drift -file drift.out -time -iNode 1 2 -jNode 3 4 -dof 1 -perpDirn 2

Chapter 28 Recorder Objects 318

Element Recorder

The Element type records the response of a number of elements. The response recorded is
element-dependent and depends on the arguments which are passed to the setResponse()
element method.

recorder Element <-file $fileName> <-time> <-ele ($ele1 $ele2 ...)> <-eleRange
$startEle $endEle> <-region $regTag> <-ele all> ($arg1 $arg2 ...)

$fileName file where results are stored. Each line of the file contains the
result for a committed state of the domain (optional, default:
screen output)

-time this argument will place the pseudo time of the as the first entry
in the line. (optional, default: omitted)

$elel $ele2 ... tags of elements whose response is being recorded -- selected
elements in domain (optional, default: omitted)

$startEle $endEle tag for start and end elements whose response is being
recorded -- range of selected elements in domain (optional,

default: all)

$regTag previously-defined tag of region of elements whose response is
being recorded -- region of elements in domain (optional)

all elements whose response is being recorded -- all elements in
domain (optional & default)

$arg1 $arg?2 ... arguments which are passed to the setResponse() element
method

The setResponse() element method is dependent on the element type, and is described with the
element Command (page 213).

» Beam-Column Elements (page 218, page 222, page 215, page 216) :
Common to all beam-column elements:

globalForce — element resisting force in global coordinates (does not include inertial forces)
example:

recorder Element -file ele1global.out -time -ele 1 globalForce

localForce — element resisting force in local coordinates (does not include inertial forces)
example:

recorder Element -file ele1local.out -time -ele 1 localForce

Chapter 28 Recorder Objects 319

» Sections: (page 185)

section $secNum — request response quantities from a specific section along the element
length,

$secNum refers to the integration point whose data is to be output
force — section forces
example: recorder Element -file ele1sec1Force.out —time -ele 1 section 1 force
deformation — section deformations
example: recorder Element -file ele1sec1Force.out —time -ele 1 section 1 deformation
stiffness — section stiffness
example: recorder Element -file ele1sec1Force.out —time -ele 1 section 1 stiffness
stressStrain — record stress-strain response.

example: recorder Element -file ele1sec1Force.out —time -ele 1 section 1 fiber $y $z <$matiD>
stressStrain

Sy local y coordinate of fiber to be monitored*
$z local z coordinate of fiber to be monitored*
$matiD previously-defined material tag (optional)

*NOTE: The recorder object will search for the fiber closest to the location ($y,$z) on the section
and record its stress-strain response

NOTE: the ZeroLength section element (page 225) only has 1 section therefore you do not need
to identify the section in the recorder command .. Example:

recorder Element -file Element1.out -time -ele 1 section 1 fiber 0.10 0.10 stressStrain

EnvelopeElement Recorder

The Element type records the response of a number of elements. The response recorded is
element-dependent and depends on the arguments which are passed to the setResponse()
element method. The envelope consists of the following: minimum, maximum and maximum
absolute value of specified response type.

recorder EnvelopeElement <-file $fileName> <-ele ($ele1 $ele2 ...)> <-eleRange
$startele $endele> <-ele all> <-region $regTag> ($arg1 $arg2 ...)

Chapter 28 Recorder Objects 320

$fileName file where results are stored. Each line of the file contains the
result for a committed state of the domain (optional, default:
screen output)

$elelD1 $elelD2 ... tags of elements whose response is being recorded -- selected
elements in domain (page 32) (optional, default: omitted)

$startele $endele tag for start and end elements whose response is being
recorded -- selected elements in domain (page 32) (optional,

default: all)

all elements whose response is being recorded -- all elements in
domain (page 32) (optional & default)

$regTag tag of region of elements whose response is being recorded --
region of elements in domain (page 32) (optional)

$arg1 $arg?2 ... arguments which are passed to the setResponse() element
method

The setResponse() element method is dependent on the element type, and is described with the
element Command (page 213).

» Beam-Column Elements (page 218, page 222, page 215, page 216) :
Common to all beam-column elements:

globalForce — element resisting force in global coordinates (does not include inertial forces)
example:

recorder EnvelopeElement -file ele1global.out -time -ele 1 globalForce

localForce — element resisting force in local coordinates (does not include inertial forces)
example:

recorder EnvelopeElement -file ele1local.out -time -ele 1 localForce

» Sections: (page 185)

section $secNum - request response quantities from a specific section along the element
length,

$secNum refers to the integration point whose data is to be output
force — section forces
example: recorder EnvelopeElement -file ele1sec1Force.out —time -ele 1 section 1 force
deformation — section deformations
example: recorder EnvelopeElement -file ele1sec1Force.out —time -ele 1 section 1 deformation
stiffness — section stiffness
example: recorder EnvelopeElement -file ele1sec1Force.out —time -ele 1 section 1 stiffness

Chapter 28 Recorder Objects 321

stressStrain — record stress-strain response.

example: recorder EnvelopeElement -file ele1sec1Force.out —time -ele 1 section 1 fiber $y $z
stressStrain

Sy local y coordinate of fiber to be monitored*
$z local z coordinate of fiber to be monitored*

*NOTE: The recorder object will search for the fiber closest to the location ($y,$z) on the section
and record its stress-strain response

NOTE: the ZeroLength section element (page 225) only has 1 section therefore you do not need
to identify the section in the recorder command .. Example:

recorder Element -file Element1.out -time -ele 1 section fiber 0.10 0.10 stressStrain

Display Recorder

This recorder opens a graphical window for displaying of graphical information.

| recorder display $windowTitle $xLoc $yLoc $xPixels $yPixels <-file $fileName>

$windowTitle title of graphical window

$xLoc $yLoc horizontal and vertical location of graphical window (upper left-
most corner)

$xPixels $yPixels width and height of graphical window in pixels

$fileName in addition to the window display, information is sent to a file to
redisplay images at a later time. (optional)

A TclFeViewer object is constructed. This constructor adds a number of additional commands to
OpenSees, similar to the construction of the BasicBuilder (page 37). These additional
commands are used to define the viewing system for the image that is place on the screen.
These commands are currently under review and will be presented in a future version of this
document.

Chapter 28 Recorder Objects 322

Plot Recorder

This recorder type opens a graphical window for the plotting of the contents of the prescribed file

recorder plot $fileName $windowTitle $xLoc $yLoc $xPixels $yPixels -columns
$xCol0 $yCol0 <-columns $xCol1 $yCol1><-columns $xCol2 $yCol2>

$fileName source file of plotted data
$windowTitle title of graphical window
$xLoc $yLoc horizontal and vertical location of graphical window in pixels

(upper left-most corner)
$xPixels $yPixels width and height of graphical window in pixels

$xCol0 $yCol0 Column number to be plotted in X-axis and Y-axis, respectively.
One set of columns must be defined.

$xCol1 $yCol1 Additional lines may be plotted on the same graph by repeating

$xCol2 $yCol2 the -columns command. These data come from the same

source file. (optional)

playback Command

This command is used to invoke playback on all Recorder objects constructed with the recorder
command (page 326).

| playback $commitTag

$commitTag integer used to invoke the record() method (??77)

323

CHAPTER 29

Analysis Objects

The Analysis objects are responsible for performing the analysis. The analysis moves the model
along from state at time t to state at time t + dt. This may vary from a simple static (page 363)
linear analysis to a transient (page 364, page 365) non-linear analysis. In OpenSees each
Analysis object is composed of several component objects, which define the type of analysis
how the analysis is performed.

In general terms, the analysis objects are used to solve the following time-dependent
equilibrium-equation problem for a transient analysis:

F,(U) + F.(U, U) = P(t)

-- transient equilibrium

Where F, is the acceleration-dependent inertial force vector, Fr is the velocity (damping) and
displacement-dependent (stiffness) resisting-force vector. P(t) is the external applied-force
vector. The acceleration, velocity and displacement vectors are all time-dependent.

The component classes consist of the following:
= ConstraintHandler (page 339) -- determines how the constraint equations are enforced in
the analysis -- how it handles the boundary conditions/imposed displacements

= DOF_Numberer (page 344) -- determines the mapping between equation numbers and
degrees-of-freedom

= AnalysisModel (page 363) -- defines what time of analysis is to be performed
= Integrator -- determines the predictive step for time t+dt

= SolutionAlgorithm (page 352) -- determines the sequence of steps taken to solve the non-
linear equation at the current time step

= SystemOfEqn/Solver -- within the solution algorithm, it specifies how to store and solve the
system of equations in the analysis

Chapter 29 Analysis Objects 324

Figure 61: Analysis
Object

Analysis

? Salver

CHandler Mumberer Analysizhodel | | SolnAlgorithm Irtegrstar SystemOiEgn

DU

St

PEh 1 3=1[} TR kit BEquisoh Algo Statclvieq @tor BawdGe keral
Pey atty RCHM Liear LogdControl BandsP0
L5 rEkge I Ik Dieg ree VAL TR R AT ey R iz DEpCoial FromesRD
Tratm It Madifed e wiDk arzLength sparee Ge ke @l
Mewrbion Lines: anch MisUsbalD EpH om Umack
i]] r&e metrk:
ﬂ;?s'rge Trai ke ititeg @or e
FIyioun emiioy HNewmark
HHT
In This Chapter
constraints Command ... 339
numberer ComMmandeevveueeeeeeeeeeeeeeeeeeeenenennnn. 344
system Commandcceeeeiiiieriiinie e 346
test ComMmMaNd........covveiiiiiiiiiiiiieee e 349
algorithm Command............cccceiiiiiiiiiiieee e, 352
integrator Command............ooooiiiiiiien 356
analysis Command..........ccccceeeeeiiiiiiiieee e 363
rayleigh command.........ccccoooiiiiiiieiineeeeeen 367
eigen Command.........cccuuiiiiiiiei e 368
analyze Commandccceeeeeeeeiiiiiiiieee e 369

dataBase CommaNndS.....c..ccoeeueeeeeeeeeeeeeeeeeeeeeeeeeaeeeenn 370

Chapter 29 Analysis Objects 325

326

CHAPTER 30

constraints Command

This command is used to construct the ConstraintHandler object. The ConstraintHandler object
determines how the constraint equations are enforced in the analysis. Constraint equations
enforce a specified value for a DOF, or a relationship between DOFs. The degrees of freedom
can be broken down into Ug, the retained DOF's, and U, the condensed DOF's:

Chapter 30 constraints Command 327

The Plain Constraints (page 341) command is used to enforce homogeneous single-point
constraints, such as the case of homogeneous boundary conditions, where all boundary
conditions are fixity, using single-point constraints (page 41, http://www.). For this case:
Uc=0.0

The other constraints commands are used for ALL other cases, such as the case of non-
homogeneous single-point constraints using the sp command (page 319), multi-point constraints
(page 44), imposed motions (page 324) and multi-support excitation (page 322). For such cases,
the relationship between DOF's can be written as:Uc.=CqcUs. Where Cx is a matrix of constants.

The following constraints handlers are currently availble:

Penalty Method (page 341) -- consists of adding large numbers to the stiffness matrix and
the restoring-force vectors to impose a prescribed zero or nonzero DOF. This method applies
very stiff elements (numerically) at the boundary conditions. These additional stiffnesses
affect the eigenvalues/eigenvectors in a transient analysis. This is the recommended method
for a static analysis.

Lagrange Multipliers (page 342) -- apply the method of lagrange multipliers to the system
of equations, thus enlarging the size of the materices. Once Labrange Multipliers have been
applied, the resulting stiffness matrix is no longer positive definite. Therefore, this method
should be used only if there are condition-number problems with the penalty method.

Transformation Method (page 343) -- transforms the stiffness matrix by condensing out the
constrained DOF's. This method reduces the size of the system for multi-point constraints.
This is the recommended method for a transient analysis. However, this method should not
be used when nodes are constrained in series. For example, Us is constrained to U,, which is
then constrained to U,.

Of the different methods, "the Lagrange multiplier method is more attractive than the
transformation method if there are few constraint equations that couple many DOF. However,
Lagrange multipliers are active at the structure level, but transformation equations can be
applied at either the structure level or element by element. The latter has the appeal of disposing
of constraints at an early stage, when the matrices are small and manageable". (Cook)

"In comparison with Lagrange multipliers, penalty functions have the advantage of introducing
no new variables. However, the penalty matrix may significantly increase the bandwidth of the
structural equations, depending on how DOF are numbered and what DOF are coupled by the
constraint equations. Penalty functions have the disadvantage that penalty numbers must be
chosen in an allowable range: large enough to be effective but not so large as to provoke
numerical difficulties". (Cook)

More information and examples on these methods are discussed in detail in the Cook book.

Chapter 30 constraints Command 328

In This Chapter

Plain Constraintsc.veeeveee e 341
Penalty Method ... 341
Lagrange MUlIpliers ... 342
Transformation Method ..., 343

Plain Constraints

This command creates a PlainHandler which is only capable of enforcing homogeneous single-
point constraints. If other types of constraints exist in the domain, a different constraint handler
must be specified.

constraints Plain

Penalty Method

This command is used to construct a PenaltyConstraintHandler which will cause the constraints
to be enforced using a penalty method. The penalty method consists of adding large numbers to
the stiffness matrix and the restoring-force vectors to impose a prescribed zero or nonzero DOF.

| constraints Penalty $alphaSP $alphaMP

$alphaSP factor used when adding the single-point constraint into the
system of equations

$alphaMP factor used when adding the multi-point constraint into the
system of equations

In this method the potential-energy equation which makes up the system of equations is
augmented by a penalty function {t}[alpha]{t}/2

where [alpha] is a diagonal matrix of "penalty numbers". The resulting system of equations is of
the form:

[K + CralphaC]U = [R+CTalphaQ]

Chapter 30 constraints Command 329

Where CTalphaC can be called the penalty matrix. C and Q are matrices containing constants, K
is the stiffness matrix, U represents the DOF and R the restoring forces. If alpha=0 the
constraints are ignored. As alpha grows, U changes in such a way that the constraint equations
are more nearly satisfied. In this case, however, the analysis becomes error prone, as the
system represents a stiff region supported by a flexible region.

NOTE: The Penalty Method affects the maximum eigenvalues of the system and may cause
problems in a Transient analysis.

The Penalty Method is discussed in detail in the Cook Book -- Concepts and Applications of
Finite Element Analysis.

"Guideline for choice of alpha: If computer words carry approximately p decimal digits,
experience has shown that alpha should not exceed 10°?". (Cook)

Lagrange Multipliers

This command is used to construct a LagrangeConstraintHandler which will cause the
constraints to be enforced using the method of Lagrange multipliers.

| constraints Lagrange <$alphaSP> <$alphaMP>

$alphaSP factor used when adding the single-point constraint into the
system of equations (optional, default=1.0)

$alphaMP factor used when adding the multi-point constraint into the
system of equations (optional, default=1.0)

NOTE: Values for $alphaSP and $alphaMP other than 1.0 are permitted to offset numerical
roundoff problems.

NOTE: The system of equations is not positive definite due to the introduction of zeroes on the
diagonal by the constraint equations:

¢ olilla

From Cook: "Lagrange's method of undetermined multipliers is used to find the maximum or
minimum of a function whose variables are not independent but have some prescribed relation.
In structural mechanics the function is the potential energy and the variables are the DOF".

Chapter 30 constraints Command 330

Transformation Method

This command is used to construct a TransofrmationConstraintHandler which will cause the
constraints to be enforced using the transformation method.

constraints Transformation

NOTE: With the current implementation, a retained node in an MP_Constraint cannot also be
specified as being a constrained node in another MP_Constraint.

The constraint equations takes the following form:

(TTKT)Ur=T'R

331

CHAPTER 31

numberer Command

This command is used to construct the DOF_Numberer object. The DOF_Numberer object
determines the mapping between equation numbers and degrees-of-freedom -- how degrees-of-
freedom are numbered.

= Plain (page 344) -- nodes are assigned degrees-of-freedom arbitrarily, based on the input
file. This method is recommended for small problems or when sparse solvers are used, as
they do their own internal DOF numbering.

= RCM (page 345) -- nodes are assigned degrees-of-freedom using the Reverse Cuthill-
McKee algorithm. This algorithm optimizes node numbering to reduce bandwidth using a
numbering graph. This method will output a warning when the structure is disconnected.

As certain system of equation and solver objects do their own mapping, i.e. SuperLU, UmfPack,
Kincho's, specifying a numberer other than plain may not be needed.

In This Chapter
Plain NUMDEIEN . .coneeieeeeeeeee e 344
RCM NUMDEIET ..o 345

Plain Numberer

This command is used to construct a PlainNumberer object.

| numberer Plain

The Plain numberer assigns degrees-of-freedom to the nodes based on how the nodes are
stored in the domain. Currently, the user has no control over how nodes are stored.

Chapter 31 numberer Command 332

RCM Numberer

This command is used to construct a RCMNumberer object.

| numberer RCM

The RCM numberer uses the reverse Cuthill McKee (REF?) algorithm to number the degrees of
freedom.

333

CHAPTER 32

system Command

This command is used to construct the LinearSOE and LinearSolver objects to store and solve
the system of equations in the analysis.

=Profile Symmetric Positive Definite (SPD)
syatern Profile 5F0

£

=Banded Symmettic Positive D efinite
syatern BandLP0

J

smparse symmetric Positive Definite
syaem SparsesFL

Banded Gener

ai e

sysem BandGeneral

%

sSparse Symmetric system SparseGenea ral

syaem Uminack

Figure 62: system

command
In This Chapter
BandGeneral SOE.......coooo oo, 347
BandSPD SOE ... 347
ProfileSPD SOE ..o 347
SparseGeneral SOE.........cccocciiiiiii i, 347
UMFPaCk SOE oo, 348

SparseSPD SOE ..o 348

Chapter 32 system Command 334

BandGeneral SOE

This command is used to construct an un-symmetric banded system of equations object which
will be factored and solved during the analysis using the Lapack band general solver.

| system BandGeneral

BandSPD SOE

This command is used to construct a symmetric positive definite banded system of equations
object which will be factored and solved during the analysis using the Lapack band spd solver.

| system BandSPD

ProfileSPD SOE

This command is used to construct symmetric positive definite profile system of equations object
which will be factored and solved during the analysis using a profile solver.

| system ProfileSPD

SparseGeneral SOE

This command is used to construct a general sparse system of equations object which will be
factored and solved during the analysis using the SuperLU solver.

| system SparseGeneral <-piv>

-piv perform partial-pivoting (optional, Default: no partial pivoting is
performed)

Chapter 32 system Command 335

UmfPack SOE

This command is used to construct a general sparse system of equations object which will be
factored and solved during the analysis using the UMFPACK solver. (REF?)

| system UmfPack

SparseSPD SOE

This command is used to construct a sparse symmetric positive definite system of equations
object which will be factored and solved during the analysis using a sparse solver developed at
Stanford University by Kincho Law. (REF?)

| system SparseSPD

336

CHAPTER 33

test Command

This command is used to construct a ConvergenceTest object. Certain SolutionAlgorithm (page
352) objects require a ConvergenceTest object to determine if convergence has been achieved
at the end of an iteration step. The convergence test is applied to the following equation:

KA =R

The test perform the following checks:

= Norm Unbalance JER < tol

= Norm Displacement AT AT
Increment Al <l

= Energy Increment % (AUTR) < tol

In This Chapter

Norm Unbalance Testcccciiiieiiiiiiiniieeeeeen 349

Norm Displacement Increment Testcccceeeeeeeen. 350

Energy Increment Test ... 351

Norm Unbalance Test

This command is used to construct a CTestNormUnbalance object which tests positive force
convergence if the 2-norm of the b vector (the unbalance) in the LinearSOE (page 346) object is
less than the specified tolerance.

| test NormUnbalance $tol $maxNumlter <$printFlag>

$tol convergence tolerance

$maxNumlter maximum number of iterations that will be performed before
"failure to converge" is returned

$printFlag flag used to print information on convergence (optional)

Chapter 33 test Command 337

no print output (default)
print information on each step
print information when convergence has been achieved

print norm, dU and dR vectors

a A N = O

at convergence failure, carry on, print error message,
but do not stop analysis

The test performs the following check:

SR < tol

Norm Displacement Increment Test

This command is used to construct a CTestNormDisplncr object which tests positive force
convergence if the 2-norm of the x vector (the displacement increment) in the LinearSOE (page
346) object is less than the specified tolerance.

| test NormDispincr $tol $maxNumlter <$printFlag>

$tol convergence tolerance

$maxNumiter maximum number of iterations that will be performed before
"failure to converge" is returned

$printFlag flag used to print information on convergence (optional)
0 no print output (default)
print information on each step
print information when convergence has been achieved

print norm, dU and dR vectors

a &~ N =

at convergence failure, carry on, print error message,
but do not stop analysis

The test performs the following check:

SHTALL < ol

Chapter 33 test Command 338

Energy Increment Test

This command is used to construct a CTestEnergylncr object which tests positive force
convergence if one half of the inner-product of the x and b vectors (displacement increment and
unbalance) in the LinearSOE (page 346) object is less than the specified tolerance.

| test Energylncr $tol $maxNumlter <$printFlag>

$tol convergence tolerance

$maxNumlter maximum number of iterations that will be performed before
"failure to converge" is returned

$printFlag flag used to print information on convergence (optional)
0 no print output (default)
print information on each step
print information when convergence has been achieved

print norm, dU and dR vectors

a A N =

at convergence failure, carry on, print error message,
but do not stop analysis

The test performs the following check:
e (AUTR) = tol

339

CHAPTER 34

algorithm Command

This command is used to construct a SolutionAlgorithm object, which determines the sequence
of steps taken to solve the non-linear equation.

In This Chapter

Linear Algorithm ... 352
Newton AlQorithm ... 352
Newton with Line Search Algorithm.................cc....... 353
Modified Newton Algorithm..........ccccceeiiiiiiiiiiieeeeenn. 354
Krylov-Newton Algorithm ..., 354
BFGS AIQOrithmoeeiiiiiiiiieeeee e 354
Broyden Algorithm ... 355

Linear Algorithm

This command is used to construct a Linear algorithm object which takes one iteration to solve
the system of equations.

| algorithm Linear

Newton Algorithm

This command is used to construct a NewtonRaphson algorithm object which uses the Newton-
Raphson method to advance to the next time step.

| algorithm Newton

NOTE: The tangent is updated at each iteration.

Chapter 34 algorithm Command

340

Load, W

>

w, W, displacement, w

Newton with Line Search Algorithm

This command is used to construct a NewtonLineSearch algorithm object which uses the
Newton-Raphson method with line search to advance to the next time step.

| algorithm NewtonLineSearch $ratio

$ratio limiting ratio between the residuals before and after the
incremental update (between 0.5 and 0.8)

If the ratio between the residuals before and after the
incremental update is greater than the specified limiting ratio the
line search algorithm developed by Crissfield (REF?) is
employed to try to improve the convergence.

Chapter 34 algorithm Command 341

Modified Newton Algorithm

This command is used to construct a ModifiedNewton algorithm object which uses the Modified
Newton-Raphson method to advance to the next time step. The difference between this method
and the Newton-Raphson method is that the tangent stiffness is not updated at each step, thus
avoiding expensive calculations needed in multi-DOF systems. However, more iterations may be
needed to reach a prescribed accuracy.

| algorithm ModifiedNewton

NOTE: The tangent at the first iteration of the current time step is used to iterate on the next time
step.

Krylov-Newton Algorithm

This command is used to construct a KrylovNewton algorithm object which uses a modified
Newton method with Krylov subspace acceleration to advance to the next time step.

| algorithm KrylovNewton

The accelerator is described by Carlson and Miller in "Design and Application of a 1D GWMFE
Code" from SIAM Journal of Scientific Computing (http://epubs.siam.org/sam-
bin/dbg/toclist/SISC) (Vol. 19, No. 3, pp. 728-765, May 1998).

BFGS Algorithm

This command is used to construct a BFGS algorithm object for symmetric systems which
performs successive rank-two updates of the tangent at the first iteration of the current time step.

| algorithm BFGS <$count>

$count number of iterations within a time step until a new tangent is
formed

Chapter 34 algorithm Command 342

Broyden Algorithm

This command is used to construct a Broyden algorithm object for general unsymmetric systems
which performs successive rank-one updates of the tangent at the first iteration of the current
time step.

| algorithm Broyden <$count>

$count number of iterations within a time step until a new tangent is
formed

343

CHAPTER 35

integrator Command

This command is used to construct the Integrator object. The Integrator object determines the
meaning of the terms in the system of equation object Ax=B.

The Integrator object is used for the following:

= determine the predictive step for time t+dt
= gpecify the tangent matrix and residual vector at any iteration
= determine the corrective step based on the displacement increment dU

The system of nonlinear equations is of the form:

Static analysis: R[U |]| = WP _ FH(U]I

Transient analysis:

R(U,U.U) = P(t) — F,(U) - Fe(U,U)

Chapter 35 integrator Command 344

The type of integrator used in the analysis is dependent on whether it is a static analysis (page
363) or transient analysis (page 364):

STATIC ANALYSIS*
= LoadControl (page ENED
358)

= DisplacementControl Jj =Uj . + dJj
(page 358)

* MinUnbalDispNorm dfdx (dU_TdU j=0
(page 359)

= ArcLength (page 360) d TdlJ + o? da_ = ds?
TRANSIENT ANALYSIS

= Newmark (page 361)
= Hilbert-Hughes-Taylor Method (HHT (page 362))

*NOTE: static integrators should only be used with a Linear TimeSeries (page 313) object with a
factor of 1.0.

+

n- 1

In This Chapter

Load Control........ccooiuieiiiiiieee e 358
Displacement Controlcocceeeiiiiieiiinieeee e 358
Minimum Unbalanced Displacement Norm............... 359
Arc-Length Control..........ooiiiiiiiiiiii e 360
Newmark Method ..., 361
Hilbert-Hughes-Taylor Method............cccooiiiiiieeennnn. 362

Load Control

This command is used to construct a Staticlntegrator object of type LoadControl

| integrator LoadControl $dLambda1 <$Jd $minLambda $maxLambda>

Chapter 35 integrator Command 345

$dLambda1 first load increment (pseudo-time step) in the next invocation of
the analysis (page 363) command.

$Jd factor relating load increment at subsequent time steps.
(optional, default: 1.0)

$minLambda arguments used to bound the load increment (optional, default:

$maxLambda $dLambda1 for both)

The load increment at iterations i, dLambday(i), is related to the load increment at (i-1),
dLambda(i-1), and the number of iterations at (i-1), J(i-1), by the following:

dLambda(i) = dLambda(i-1)*Jd/J(i-1)

Displacement Control

This command is used to construct a Staticlntegrator object of the type DisplacementControl.

integrator DisplacementControl $nodeTag $dofTag $dU1 <$Jd $minDu
$maxDu>

$nodeTag node whose response controls the solution
$dofTag degree-of-freedom whose response controls the solution.

Valid range is from 1 through ndf (page 37), the number of
nodal degrees-of-freedom.

$dU1 first displacement increment (pseudo-time step) in the next
invocation of the analysis command

$Jd factor relating displacement increment at subsequent time
steps. (optional, default: 1.0)

$minDu $maxDu arguments used to bound the displacement increment (optional,
default: $dU1 for both)

The displacement increment at iterations i, dU(i), is related to the displacement increment at (i-
1), dU(i-1), and the number of iterations at (i-1), J(i-1), by the following:

dU(i) = dU(i-1)*Jd/J(i-1)
Ui, = Uj . +]

n n-

Chapter 35 integrator Command 346

Minimum Unbalanced Displacement Norm

This command is used to construct a Staticlntegrator object of type MinUnbalDispNorm.

| integrator MinUnbalDispNorm $dlambda11 <$Jd $minLambda $maxLambda> |

$dLambda11 first load increment (pseudo-time step) at the first iteration in the
next invocation of the analysis (page 363) command.

$Jd factor relating first load increment at subsequent time steps.
(optional, default: 1.0)

$minLambda arguments used to bound the load increment (optional, default:

$maxLambda $dLambdai1 for both)

The load increment at iterations i, dLambda1(i), is related to the load increment at (i-1),
dLambda1(i-1), and the number of iterations at (i-1), J(i-1), by the following:

dLambdai (i) = dLambdai(i-1)*Jd/J(i-1)

Arc-Length Control

This command is used to construct a Staticlntegrator object of type ArcLength. Arc-length
methods are used to enable the solution algorithm to pass limit points, such as maximum and
minimum loads, and snap-through and snap-back responses. At these limit points, the stability of
the numerical system is dependent on whether the analysis is performed under load or
displacement control. In structural analysis, these limit points are characteristic of cracking of
reinforced concrete and of buckling of shells.

| integrator ArcLength $arclength $alpha
(7?7 is this the correct order, at the workshop Frank had it different)

$arclength arclength value
$alpha

SEE FMK

dU.TdU, + o dx, = dg?

Chapter 35 integrator Command 347

The equilibrium equation can be written in the from:
g, =g () - heg p=0

the arc-length method aims to find the intersection of the above equation with s=constant, where
s is the arc-length, defined by:

S=J 1ds

and

T 2 2 T
dS=Jdp dp o+ db g e g

the scaling parameter y is required because the load contribution depends on the adopted
scaling between the load and displacement terms.

for the arc-length methods, one should replace the differential form of the equation for ds with an
incremental form:

2?7
a= {ﬂp T-ﬁp + At z,n!-'g- q Ef-T- q ef} _ Af=0
a= (L"l.p T-ﬂ'.p + AR z,:!-'g- q EfT- q ef) _ Af=0

where Al is the fixed 'radius of the desired intersection.

In the arc-length method the load parameter A becomes a variable, adding one to the n
displacement variables and equations.

Newmark Method

This command is used to construct a TransientIntegrator object of type Newmark.

| integrator Newmark $gamma $beta <$alphaM $betaK $betaKinit $bhetaKcomm>

$gamma Newmark parameter y
$beta Newmark parameter 3
$alphaM $betaK $betaKinit Arguments to define Rayleigh damping matrix
$betaKcomm (optional, default: zero)

The damping matrix D is specified as a combination of stiffness and mass-proportional damping
matrices:

Chapter 35 integrator Command 348

D = $alphaM * M + $betaK * Kcurrent +$betaKinit * Kinit + $betaKcomm * KlastCommit

The mass and stiffness matrices are defined as:
M mass matrix used to calculate Rayleigh Damping

Kcurrent stiffness matrix at current state determination used to calculate
Rayleigh Damping

Kinit stiffness matrix at initial state determination used to calculate
Rayleigh Damping

KlastCommit stiffness matrix at last-committed state determination used to
calculate Rayleigh Damping

Hilbert-Hughes-Taylor Method

This command is used to construct a Transientintegrator object of type HHT or HHT1.

| integrator HHT $gamma <$alphaM $betaK $betaKinit $betaKcomms>

$gamma Newmark parameter y
$alphaM $betaK $betaKinit Arguments to define Rayleigh damping matrix
$betaKcomm (optional, default: zero)

The damping matrix D is specified as a combination of stiffness and mass-proportional damping
matrices:

D = $alphaM * M + $betaK * Kcurrent +$betaKinit * Kinit + $betaKcomm * KlastCommit

The mass and stiffness matrices are defined as:

M mass matrix
Kcurrent stiffness maitrix at current state determination
Kinit stiffness matrix at initial state determination

KlastCommit stiffness matrix at last-committed state determination

Chapter 35 integrator Command 349

350

CHAPTER 36

analysis Command

This command is used to construct the Analysis object (page 336), which defines what type of
analysis is to be performed. The following analysis types are available:

= Static Analysis (page 363) -- solves the KU=R problem, without the mass or damping
matrices.

= Transient Analysis (page 364) -- solves the time-dependent analysis. The time step in this
type of analysis is constant. The time step in the output is also constant.

= Variable Transient Analysis (page 365) -- performs the same analysis type as the Transient
Analysis object. The time step, however, is variable. This method is used when there are
convergence problems with the Transient Analysis object at a peak or when the time step is
too small. The time step in the output is also variable.

All currently-available analysis objects employ incremental solution strategies.

In This Chapter

Static ANAlYSIS......ooiiiiiiiiiiiieee e 363
Transient Analysisoooccoviiiiiiiiiiineeee s 364
VariableTransient Analysisccccveeeeiiiiiiiiiinnn. 365

Static Analysis

This command is used to construct a StaticAnalysis object.

| analysis Static

This analysis object is constructed with the component objects previously created by the analyst.
If none has been created, default objects are constructed and used:

Component Object Default object

Chapter 36 analysis Command

351

SolutionAlgorithm
(page 352),
Staticlntegrator (page
358, page 356, page
358, page 359)

NewtonRaphson (page 352) EquiSolnAlgo with a
CTestNormUnbalance (page 349) with a tolerance of 1e-6
and a maximum of 25 iterations

ConstraintHandler
(page 339)

PlainHandler (page 341) ConstraintHandler

DOF_Numberer (page
344)

RCM (page 345) DOF_Numberer

LinearSOE (page 346), | profiled symmetric positive definite (page 347) LinearSOE
LinearSolver (page and Linear Solver

346)

Integrator LoadControl Staticlntegrator (page 358) with a constant

load increment of 1.0

Transient Analysis

This command is used to construct a DirectintegrationAnalysis object.

| analysis Transient

This analysis object is constructed with the component objects previously created by the analyst.

If none has been created, default objects are constructed and used:

Component Object

Default object

SolutionAlgorithm NewtonRaphson (page 352) EquiSolnAlgo with a

(page 352), CTestNormUnbalance (page 349) with a tolerance of 1e-6
TransientIntegrator and a maximum of 25 iterations

(page 356)

ConstraintHandler PlainHandler (page 341) ConstraintHandler

(page 339)

DOF_Numberer (page
344)

RCM (page 345) DOF_Numberer

LinearSOE (page 346),
LinearSolver (page
346)

profiled symmetric positive definite (page 347) LinearSOE
and Linear Solver

Chapter 36 analysis Command 352

Integrator Newmark Transientintegrator (page 361) with y=0.5 and
B=0.25

VariableTransient Analysis

This command is used to construct a VariableTimeStepDirectintegrationAnalysis object.

| analysis VariableTransient

This analysis object is constructed with the component objects previously created by the analyst.
If none has been created, default objects are constructed and used:

Component Object Default object

SolutionAlgorithm NewtonRaphson (page 352) EquiSolnAlgo with a

(page 352), CTestNormUnbalance (page 349) with a tolerance of 1e-6

TransientIntegrator and a maximum of 25 iterations

(page 356)

ConstraintHandler PlainHandler (page 341) ConstraintHandler

(page 339)

DOF_Numberer (page | RCM (page 345) DOF_Numberer

344)

LinearSOE (page 346), | profiled symmetric positive definite (page 347) LinearSOE

LinearSolver (page and Linear Solver

346)

Integrator Newmark Transientintegrator (page 361) with y=0.5 and
B=0.25

353

CHAPTER 37

rayleigh command

This command is used to assign damping to all previously-defined elements and nodes:

| rayleigh $alphaM $betaK $betaKinit $betaKcomm

The damping matrix D is specified as a combination of stiffness and mass-proportional damping
matrices:

D = $alphaM * M + $betaK * Kcurrent +$betaKinit * Kinit + $betaKcomm * KlastCommit

The mass and stiffness matrices are defined as:
M mass matrix used to calculate Rayleigh Damping

Kcurrent stiffness matrix at current state determination used to calculate
Rayleigh Damping

Kinit stiffness matrix at initial state determination used to calculate
Rayleigh Damping

KlastCommit stiffness matrix at last-committed state determination used to
calculate Rayleigh Damping

354

CHAPTER 38

eigen Command

This command is used to perform a generalized eigenvalue problem to determine a specified
number of eigenvalues and eigenvectors.

| eigen <$type> $numEigenvalues

$type eigen-value analysis type:
frequency solve: K- A M
generalized solve: K- A M (default)
standard solve: K- A |

$numEigenvalues number of first eigenvalues (L) to be determined

The eigenvectors are stored at the nodes and can be printed out using Node Recorder (page
326) or the Print command (page 372).

NOTE: The current eigensolver is able to solve only for N-1 eigenvalues, where N is the number
of interial DOFs. When running into this limitation, the user should add negligible masses to
additional unrestrained degrees of freedom.

For example, for a 3-dof/node problem, instead of:
mass 1 10000

the user should input:

mass 1 100 1e-9 0

where dof-2 at node 1 is unrestrained.

355

CHAPTER 39

analyze Command

This command is invoked on the Analysis object constructed with the analysis command (page
363).

| analyze $numincr <$dt> <$dtMin $dtMax $Jd>

$numincr number of load steps
$dt time-step increment.

Required if a transient analysis (page 364) or variable time step
transient analysis (page 365) was specified.

$dtMin $dtMax minimum and maximum time steps

Required if a variable time step transient analysis (page 365)
was specified.

$Jd number of iterations performed at each step

Required if a variable time step transient analysis (page 365)
was specified.

This command RETURNS:
0 successful
<0 unsuccessful

356

CHAPTER 40

dataBase Commands

This command is used to construct a FE_Datastore object.

Currently there is only one type of Datastore object available.

In This Chapter

FileDatastore Command.........oceueveeueeeeeieeeeieeeeeeeeennns 370

FileDatastore Command

This command is used to construct the FE_Datastore object.

| database $type $dbName

$type database type:
File outputs database into a file
MySQL creates a SQL database

BerkeleyDB creates a BerkeleyDB database
$dbName database name.

If the database type is File, the command will save the data into
a number of files, e.g. $dbName.id11 for all ID objects of size 11
that sendSelf() is invoked upon.

The invocation of this command will add the additional commands save and restore to the
OpenSees interpreter to allow users to save and restore model states.

Chapter 40 dataBase Commands 357

save Command

This command is used to save the state of the model in the database.

| save $commitTag

$commitTag unique identifier that can be used to restore (page 371) the state
at a later time

restore Command

This command is used to restore the state of the model from the information stored in the
database.

| restore $commitTag

$commitTag unique identifier used to restore the state at the model when the
save (page 371) command was invoked

358

CHAPTER 41

Miscellaneous Commands

These are a few additional miscellaneous command used in OpenSees

In This Chapter

print Command..........ccuuiiiiiiiii e 372
reset ComMMAaNG..........ueeiiiiiieie e 373
Wipe COMMANGeviiiiiiiiiee e 373
wipeAnalysis Commandcccceevriiiiiiieeeeee e 374
loadConst Command.........cc.ceeeviiiieeiiniiiiee e 374
getTime Command.........cccooviiiiieiiiiiee e 375
nodeDisp Command............oooiiiiiiiiiiiiiieeeeeen 375
video CoOmMMaNdcooeiiiiiiiiiiiiiiee e 375
NOAEBOUNDS ... 376
display Command..........c.uueeeeiiaiiiiiiiieeeee e 377

print Command

This command is used to print output.

To print all objects of the domain:

| print <$fileName>

To print node information:

| print <$fileName> -node <-flag $flag> <$node1 $node2 ...>

To print element information:

| print <$fileName> -ele <-flag $flag> <$ele1 $ele2 ...>

$fileName fileName for printed output (optional, Default: stderr -- screen
dump)

Chapter 41 Miscellaneous Commands 359

$flag integer flag to be sent to the print() method, depending on the
node and element type (optional)

$node1 $node2 ... node tag for selected-node output (optional)
Default: all

$elel $ele2 ... element tag for selected-element output (optional)
Default: all

reset Command

This command is used to set the state of the domain to its original state.

reset

The command invokes revertToStart() on the Domain (page 32) object.

wipe Command

This command is used to destroy all constructed objects.

| wipe

This command is used to start over without having to exist and restart the interpreter (page 19).

wipeAnalysis Command

This command is used to destroy all objects constructed for the analysis.

| wipeAnalysis

Chapter 41 Miscellaneous Commands 360

This command is used to start a new type of analysis. This command does not destroy the
elements (page 213), nodes (page 39), materials (page 175, page 47), etc. It does destroy the
solution strategies: the algorithm (page 352), analysis (page 363), equation solver (page 346),
constraint handler (page 339), etc.

loadConst Command

This command is used to invoke setLoadConst() on all LoadPattern (page 317) objects which
have been created up to this point.

| loadConst <-time $pseudoTime>

-time $pseudoTime set pseudo time in the domain to $pseudoTime (optional,
default: zero)

getTime Command

This command returns the time in the domain.

| getTime

nodeDisp Command

Returns the displacement or rotation at specified node.

| nodeDisp $nodeTag $dof
$nodeTag node tag
$dof degree-of-freedom tag

Valid range is from 1 through ndf (page 37), the number of
nodal degrees-of-freedom. (?77)

Chapter 41 Miscellaneous Commands 361

video Command

This command is used to construct a TclVideoPlayer object for displaying the images in a file
created by the recorder display (page 333) command.

| video -file $fileName -window $windowName

$fileName fileName of images file created by the recorder display (page
333) command

$windowName name of window to be created

The images are displayed by invoking the play (page 376) command.

Chapter 41 Miscellaneous Commands 362

play Command

This command is used to play the TclVideoPlayer object created by the video (page 375)
command.

| play

nodeBounds

This commands returns a 5-element list of the max and min coordinates of the nodes defined in
the domain:

| nodeBounds

The command returns: "Xmin Ymin Zmin Xmax Ymax Zmax", independently of the domain
dimensions, 1D, 2D or 3D, zeros are returned for the extra dimensions.

This command is useful when setting up a display.

Example:

3D set Xmin [lindex [nodeBounds] 0];
set Ymin [lindex [nodeBounds] 1];
set Zmin [lindex [nodeBounds] 2];
set Xmax [lindex [nodeBounds] 3];
set Ymax [lindex [nodeBounds] 4];
set Zmax [lindex [nodeBounds] 5];
2D set Xmin [lindex [nodeBounds] 0];
set Ymin [lindex [nodeBounds] 1];
set Xmax [lindex [nodeBounds] 3];
set Ymax [lindex [nodeBounds] 4];
1D set Xmin [lindex [nodeBounds] 0];
set Xmax [lindex [nodeBounds] 3];

Chapter 41 Miscellaneous Commands 363

display Command

This command is used to display the model defined in the domain, and is associated with the
display recorder (page 333):

| display $arg1 $arg2 $amplification

Example usage:

set dAmp 10; # this amplification is dependent on the model size

if {$ShapeType == "ModeShape" } {

display -$nEigen 0 $dAmp; # display mode shape for mode $nEigen
} elseif {$ShapeType == "NodeNumbers" } {

display 1-10 ; # display node numbers
} elseif {$ShapeType == "DeformedShape" } {

display 1 5 $dAmp; # display deformed shape

364

CHAPTER 42

How To....

In this chapter, some examples on how to generate input for OpenSees for specific tasks will be
presented.

In This Chapter

RUN OPENSEES........eviiiiiiiiece e 379
...Define Units & Constantscccccovviieeeiiiiieecens 382
...Generate Matlab Commands.............coouiiiieeennnn. 383
...Define Tcl Procedure..........cccouvvveeiiiiiiiniciiieeeeeen 384
...Read External filesccoooeciiiin 385
Building The Model...........coooiiiiieeeeen 387
Defining OULPULcovviiiiiie e 393
Gravity Loadsccoviiiiiiiiiiieeeieee e 394
Static ANAlYSIS.....cooviiiiieie 395
Dynamic ANalysisoccvereiiiiieieeeeee e 398
...Combine Input-File Components...........cccccveeeens 399
...Run Parameter Studycccoiiiiiiniiii s 400
...Run Moment-Curvature Analysis on Section 401

...Determine Natural Period & Frequency................. 403

Chapter 42 How To.... 365

Run OpenSees

There are three ways that OpenSees/Tcl commands can be executed:

> Interactive

Commands can be input directly at the propt, as shown in the figure (Win32 version):

Figure 63: Run
OpenSees --
Interactive

YWINNTSystem324cmd. exe - OpenSees

C:“>0penSees

OpenSees — Open System For Earthguake Engineering Simulation
Pacific Earthgquake Enginesring Research Center — Uersion . .

(c>» Copyright 1992 The Regents of the University of California
All Rights Reserved

model basic -ndm 3 —ndf 6
node 1 W. W, H.
368. A. B.
node 3 @.
nqde 4 368.

mass 3 [expr Z008.-2-386.41 6. B. B. B. B.

mass 4 [expr Z008-2-386.41 6. B. B. 8. A.
uniaxialMaterial Concretefl 1 -5008. -B.062 -4P@B. -A.81
uniaxialMaterial SteelBl 2 GOEBHE. 27898080. 6.1

>
>
>
5
r
>
2
4
>
>
#
>
2
ra

Chapter 42 How To.... 366

» Execute Input File at OpenSees prompt

This method is the most-commonly used one. An external file containing the input commands
can be generated a-priori (inputFile.tcl) and be executed at the OpenSees prompt by using the
source command. The generation of the input script files is presented in this chapter. The file
execution is shown in the figure (Win32 version):

Figure 64: Run
OpenSees -- Source
File

"E C:\openSees. exe

.. DOpenSees —— Open 3ystem For Earthquake Engineering Simulation
Pacific Earthguake Enginesring Research Center — Uersion

Cc) Copyright 197? The REﬂents of the University of California
All Rights Reserved

Upeniees > source inputFile.tcl
Unf packGenLinS0E:-set8ize — n 4 nnz 16 1Ual 168

Unf packGenLinS0E: :set8ize — n 4 nnz 16 1Ual 168
L]

OpenSees > _

» Batch Mode

The previously-created input file containing the Tcl script commands necessary to execute the
analsis can also be executed at the MS-DOS/Unix prompt, as shown in the figure (Win32

version):

Chapter 42 How To.... 367

Figure 65: Run
OpenSees -- Batch
Mode

= C:AWINNTASystem32iemd.exe

Microsof t(R> Windows NICTM>
(C>» Copyright 1985-1996 Microsoft Corp.

C=“>0penSees dnputFile.tcl
OpenSees — Open System For Earthguake Engineering Simulation
Facific Earthguake Engineeringy Research Center — Uersion 1.1.3

(c? Copyright 1999 The Regents of the University of California
A1l Rights Reserved

Umf packGenLinS0E: :set8ize — n 4 nnz 16 1Ual 168
Umf packCenLinE0E:zzgctfdiec — n 4 nn= 16 1Ual 168

[

Chapter 42 How To.... 368

...Define Units & Constants

The OpenSees interpreter does not process units. Units, however, can be used when entering
values if these units are defined previously. The unit definition consists of two parts: the basic
units are defined first, all other units are subsequently defined. The basic units are assigned a
value of one and all OpenSees output is in these units. It is very important that all basic units are
independent of each other. The unit-definition file can contain both metric and Imperial units, as
can the basic units. Hence, the input files may contain mixed units.

Constants, such as m and g can also be defined apriori.

An example of unit and constant definition is given in the following:

» Procedure to define units and constants

----Units&Constants.tcl

setin1.; # define basic units

setsec 1.;

set kip 1.;

set ksi [expr $kip/pow($in,2)]; # define dependent units

set psi [expr $ksi/1000.];

set ft [expr 12.*$in];

set Ib [expr $kip/1000];

set pcf [expr $Ib/pow($ft,3)];

set ksi [expr $kip/pow($in,2)];

set psi [expr $ksi/1000.];

set cm [expr $in/2.54]; # define metric units
set meter [expr 100.*$cm];

set MPa [expr 145*$psil;

set Pl [expr 2*asin(1.0)]; # define constants
set g [expr 32.2*$ft/pow($sec,2)];

setU 1.e10; # a really large number

setu [expr 1/$U]; # a really small number

Chapter How To.... 369

CHAPTER

...Generate Matlab Commands

Matlab is a common tool for post-processing. Matlab command files can be generated using the

Tcl scripting language. Using this technique ensures that the same analysis parameters are
used.

Here is an example.

> # script to generate .m file to be read by matlab

e MatlabOutput.tcl
set Xframe 1; # this parameter would be passed in
set fDir "Data/";

file mkdir $fDir; # create directory
set outFilelD [open $fDir/DataFrame$Xframe.m w]; # Open output file for writing

puts $outFileID "Xframe($Xframe) = $Xframe;"; # frame ID

puts $outFileID "Hcol($Xframe) = $Hcol;"; # column diameter
puts $outFilelD "Lcol($Xframe) = $Lcol;"; # column length
puts $outFilelD "Lbeam($Xframe) = $Lbeam;"; # beam length

puts $outFilelD "Hbeam($Xframe) = $Hbeam;"; # beam depth
puts $outFilelD "Bbeam($Xframe) = $Bbeam;"; # beam width
puts $outFileID "Weight($Xframe) = $Weight;" ; # superstructure weight

close $outFilelD

...Define Tcl Procedure

The procedure is a useful tool available from the Tcl language. A procedure is a generalized
funcion/subroutine using arguments. Whenever the Tcl procedure is invoked, the contents of
body will be executed by the Tcl interpreter.

An example of a Tcl procedure is found in RCcircSec.tcl. It defines a procedure which generates

a circular reinforced concrete section with one layer of steel evenly distributed around the
perimeter and a confined core:

----RCcircSec.tcl
by Michael H. Scott

Define a procedure which generates a circular reinforced concrete section

Chapter How To.... 370

with one layer of steel evenly distributed around the perimeter and a confined core.
Formal arguments
id - tag for the section that is generated by this procedure

ri - inner radius of the section

ro - overall (outer) radius of the section

cover - cover thickness

corelD - material tag for the core patch

coverlD - material tag for the cover patches

steellD - material tag for the reinforcing steel

numBars - number of reinforcing bars around the section perimeter

barArea - cross-sectional area of each reinforcing bar

#

#

#

#

#

#

#

#

nfCoreR - number of radial divisions in the core (number of "rings")

nfCoreT - number of theta divisions in the core (number of "wedges")
nfCoverR - number of radial divisions in the cover

nfCoverT - number of theta divisions in the cover

Notes

The center of the reinforcing bars are placed at the inner radius

The core concrete ends at the inner radius (same as reinforcing bars)
The reinforcing bars are all the same size

The center of the section is at (0,0) in the local axis system

Zero degrees is along section y-axis

proc RCcircSection {id ri ro cover corelD coverlD steellD numBars barArea nfCoreR nfCoreT nfCoverR
nfCoverT} {

section fiberSec $id {
set rc [expr $ro-$cover]; # Core radius
patch circ $corelD $nfCoreT $nfCoreR 0 0 $ri $rc 0 360; # Core patch
patch circ $coverID $nfCoverT $nfCoverR 0 0 $rc $ro 0 360; # Cover patch
if {$numBars <= 0} {
return
}
set theta [expr 360.0/$numBars]; # Angle between bars
layer circ $steellD $numBars $barArea 0 0 $rc $theta 360; # Reinforcing layer

}

This procedure is invoked by the following commands, assuming that all arguments have been
defined previously in the input generation:

source RCcircSection.tcl;
RCcircSection $IDcolFlex $riCol $roCol $cover $IDcore $IDcover $IDsteel $NbCol $AbCol $nfCoreR

Chapter How To.... 371

| $nfCoreT $nfCoverR $nfCoverT

NOTE: the file containing the definition of the procedure (RCcircSec.tcl) needs to be sourced
before the procedure is invoked.

...Read External files

External files may either contain Tcl commands or data.

» Common input file

The external file may contain a series of commands that is common in most analyses. One set
of Tcl commands that can be stored in a external file are ones which define units.

An example of an external file that may want to be read within the input commands is the unit-
definition file presented earlier (units&constants.tcl (page 469)).

This file is invoked with the following command:

source units.tcl

> Repeated Calculations

An external file may contain a series of calculations that are repeated. An example of this is a
parameter study:

set Hcolumn 66;
source analysis.tcl

set Hcolumn 78;

source analysis.tcl

The analysis.tcl file contains the commands that set up and execute the entire analysis.
» External Data File

The following commands open a data file (filename=inFilename), read the file row by row and
assign the value of each row to the a single variable (Xvalues). If there are more than one value
in the row, $Xvalues is a list array, and the individual components may be extracted using the
lindex command. The user may change the commands to be exectued once the data-line has
been read to whatever is needed in the analysis.

----ReadData.tcl
if [catch {open $inFilename r} inFilelD] {; # Open the input file and check for error
puts stderr "Cannot open $inFilename for reading"; # output error statement
}else {
foreach line [split [read $inFileID]\n] {; # Look at each line in the file
if {[llength $line] == 0} {; # Blank line --> do nothing

continue;

Chapter How To.... 372

}else {
set Xvalues $line; # execute operation on read data

}

close $inFilelD; ; # Close the input file

Building The Model

...Define Variables and Parameters

In the Tcl scripting language variables may be used to represent numbers. Once defined, these
variables can be use instead of numbers in Tcl and OpenSees commands. When they are being
recalled, the variables are precedented by the symbol $. If this symbol is not used, the variable
name is interpreted as a string command and an error may result.

A few examples are given:

> MATERIAL PARAMETERS:

- MaterialParameters.icl
set fc [expr -4.0*$ksi];

set Ec [expr 57*$ksi*sqrt(-$fc/$psi)];
set fc1C [expr 1.26394*$fc];

set eps1C [expr 2.*$fc1C/$Ec]; # strain at maximum stress

nominal compressive strength of concrete
Concrete Elastic Modulus

CONFINED concrete (mander model), max stress

set fc2C $fc; # ultimate stress
set eps2C [expr 2.*$fc2C/$Ec]; # strain at ultimate stress
set fc1U $fc; # UNCONFINED concrete (parabolic model), max stress

set eps1U -0.003; # strain at maximum stress
set fc2U [expr 0.1*$fc];

set eps2U -0.006;

ultimate stress

strain at ultimate stress

set Fy [expr 70.*$ksi];
set Es [expr 29000.*$ksil;
set epsY [expr $Fy/$ESs];
set Fy1 [expr 95.*$ksi];
set epsY1 0.03;

set Fu [expr 112.*$ksi];
set epsU 0.08;

STEEL yield stress

elastic modulus of steel
steel yield strain

steel stress post-yield
steel strain post-yield

ultimate stress of steel

ultimate strain of steel

Chapter How To.... 373

set Bs [expr ($Fu-$Fy)/($epsU-$epsY)/$Es]; # post-yield stiffness ratio of steel

set pinchX 1.0; # pinching parameter for hysteretic model

set pinchY 1.0; # pinching parameter for hysteretic model

set damage1i 0.0; # damage parameter for hysteretic model

set damage2 0.0; # damage parameter for hysteretic model

set betaMUsteel 0.0; # degraded unloading stiffness for hysteretic material based on MU”(-beta)
set betaMUjoint 0.0; # degraded unloading stiffness for hysteretic material based on MU”(-beta) --

timoshenko value of 0.5

set betaMUph

0.0; # degraded unloading stiffness for hysteretic material based on MU”(-beta) --

timoshenko value of 0.5

setG $U;
setJ 1,;

Torsional stiffness Modulus

Torsional stiffness of section, place here just to keep with G

set GJ [expr $G*$J]; # Torsional stiffness

> ELEMENT PARAMETERS:

#----- ElementParameters.icl

set Heol
set Lcol
set Hbeam
set Lbeam
set GrhoCol
set Weight
set Bbeam
set Rcol
set Acol
set cover
set IgCol
set lyCol
set I1zCol
set IzBeam
set lyBeam

set Abeam

[expr 5.%$ft]; # column diameter

[expr 36*$ft]; # column length

[expr 8.*$ft]; # beam depth

[expr 36.*$ft]; # beam length

0.0125; # column longitudinal-steel ratio

[expr 2000.*$kip]; # superstructure weight

$Hcol; # beam width

[expr $Hcol/2]; # COLUMN radius

[expr $PI*pow($Rcol,2)]; # column cross-sectional area

[expr $Hcol/15]; # column cover width

[expr $PI*pow($Rcol,4)/4]; # column gross moment of inertia, uncracked

$lgCol; # elastic-column properties

$lgCol; # elastic-column properties

[expr $Bbeam*pow($Hbeam,3)/12]; # beam gross moment of inertia, about horizontal Z-axis
[expr $Hbeam*pow($Bbeam,3)/12]; # beam gross moment of inertia, about the vertical Y-axis

[expr $Hbeam*$Bbeam*10000]; # beam cross-sectional area, make it very very stiff

define COLUMN section parameters

set NbCol
set AsCol
set AbCol
set riCol
set roCol
set IDcore

20; # number of column longitudinal-reinforcement bars

[expr $GrhoCol*$Acol]; # total steel area in column section

[expr $AsCol/$NbCol]; # bar area of column longitudinal reinforcement
0.0; # inner radius of column section

$Rcol; # outer radius of column section

1; # ID tag for core concrete

Chapter How To.... 374

set IDcover 2; # ID tag for cover concrete

set IDsteel 3; # 1D tag for steel

set nfCoreR 8; # number of radial fibers in core

set nfCoreT 16; # number of tangential fibers in core

set nfCoverR 2; # number of radial fibers in cover

set nfCoverT 16; # number of tangential fibers in cover

set IDcolFlex 2; # |D tag for column section in flexure, before aggragating torsion
set IDcolTors 10; # ID tag for column section in torsion

set IDcolSec 1; # 1D tag for column section

set IDcolTrans 1; # 1D tag for column transformation, defining element normal

set IDbeamTrans 2; # 1D tag for beam transformation, defining element normal
setnp 5; # Number of integration points

> GRAVITY PARAMETERS:

#----- GravityParameters.tcl
define GRAVITY paramters

set Pdl [expr $Weight/2]; # gravity axial load per column

set Wbeam [expr $Weight/$Lbeam]; # gravity dead load distributed along beam length
set Mdl [expr $Wbeam*pow($Lbeam,2)/12]; # nodal moment due to distributed dl

set Mass [expr $Weight/$g]; # mass of superstructure

set Mnode [expr $Mass/2]; # nodal mass for each column joint

»> ANALYSIS PARAMETERS:

#----- AnalysisParameters.tcl

set DxPush [expr 0.1*$in]; # Displacement increment for pushover analysis

set DmaxPush [expr 0.05*$Lcol]; # maximum displamcement for pushover analysis
set DtAnalysis [expr 0.005*$sec];# time-step Dt for lateral analysis

set DtGround [expr 0.02*$sec];# time-step Dt for input grond motion

set TmaxGround [expr 35 *$sec]; # maximum duration of ground-motion analysis

set gamma 0.5; # gamma value for newmark integration

set beta 0.25 # beta value for newmark integration

...Build Model and Define Nodes

This example shows how to set up the geometry of the structure shown in the Figure (page 390).

These commands are typically placed at the beginning of the input file, after the header remarks.

construct model builder using the model Command (page 37)

wipe; # clear data from past analysis

Chapter How To.... 375

model basic -ndm 3 -ndf 6; # modelbuilder: basic (page 37), ndm= no. dimensions, ndf= no.
Define nodes ------ frame is in X-Y plane (X-horizontal, Y-vertical) using the node Command (page 39)
node 1 0. 0. O.; # base of left column

node 2 360. 0. O0.;# base of right columnn

node 3 0. 120. O.;# top of left column

node 4 360. 120. O.; # top of right columnn

Define Boundary Conditions and nodal mass using the fix Command (page 41) ! 1: restrained, 0: released
fix 1111111

fix 2111111

fix 3 011110 -mass][expr2000/2/386.4]10. 0. 0. 0. 0.

fix 4011110

define mass at node 4 using the mass Command (page 40):

mass 4 [expr 2000/2/32.2/12] 0. 0. 0. 0. 0.

NOTE: The second command assigning the mass of a specific node will override any previous
mass assignments to that node.

2000 kip

elastic heam
prismatic

&
inelastic pier
circular
circular
inelastic pier
100

-

1

...Build Model and Define Nodes using Variables

This example sets up the geometry of the cantilever column shown in the Figure (page 390) --
using variables.

- Build&Nodes.tcl

wipe; # clear data from past analysis

model basic -ndm 3 -ndf 6;
define units and constants
source units.tcl; # if contained in external file

Define nodes ------ frame is in X-Y plane (X-horizontal, Y-vertical) using the node Command (page 39)

Chapter How To.... 376

node 1 0. 0. 0.; # base of left column
node 2 $Lbeam O. 0.; # base of right columnn
node 3 0. $Lcol 0.; #top of left column

node 4 $Lbeam $Lcol 0.; # top of right columnn

Define Boundary conditions using the fix Command (page 41) ! 1: restrained, 0: released
fix 1 111111; # fully-fixed support

fix 2 111111;

fix 3011110 -mass$Mass0. 0. 0. 0. 0.;

fix 4 011110

define the mass at node 4 using the mass Command (page 40):

mass 4 $Mass 0. 0. 0. 0. 0.;

NOTE: The second command assigning the mass of a specific node will override any previous
mass assignements to that node.

...Define Materials

The following is an example on how to define materials for reinforced-concrete structures. The
examples assume that the variables have been defined apriori. If these commands are placed
into an external file they can be used in a number of analyses without significant modifications
using the source command.

- MaterialsRC.tcl

set ConcreteMaterialType "inelastic"; # options: "elastic","inelastic"
set SteelMaterialType "hysteretic"; # options: "elastic","bilinear","hysteretic"
CONCRETE

if {$ConcreteMaterialType =="elastic"} {
uniaxialMaterial Elastic $IDcore $Ec
uniaxialMaterial Elastic $IDcover $Ec
}
if {$ConcreteMaterialType == "inelastic"} {
uniaxialMaterial Concrete01 $IDcore $fc1C $eps1C $fc2C $eps2C; # Core concrete
uniaxialMaterial Concrete01 $IDcover $fc1U $eps1U $fc2U $eps2U; # Cover concrete
}
STEEL
if {$SteelMaterialType == "elastic"} {
uniaxialMaterial Elastic $IDsteel $Es
}
if {$SteelMaterialType == "bilinear"} {
uniaxialMaterial Steel01 $IDsteel $Fy $Es $Bs

Chapter How To.... 377

if {$SteelMaterialType == "hysteretic"} {

uniaxialMaterial Hysteretic $IDsteel $Fy $epsY $Fy1 $epsY1 $Fu $epsU -$Fy -$epsY -$Fy1 -$eps¥Y1 -
$Fu -$epsU $pinchX $pinchY $damage1 $damage2 $betaMUsteel

}

...Define Elements

#----- ELEMENTS.tcl

COLUMNS

set ColumnType "inelastic"; # options: "rigid" "elastic" "inelastic"

set np 5; # number of integration points

source RCcircSection.tcl; # proc to define circular fiber section for flexural characteristics

RCcircSection $IDcolFlex $riCol $roCol $cover $IDcore $IDcover $IDsteel $NbCol $AbCol $nfCoreR
$nfCoreT $nfCoverR $nfCoverT

uniaxialMaterial Elastic $IDcolTors $GJ; # Define torsional stiffness
section Aggregator $IDcolSec $IDcolTors T -section $IDcolFlex; # attach torsion and flexure
geomTransf Linear $IDcolTrans 001; # Linear: no second-order effects
if {$ColumnType == "rigid"} {
set $lyCol [expr $lyCol*$lyCol];
set $1zCol [expr $I1zCol*$1zCol];
element elasticBeamColumn 1 1 3$Acol $Ec $G $J $lyCol $IzCol $IDcolTrans
element elasticBeamColumn 2 2 4 $Acol $Ec $G $J $lyCol $IzCol $IDcolTrans
}
if {$ColumnType == "elastic"} {
element elasticBeamColumn 1 1 3$Acol $Ec $G $J $lyCol $IzCol $IDcolTrans
element elasticBeamColumn 2 2 4 $Acol $Ec $G $J $lyCol $IzCol $IDcolTrans
}
if {$ColumnType == "inelastic"} {
element nonlinearBeamColumn 1 1 3 $np $IDcolSec $IDcolTrans
element nonlinearBeamColumn 2 2 4 $np $IDcolSec $IDcolTrans
}
BEAM
geomTransf Linear $IDbeamTrans 001; # define orientation of beam local axes

element elasticBeamColumn 3 34 $Abeam $Ec $G $J $lyBeam $izBeam $IDbeamTrans;

Chapter How To.... 378

Defining Output

...Define Analysis-Output Generation

Different output may be generated depending on whether the analysis is static or dynamic. Here
is an example:

- Output.tcl
set fDir "Data/";
file mkdir $fDir; # create directory
set ANALYSIS "Static"; # this variable would be passed in
set IDctrINode 3; # this variable would be passed in
if {SANALYSIS == "Static"} {
Record nodal displacements -NODAL DISPLACEMENTS
set fDstatFrame DStatFrame[expr $Xframe]

set iNode "$IDctrINode"; # can add node numbers to this list
foreach xNode $iNode {
set fNode Node$xNode
set Filename $fDir$fDstatFrame$fNode
recorder Node $Filename.out disp -time -node $xNode -dof 1 6;
}; #end of xNode
Record element forces and deformations - COLUMNS
setiEL "1 2"
set fFstatFrame FStatFrame[expr $Xframe]
set fDstatFrame DStatFrame[expr $Xframe]
foreach xEL $iEL {
set fEl El[expr $xEL]
set iSEC "1 3 5"
set Ffilename $fDir$fFstatFrame$fEl
recorder Element $xEL -time -file $Ffilename.out localForce
foreach xSEC $iSEC {
set fSec Sec[expr $xSEC]
set Dfilename $fDir$fDstatFramefEIfSec
recorder Element $xEL -file $Dfilename.out -time section $xSEC deformations
b # end of xSEC
b # end of xEL

b # end of static analysis

Chapter

How To....

379

set ANALYSIS "Dynamic"; # this variable would be passed in
set GroundFile "ElCentro"; # this variable would be passed in
if {SANALYSIS == "Dynamic"} {
set fDDynaFrame DDynaFrame[expr $Xframe]
set fGroundFile $GroundFile
set Filename $fDir$fDDynaFrame$fGroundFile
Record nodal displacements
recorder Node $Filename.out disp -time -node $IDctrINode -dof 1

}; #end of dynamic analysis

...Define Data-Plot During Analysis

- RecorderPlot.tcl
set pfile "Data/node.out";

recorder Node $pfile disp -time -node $IDctrINode -dof 1
set title PushFrame$Xframe;

recorder plot $pfile $title 0 0 350 350 -columns 2 1

set pfile "Data/Elem1.out";

set title PushElem1;

recorder Element 1 -time -file $pfile globalForce
recorder plot $pfile $title 400 0 350 350 -columns 2 1

Gravity Loads

...Define Gravity Loads

- DefineGravity.tcl

set GravSteps 10

pattern Plain 1 Linear {
load3 0.-$Pdl 0. 0. 0. -$Mdl; #Fx Fy Fz Mx My Mz
load4 0.-$Pdl 0. 0. 0. +$MdI

}

system UmfPack; # solution procedure, how it solves system of equations

Chapter How To.... 380

constraints Plain; # how it handles boundary conditions, enforce constraints

test NormDisplncr 1.0e-5 10 0;

algorithm Newton;

numberer RCM; # renumber dof's to minimize band-width
integrator LoadControl [expr 1./$GravSteps] 1 [expr 1./$GravSteps] [expr 1./$GravSteps]
analysis Static

initialize; # this command will not be necessary in new versions of OpenSees

...Run Gravity Analysis

- RunGravity.tcl
analyze $GravSteps # run gravity analysis
loadConst -time 0.0; # keep gravity load and restart time -- lead to lateral-load analysis

Static Analysis

...Define Static Pushover Analysis

The following commands are executed once the gravity loads have been defined and applied

R DefinePushover.tcl
set analysis "STATIC"; # this variable would be passed in

the following settings do not need to be here if they have been defined in the gravity analysis
system UmfPack;

constraints Plain;

test NormDispincr 1.0e-5 10 0;

algorithm Newton;

numberer RCM; analysis Static;

. S
set PUSHOVER "DispControl"”; # run displacement-controlled static pushover analysis
pattern Plain 2 Linear {
load $IDctrINode 100.0 0.0 0.0 0.0 0.0 0.0
}

if {$PUSHOVER == "LoadControl"} {
integrator LoadControl 0.24 0.1 2.0
set Nsteps 20

Chapter How To.... 381

} elseif {$PUSHOVER == "DispControl"} {
integrator DisplacementControl $IDctrINode 1 $DxPush 1 $DxPush $DxPush
set Nsteps [expr int($DmaxPush/$DxPush)]

}else {
puts stderr "Invalid PUSHOVER option"

...Run Static Pushover Analysis

While running a static pushover analysis may take a single command, convergence may not
always be reached with a single analysis-parameter setting. A Tcl script which tries different
solutions can be incorporated to improve the chances of convergence.

> No convergence issues

The following command executes the static push-over analysis when convergence is not a
problem.

e RunPushover.tcl

analyze $Nsteps

> Convergence attemps

The following Tcl script should be incorporated in the input file to run a number of attempts at
convergence:

- RunPushover2Converge.tcl
set ok [analyze $Nsteps]
if analysis fails, try the following, performance is slowed inside this loop
if {$ok != 0} {
set ok 0;
set maxU $DmaxPush
set controlDisp 0.0;
test NormDispincr 1.0e-8 20 0
while {$controlDisp < $maxU && $ok == 0} {
set ok [analyze 1]
set controlDisp [nodeDisp $IDctriNode 1]
if {$ok != 0} {
puts "Trying Newton with Initial Tangent .."”
test NormDisplncr 1.0e-8 1000 1

algorithm Newton -initial

Chapter How To.... 382

set ok [analyze 1]
test NormDisplincr 1.0e-8 20 0

algorithm Newton

}
if {$ok != 0} {
puts "Trying Broyden .."
algorithm Broyden 8
set ok [analyze 1]
algorithm Newton
}
if {$ok != 0} {
puts "Trying NewtonWithLineSearch .."
algorithm NewtonLineSearch .8
set ok [analyze 1]
algorithm Newton
}
b # end while loop
b # end original if $ok!=0 loop
if {$ok != 0} {
puts "DispControl Analysis FAILED"
puts "Do you wish to continue y/n ?"; # include if want to pause at analysis failure
gets stdin ans; # not recommended in parameter study
if {$ans == "'n"} done; # as it interrupts batch file
}else {

puts "DispControl Analysis SUCCESSFUL"

Dynamic Analysis

...Define Dynamic Ground-Motion Analysis

- DefineDynamic.tcl
wipeAnalysis
system UmfPack

Chapter How To.... 383

constraints Plain

test NormDisplncr 1.0e-8 20 0;

algorithm Newton

numberer RCM

integrator Newmark $gamma $beta $alphaM $betaK $betaKcomm $betaKinit;
analysis Transient

set Nsteps [expr int($TmaxGround/$DtAnalysis)];

read a PEER strong motion database file, extracts dt from the header and converts the file
to the format OpenSees expects for uniform ground motions

source ReadSMDFile.tcl;

set dir "GMfiles/"

set outFile dirGroundFile.g3; # set variable holding new filename

set inFile dirGroundFile.th

ReadSMDFile $inFile $outFile dt; # convert the ground-motion file

set GMfatt [expr $g*$GMfact]; # data in input file is factor of g

set Gaccel "Series -dt $dt -filePath $outFile -factor $GMfatt"; # time series information

pattern UniformExcitation 2 1 -accel $Gaccel; # create uniform excitation

...Run Dynamic Ground-Motion Analysis

- RunDynamicGM.tcl
analyze $Nsteps $DtAnalysis;

...Combine Input-File Components

A series of Tcl-script input-file components have been presented in this section. These
components can be combined to perform a static lateral-load analysis of the portal frame under
consideration using the source command:

----FullStaticAnalysis.tcl

wipe

model basic -ndm 3 -ndf 6
source Units&Constants.tcl
source MaterialParameters.tcl

source ElementParameters.tcl

Chapter How To.... 384

source GravityParameters.tcl
source AnalysisParameters.tcl
source MatlabOutput.tcl
source BuildModel&Nodesw/Variables--portal.tcl
source materialsRC.tcl

source RCcircSec.tcl

source Elements.tcl

source Output.tcl

source DefineGravity.tcl
source runGravity.tcl

source DefinePushover.tcl

source RunPushover2Converge.tcl

This method of breaking the input file into components is convenient when the size of the
problem does not permit manageability of a single input file.

...Run Parameter Study

In a parameter study, the same analysis is performed on a number of models where only certain
properties are varied, such as column height. There are two common types of parameter studies
shown in this section: series and parallel parsing.

The following diagram illustrates the difference between series and parallel parsing for two
parameter lists [1 2 3] and [A B C]:

set 1 set? @ @
1 A =
N g e g
3 B parsing in series

By]

parameters - BB B—[d

parsing in parallel

» Parsing in series
In this type of study, one parameter is held constant, while the others are parsed in sequence:

----- ParameterStudySeries.tcl
source units.tcl

set iHcol "[expr 5.*$ft] [expr 6.5*$ft]"; # column diameter

Chapter How To.... 385

set iLcol "[expr 36*$ft] [expr 42*$ft]"; # column length
set Xframe 0; # initialize Frame Counter, used in output
foreach Hcol $iHcol {
foreach Lcol S$iLcol {
set Xframe [expr $Xframe+1];
set ANALYSIS "Static";
source Analysis.tcl*
}; #close iLcol loop

}; # close iHcol loop

*NOTE: The file Analysis.tcl contains all the model and analysis commands.

» Parsing in parallel

In this study, the ith elements of each parameter list are considered together, resulting in fewer
study models.

----- ParameterStudyParallel.tcl

source units.tcl

set iHcol "[expr 5.*$ft] [expr 6.5*$ft]"; # column diameter
set iLcol "[expr 36*$ft] [expr 42*$ft]"; # column length
set Xframe 0; # initialize Frame Counter, used in output

foreach Hcol $iHcol Lcol $iLcol{
set Xframe [expr $Xframe+1];
set ANALYSIS "Static";
source Analysis.tcl*
}; #close iHcol & iLcol loop

*NOTE: The file Analysis.tcl contains all the model and analysis commands.

...Run Moment-Curvature Analysis on
Section

A procedure for performing section analysis (only does moment-curvature, but can be easily
modified to do any mode of section reponse):

| # e MPhiProc.tcl

Chapter How To....

386

Sets up a recorder which writes moment-curvature results to file

make sure the node and element numbers are not used elsewhere in the model

this procedure is set up for a 3-D problem: 3 dimensions/node, 6 dof/node

Arguments

#
#
#
#

secTag -- tag identifying section to be analyzed
axialLoad -- axial load applied to section (negative is compression)
maxK -- maximum curvature reached during analysis

numincr -- number of increments used to reach maxK (default 100)

proc MomentCurvature {secTag axialLoad maxK {numincr 100} } {

node 1001 0.0 0.0 0.0; # Define two nodes at (0,0)

node 1002 0.0 0.0 0.0

fix 1001 11 11 1 1; # Fix all degrees of freedom except axial and bending
fix 1002011110

element zeroLengthSection 2001 1001 1002 $secTag

recorder Node Mphi.out disp -time -node 1002 -dof 6;# output moment & curvature

integrator LoadControl 0 1 0 0; # Define analysis parameters

system SparseGeneral -piv; # Overkill, but may need the pivoting!
test NormUnbalance 1.0e-9 10

numberer Plain;

constraints Plain;

algorithm Newton;

analysis Static;

pattern Plain 3001 "Constant" {
load 1002 $axialLoad 0.0 0.0 0.0 0.0 0.0
}; # Define constant axial load

analyze 1; # Do one analysis for constant axial load

pattern Plain 3002 "Linear" {

load 1002 0.0 0.0 0.0 0.0 0.0 1.0
}; # Define reference moment
set dK [expr $maxK/$numlincr]; # Compute curvature increment
Use displacement control at node 1002 for section analysis, dof 6
integrator DisplacementControl 1002 6 $dK 1 $dK $dK

analyze $numincr; # Do the section analysis

Chapter How To.... 387

When including this procedure, ensure that the node and element numbers used by it are not
used elsewhere in the OS model.

The above procedure may be incorporated into the static pushover analysis file:

----MomentCurvature.tcl

wipe

model basic -ndm 3 -ndf 6
source Units&Constants.tcl
source MaterialParameters.tcl
source ElementParameters.tcl
source GravityParameters.tcl
source materialsRC.tcl
source RCcircSec.tcl

RCcircSection $IDcolSec $riCol $roCol $cover $IDcore $IDcover $IDsteel $NbCol $AbCol $nfCoreR
$nfCoreT $nfCoverR $nfCoverT

source MPhiProc.tcl

set phiYest [expr $epsY/(0.7*$Hcol)]; # estimate yield curvature
set axialLoad -$Pdl; # define axial load -- +tension in Mom-curv analysis
set maxK [expr 20*$phiYest]; # maximum curvature reached during analysis

MomentCurvature $IDcolSec $axialLoad $maxK;

...Determine Natural Period & Frequency

The natural period and frequency of the structure can be determined at any point during the
analysis using the eigen (page 368) command. In turn, these quantities can be stored as
variables and used in defining analysis parameters, such as rayleigh-damping parameters:

- PeriodFreq&Damping.tcl

determine Natural Period, Frequency & damping parameters for SDOF
set $xDamp 0.02; # damping ratio (0.02-0.05-typical)
set lambda [eigen 1]

set omega [expr pow($lambda,0.5)]

set Tperiod [expr 2*$Pl/$omegal]; # period (sec.)

puts $Tperiod

set alphaM 0; # stiffness-prop. RAYLEIGH damping parameter; D = alphaM*M
set betaK 0; # stiffness proportional damping; +beatK*KCurrent

set betaKcomm [expr 2*$xDamp/$omegal; # mass-prop. RAYLEIGH damping parameter;

Chapter How To.... 388

+betaKcomm*KlastCommitt

set betaKinit 0; # initial-stiffness proportional damping +beatKinit*Kini

389

CHAPTER 43

Getting Started with OpenSees

Under the NEESgrid support, a Getting Started with OpenSees
(http://peer.berkeley.edu/~silvia/OpenSees/gettingstarted/) document has been produced.

N EES Pi Technical Report NEESgrid-TR 2004-
21
S2grid

www.neesgrid.org
Getting Started with OpenSees
Silvia Mazzoni, Frank McKenna, Gregory L. Fenves
Pacific Earthquake Engineering Research Center
University of California, Berkeley

OpenSees version 1.6.0

Chapter 43 Getting Started with OpenSees 390

please send questions and comments about the manual to silvia@peer.berkeley.edu

The documentation and validation examples of the Getting Started with OpenSees Manual were
supported by NEESgrid subcontract award 04-344 from the NEESgrid System Integrator (Sl)
under NSF grant CMS-0117853

In This Chapter

INtroduCHioN ...ccoeeeeeeieeeeeeeee 406
Download OpenSeescoovvvuveeeeiiiieee e 407
RUN OPENSEES........evieiiiiiiie e 409
Problem Definitionccoovvvvvviiiiiieiieeeeeeeeeeee 413
Model BUIIAEreveeiiiiiiiiieiieiiieieiiieeeeeeeeeeeeeeeeeeeeeees 414
I\ oT0 = R 415
Elements ... 417
[T=ToTo] (o (=T ¢ T 418
Summary of Model-Building Input File 418
Loads and ANalySiscccoviiiimiimieiieeieeieeeeeeen 421
Gravity LOadSccovviiiiiiiiiieeeeee e 423
Summary of Gravity Loadscccueeeeeeiiiiiniiiiiee, 427
Lateral Loads -- Static Pushoverccccccovieeenns 427
Lateral Loads -- Cyclic Lateral Load.................euueeee. 428

Lateral Loads -- Dynamic ground motion.................. 429

Chapter 43 Getting Started with OpenSees 391

Introduction

Modern earthquake engineering utilizes modeling and simulation to understand the behavior and
performance of systems during earthquakes. With the support of the National Science
Foundation, the Pacific Earthquake Engineering Research Center (PEER) has developed the
Open System for Earthquake Engineering Simulation, OpenSees for short, as a software
platform for research and application of simulation for structural and geotechnical systems. The
OpenSees software framework uses object-oriented methodologies to maximize modularity and
extensibility for implementing models for behavior, solution methods, and data processing and
communication procedures. The framework is a set of inter-related classes, such as domains
(data structures), models, elements (which are hierarchical), solution algorithms, integrators,
equation solvers, and databases. The classes are as independent as possible, which allows
great flexibility in combining modules to solve simulation problems for buildings and bridges,
including soil and soil-structure-foundation interaction, and most recently including reliability
computational modules. The open source software is managed and made available to users
and developers through the OpenSees website at http://opensees.berkeley.edu
(http://opensees.berkeley.edu).

The software architecture and open-source approach for OpenSees provide many benefits to
users interested in advanced simulation of structural and geotechnical systems with realistic
models of nonlinear behavior. First, the modeling approach is very flexible in that allows
selection and various combinations of a number of different element formulations and material
formulations, along with different approximations of kinematics to account for large-
displacements and P-D effects. As an open-source project, developers and researchers are
using the extensible features of the software architecture to add additional capability. A second
advantage is that there is a wide range of solution procedures and algorithms that the user can
adapt to solve difficult nonlinear problems for static and dynamic loads. Another feature is that
OpenSees has a fully programmable scripting language for defining models, solution
procedures, and post-processing that can provide simple problem solving capability, as
illustrated in this manual, or very sophisticated modeling and parameters studies of large,
complex systems. Finally, OpenSees provides a flexible interface to computer resources,
storage and databases, and network communication to take advantage of high-end computing
systems. Structural and geotechnical models can be analyzed from desktop PC’s to parallel
computers within OpenSees.

As an advanced platform for computational simulation, OpenSees provides an important
resource for the National Science Foundation-sponsored George E. Brown, Jr. Network for
Earthquake Engineering Simulation (NEES (http://www.nees.org)), and it has been adopted by
NEESgrid (http://www.neesgrid.org) System Integration project as the NEES simulation
component. The NEESgrid decision to utilize OpenSees and adapt it to interface with other
NEESgrid resources provides an important capability for NEES researchers and users. The
modular design of OpenSees means that it can be customized for the integrating physical and
computation simulation through data repositories, visualization, and hybrid control for advanced
experimental methods, all of which meet important NEES objectives.

Chapter 43 Getting Started with OpenSees 392

Open source software, such as OpenSees, requires community support and participation. The
objective of this “Getting Started” manual is to provide an introduction so that users of OpenSees
can obtain, install, and begin using the software to solve problems.

Download OpenSees

To download and install OpenSees the user is required to download both the OpenSees and
Tcl/Tk packages. The OpenSees and Tcl/Tk packages can both be downloaded from the
OpenSees binaries webpage http://opensees.berkeley.edu/binaries.html. This page can be
found using the quick links pull down menu from any of the OpenSees web pages. The binaries
download page will be similar to that shown below.

aBalc] {rentaes - hneres Sy - Reeila =
T =
i T S P tipesers i beiram e tlaasa e itod L1 e * E
i Fu sy Faus nap $! L it + ! | e T
Db weechiaks Fucalien @il ek
-~
L : = Rl |
Open Syslem for Earthauake Engineering Simulation
:}Il -} ':’1:3" Pacific Eanhgqualks Enginuening Besvach li:-.:f\-!.-\."r
« Main Papo DpenSces Excostable Distribution
' About
v Projects OpuenSees cxvcubables fop Windope SE0NTHD ae veailible G dwonkod,
« User Pages The: cornend errdien ol Olpan S has b leckal amil i penerally siabke Howeer,
o R et pE AT Prebkes When mnTing o new prek ke rarthe ristime Fer
=) i A FEASE W Wi SITANEI SR e Fre0 10 PEOCIan 1 e Sineis nessaps
+ Examuoles poards hesicd by Gponisces. And plerse 2pon any haps vou oed!CLha, of cotrse,
+ Arressorrs is [whioh: nzasen we make Brese binaries available.
= Message Board N .
_ TapenSees 0 TR, 0 aemeral fmipess sedping lnpnape har we have e
Denalopar Fagas Wi eamrancs frr Cipensees, I neeesaary wAcwniead o 0D rarme 1elTk
NIRRT
« EAG i - i i ki bl 2 Girsl, il 1
Tiee Liwstskep is dhrwnload the (w0 (ke bulew. The Ot Sle & zip Gk conlaining te
» Eelpted Links OpuenSues ssecubdble, The scvand Gk i 2 sel-ietalling vacculsbke G T Th.
P Thar rar thass ot pent wha have dewnlaades befers Y400 WD H AT
IS PALT TS TR LIHEARIES AR HAADRE BI RS AGAT This 15 heanss
wiz hew upgradied e TelTh Y erion §4.1
R;.'l\:aa.'_l.ﬁ.'.'l!"'l:l.'lﬁl.'-'-l Sl ik 2 445
Adber o gloacding the TolTE wsnvulable wea will ieed s cun il be instd] the DUL's
st ok, During dris sige, o will e pskied wens kel e fles.
TumEnry me detwilr s CAael T s essemlil Thar o harpe hism "0 5N
PS¢l dnnng the eomse or the imatallanen i yan see n ermr ressage e
arfec, *Canm i 114 117 Ly have skipped mis siep and mss rensall el il

Tty L AL o el spobally taew il e versen vou qust otk Ll

Finally . Doabe Ui cpenuess ene in g convenici diveckay. [Lis advivalie ke
expme Clpensess rem a DO shelland van are ready mopal

WD oA e ol

Chapter 43 Getting Started with OpenSees 393

At this page the user is required to download two files OpenSees.X.X.X.exe and tcl/tk Y.Y.Y.
This can be done by selecting (clicking) on the links located in the box labeled DOWNLOAD
Windows Binaries.

The file downloaded by clicking on the OpenSees.X.X.X.exe link is a zip file, from which the
OpenSees.X.X.X.exe file can be extracted using your favorite extractor. The user can place this
executable anywhere they wish. It is recommended to place it in a directory near where all your
scripts will be stored.

The file downloaded by clicking the tcl/tk Y.Y.Y link is an installer for Tcl/Tk. By clicking on the
file the user is brought through a series of screens. The first screen shows the package
information for Y.Y.Y, the second screen has the license agreement, you must accept the
license to proceed with the installation. The third screen specifies the installation mode and
location. Here the user must change the default installation location from C:/Tcl to C:/Program
Files/Tcl (there is a space between Program and Files), as shown in the image below.

' ActiveState Ac e ——
' i '. Eﬂ Fleaze specify inztallation directory and mode,
- Fi l N
STATE — Inztallation made

™ |nztall far current uzer anly

% |pnztall for all uzers [requires Administrative privileges)

— Regiztry Settings

v Add tel' to your executable path extensions [PATHEXT]

-
A ct’ve Tc’ ~ Azzociate ' b extenzion to ActiveT cl

[“tcl' iz automatically aszociated]

www.ActiveState.com C:/Program Flles/Tcl El

< Back | Mext » | Cancel |

Chapter 43 Getting Started with OpenSees 394

This is the only change the user must make. User now just keeps selecting Next until done.

Run OpenSees

There are three ways that OpenSees/Tcl commands can be executed:

» Interactive
Commands can be input directly at the propt, as shown in the figure (Win32 version):

ME C:AWINNTSystem32\cmd. exe - OpenSees

C:“>0penSees
OpenSees — Open System For Earthguake Engineering Simulation
Pacific Earthguake Enginecsring Research Center — Uersion

(c>» Copyright 1992 The Regents of the University of California
All Rights Reserved

e5 model basic -ndm 3 —ndf 6

node 1 W. W, H.
node 2 368. B. 8.
node 3 B. 128

mass 3 [expr Z008.-2-386.41 6. B. B. A.
. [expr Z008-2-386.41 6. BO. A. @.
iaxialMaterial Concretefl 1 -G -@.0az2 —4EBB -A.81
uniaxialMaterial SteelBl 2 cOBHA. 29333383 a.1

Chapter 43 Getting Started with OpenSees 395

Figure 66: Run
OpenSees --
Interactive

Chapter 43 Getting Started with OpenSees 396

» Execute Input File at OpenSees prompt

This method is the most-commonly used one. An external file containing the input commands
can be generated a-priori (inputFile.tcl) and be executed at the OpenSees prompt by using the
source command. The generation of the input script files is presented in this chapter. The file
execution is shown in the figure (Win32 version):

Figure 67: Run
OpenSees -- Source
File

"E C:\openSees. exe

.. DOpenSees —— Open 3ystem For Earthquake Engineering Simulation
Pacific Earthguake Enginesring Research Center — Uersion

Cc) Copyright 197? The REﬂents of the University of California
All Rights Reserved

Upeniees > source inputFile.tcl
Unf packGenLinS0E:-set8ize — n 4 nnz 16 1Ual 168

Unf packGenLinS0E: :set8ize — n 4 nnz 16 1Ual 168
L]

OpenSees > _

» Batch Mode

The previously-created input file containing the Tcl script commands necessary to execute the
analsis can also be executed at the MS-DOS/Unix prompt, as shown in the figure (Win32

version):

Chapter 43 Getting Started with OpenSees 397

Figure 68: Run
OpenSees -- Batch
Mode

AWINNTASystem32\cmd. exe

Microsof t(R> Windows NICTM>
(C>» Copyright 1985-1996 Microsoft Corp.

C=“>0penSees dnputFile.tcl
OpenSees — Open System For Earthguake Engineering Simulation
Facific Earthguake Engineeringy Research Center — Uersion 1.1.3

(c? Copyright 1999 The Regents of the University of California
A1l Rights Reserved

Umf packGenLinS0E: :set8ize — n 4 nnz 16 1Ual 168
Umf packCenLinE0E:zzgctfdiec — n 4 nn= 16 1Ual 168

[

Chapter 43 Getting Started with OpenSees 398

Problem Definition

A portal frame will be used to demonstrate the OpenSees commands. A structural model will be
defined first. Subsequently, a number of static and dynamic analyses will be defined and
implemented.

The structural model consists of the planar portal frame shown in the figure below:

Figure 69: Getting
Started -- Problem
Definition, Geometry

YYVVYY Yy vy yil0ke GEOMETRY
B
: B I —5—s
1] 1] AJA
t] 4 i | |
*’ N
E?‘ WX P B section A-A section B-B

The columns and beam will be modeled as elastic elements. At a more advanced level, these
elements can be replaced by more refined element models.

In the analysis phase, the frame will be subjected to three different load cases:
1 DISPLACEMENT-CONTROLLED LATERAL PUSHOVER,;

2 DISPLACEMENT-CONTROLLED REVERSED CYCLIC LATERAL LOADING;
3 DYNAMIC GROUND-MOTION-INPUT TRANSIENT ANALYSIS.

Chapter 43 Getting Started with OpenSees

399

In all cases, however, the frame will be subjected to constant static gravity loads:

gravity load

latefal |2 4

\.

LOAD CASE 1:

DISPLACEME NT-CONTROLLED LATERAL PUSHOVER

A lateral LOAD ofincreasing magnitude i= imposed at nodes 3 and
4 until a desired maximum lateral digplacement iz reached at node
3. Thiz iz a =tatic analysis.

LOAD CASE 2

DISPLACEMENT-CONTROLLED REVERSED CYCLIC LATERAL
LOADING

A lateral LOAD iz applied at nodes 3 and 4 =uch that a predefined
dizplacement history iz achieved at node 3. Thiz is a static
analyziz. The dizplacement history is shown in the figure:

T 1.0

| _1 .uH

Iumﬁétep

displacemant

gravity load
ITITIIII
bhddddddd

ped Focd

ground acoeleration

LOAD CASE 3

DYNAMIC GROUND-MOTIONANPUT TRANSIENT ANALYSIS

A uniform acceleration hiztory iz imposed at all nodes constrained

in the horzontal x-direction (nodes 1& 2). The accelemtion history
iz predefined. Thiz iz a tansient [dynamich anahe=is. A schematic of
the acceleration history iz shown in the figure:

accelaration

Model Builder

Defining the model builder expands the Tcl command library to include OpenSees-specific
commands, such as node and element definition, etc. Currently, there is only one model builder

available, basic model builder (page 37), this is the model builder that includes all the commands

presented in this library.

The model builder also defines the number of dimensions (ndm) and degrees of freedom per

node (ndf):

| model BasicBuilder -ndm $ndm <-ndf $ndf>

For a 2-D problem, you really only need three degrees of freedom at each node, the two

translations in the plane and the rotation about the plane's normal:

| model basic -ndm 2 -ndf 3

Chapter 43 Getting Started with OpenSees 400

Nodes

At this point the user needs to decide which units will be used. In this demonstration, inches and
kips will be used for length and force. Seconds will be used for time.

The assignment of node and element numbers is defined in the figure below:

Figure 70: Getting
Started -- Nodes &

Elements
NODES & ELEMENTS
alam an 3
noda 3 : . Noda 4
i
noda 1 nods 2
mmE A F

In a 2D problem only the x and y coordinates need to be defined, using the node (page 39)
command:

| node $nodeTag (ndm $coords) <-mass (ndf $MassValues)>

nodet 0 O
node 2 504 0
node3 0 432
node 4 504 432

Chapter 43 Getting Started with OpenSees 401

The boundary conditions are defined using the fix (page 41) command:

| fix $nodeTag (ndf $ConstrValues)

with three degrees of freedom per node are constrained:

fix11 1 1
fix21 1 1
fix30 0 O
fixa0 0 O

where a fixed constraint is defined with a 1, a free constraint is defined with a 0.

Nodal masses are typically defined at the same time as the nodal coordinates. The nodal mass
is used to calculate the eigenvalues and to perform the dynamic analysis. Only the nodal mass
in the horizontal direction will be defined in this demonstration. Nodal masses can either be
defined within the node (page 39) command, or the can be "appended" using the mass (page
40) command:

| mass $nodeTag (ndf $MassValues)

mass 3 5.180. 0.
mass 4 5.180. 0.

The mass value was calculated by dividing the nodal weight (1/2 of the total super-structure
weight) by the gravitational constant g (32 ft/sec):

4000-kip

-

A 12-inch
e A i
sec 1-ft

mass=

Chapter 43 Getting Started with OpenSees 402

Elements

The elastic columns and beams are defined using the elastic beam column element (page 215).
The characteristics of a 2-D elastic element depend on the material modulus and the section
area and moment of inertia. Because the elements in this frame represent reinforced-concrete
elements, the value of 4227 ksi for the elastic modulus of concrete will be used.

The following values represent the area and moment of inertia of the columns and beams:

COLUMNS BEAM

Area (3-12)-(5-12) = 3600 (3-12)-(8-12) = 3760

|1z 1 (5.12%-(5 £ it n b e 3 _ 4412
—(3-12)-(3:12)7 = 10800:00 1_.;‘3.1;;{3.12} = 4423680
12 2

The transformation command defines how the element coordinates correlate to the global model
coordinates. In a 2D problem, element orientation does not need to be considered, and can be
the same for all elements. The linear transformation (page 302) will be used in this
demonstration:

| geomTransf Linear $transfTag <-jntOffset $dXi $dYi $dXj $d¥Yj> |

| geomTransf Linear 1

The following commands define the two columns (element 1 and 2) and the beam (element 3):

| element elasticBeamColumn $eleTag $iNode $jNode $A $E $Iz $transfTag

element elasticBeamColumn 1 1 3 3600 4227 1080000 1
element elasticBeamColumn 2 2 4 3600 4227 1080000 1
element elasticBeamColumn 3 3 4 5760 4227 4423680 1

Chapter 43 Getting Started with OpenSees 403

Recorders

The recorder command is used to define the analysis output.

The node recorder will be used to output the horizontal and vertical displacements at node 3 into
a file named Node3.out:

recorder Node <-file $fileName> <-time> <-node ($node1 $node2 ...)> <-
nodeRange $startNode $endNode> <-region $RegionTag> <-node all>
-dof ($dof1 $dof2 ...) $respType

recorder Node -file Node3.out -time -node 3 -dof 1 2 disp

The element recorder will be used to output the element forces. Element forces for element 1 will
be output into file Element1.out:

recorder Element <-file $fileName> <-time> <-ele ($ele1 $ele2 ...)> <-eleRange
$startEle $endEle> <-region $regTag> <-ele all> ($arg1 $arg2 ...)

recorder Element -file Element1.out -time -ele 1 force

Summary of Model-Building Input File

The following is a compilation of all the commands necessary to build the model:

model basic -ndm 2 -ndf 3
nodal coordinates:
node 100

node 2 504 0

node 3 0 432

node 4 504 432

bondary conditions:
fix 1111

fix2111

fix3000

fix4000

nodal masses:
mass 3 5.18 0. 0.
mass 4 5.18 0. 0.

transformation:

Chapter 43 Getting Started with OpenSees 404

geomTransf Linear 1

connectivity:

element elasticBeamColumn 1 1 3 3600 4227 1080000 1
element elasticBeamColumn 2 2 4 3600 4227 1080000 1
element elasticBeamColumn 3 3 4 5760 4227 4423680 1
recorders

recorder Node -file Node3.out -time -node 3 -dof 1 2 disp
recorder Element -file Element1.out -time -ele 1 force

The above commands can be input line by line at the OpenSees command prompt:

&+ C:\Users\AAsilvia\AAprojects\OpenSees)|

Pacific Earthguake Engineering Research Center == Verszion 1.5.3

(c?) Copyright 1999 The Regents of the University of California
All Rights Reserved

model basic -ndm 2 —-ndf 3
node 1 B A

node 2 5684 @

node 3 @ 432

node 4 5684 432

Fix

fix

fix

fix

fix

mass 3 5.18 B B

mass 4 5.18 @ @
geomIransf Linear 1
element elasticBeamColumn 1 1 3 3688 ﬂ 18808688 1

element elasticBeamColumn 2 2 4 3688 18888688 1
element elasticBeamColumn 3 3 4 5760 4423688 1
pattern Flain 1 Linear £

—-2008 -168@74

¥
>
b
>
¥
>
>
>
>
>
>
>
>
>
>
>
>
a

Chapter 43 Getting Started with OpenSees 405

Otherwise, they can be saved into an input file called example.tcl. This file can then be sourced
in from the OpenSees command line:

\Users\AAsilvia\AAprojects\DpenSees|O

model basic -ndm 2 -ndf 3 Ci\Users \AAsilvialasprojects\OpenSees\O5Workshops 200405 WorkshopSept\Presentations MyPresentatic

nodal coordinates: OpenSees —— Open System For Earthquake Enginee
node 100 Pacific Earthquake Engineering Research Center

node 2 504 0 (c) copyright 1999 The Regents of the Unive|
node 30 432 All Rights Reserved

nede 4 504 432
bondary canditions: OpenSees > source example.tcl
fix1111 OpenSees >
fix2111
fix3000
fixa000
nodal masses:
mass 3 5.180. 0.
mass 4 5.180. 0.
transformation:
geomTransf Linear 1
connectivity:
element elasticBeamColumn 1 1 3 3600 4227 1080000 1
element elasticBeamColumn 2 2 4 3600 4227 1080000 1
element elasticBeamColumn 3 3 4 5760 4227 4423680 1
Define gravity load pattern:
pattern Plain 1 Linear {

load 3 0.0 -2000 -168074

load 4 0.0 -2000 168074

}

recorders

Chapter 43 Getting Started with OpenSees 406

Loads and Analysis

In OpenSees applying loads is a three-step process:
1. You must first define the loads in a load pattern
2. You must then define the analysis and its features

3. The loads are then applied when you execute the analysis

1. Load definition

Loads are defined using the pattern command. Three types of patterns are currently available:

a. plain Pattern -- this pattern is used to define the following:

i. nodal loads, such as gravity loads and lateral loads (or load-controlled nodal
displacements)

ii. single-point constraints, such as displacement control at a node (typically used
for a constant displacement at a node)

iii. element loads, such as distributed gravity loads along the element (this is a
new option, which still needs documentation).

b. UniformExcitation Pattern -- this type of pattern imposes a user-defined acceleration
record to all fixed nodes, in a specified direction.

c. MultipleSupport Pattern -- this type of pattern imposes a user-defined displacement
record at specified nodes, in a specified direction, or a ground-motion record.

Chapter 43 Getting Started with OpenSees 407

2. Analysis definition and features

The analysis-definition part of OpenSees allows the user to define the different linear and
nonlinear analysis tools available. For each analysis, the following items need to be defined,
preferably in this order:

constraints The constraints command is used to construct the ConstraintHandler
object. Constraints enforce a relationship between degrees-of-
freedom. The ConstraintHandler object determines how the
constraint equations are enforced in the analysis.

numberer The numberer command is used to construct the DOF_Numberer
object. The DOF_Numberer object determines the mapping between
equation numbers and degrees-of-freedom -- how degrees-of-
freedom are numbered.

system The system command is used to construct the LinearSOE and
LinearSolver objects to store and solve the system of equations in the
analysis.

test The test command is used to construct a ConvergenceTest object.

Certain SolutionAlgorithm objects require a ConvergenceTest object
to determine if convergence has been achieved at the end of an
iteration step.

algorithm The algorithm command is used to construct a SolutionAlgorithm
object, which determines the sequence of steps taken to solve the
non-linear equation.

integrator The integrator (page 356) command is used to construct the

Integrator object. The Integrator object determines the meaning of the
terms in the system of equation object. The Integrator object is used
for the following:

= determine the predictive step for time t+dt

= gpecify the tangent matrix and residual vector at any iteration

= determine the corrective step based on the displacement
increment dU

Chapter 43 Getting Started with OpenSees 408

analysis The analysis (page 363) command is used to construct the Analysis

object. This analysis object is constructed with the component objects
previously created by the analyst. All currently-available analysis
objects employ incremental solution strategies. There are three types
of analysis currently available:

Static Analysis (page 363)

Transient Analysis (page 364)

Variable Transient Analysis (page 365)

3. Analysis execution

The analysis is executed using the analyze (page 369) command. This command moves the
analysis forward by the specified number of steps.

Gravity Loads

Gravity loads are independent of the type of lateral loading and here they are considered part of
the structural model.

NODAL FORCES & MOMENTS
Because the beam is an elastic element, the vertical load distributed along the horizontal

member can be represented by nodal forces and moments. The nodal forces are distributed
equally to the two end nodes. The nodal bending moments are equal and opposite:

The nodal force is equal to one half of the superstructure weight:

Force=

4“”g'k'p=2000-kip

Chapter 43 Getting Started with OpenSees 409

the distributed load is calculated by dividing the total load by the beam length:

4000-kip =794. kip
i|1|:h) "~ inch

DistributedLoad =
(42-f)- (12-T

The bending moment is then calculated from the
distributed load:

DistributedLoad- BeamLength® (94%)-(42%12%)
. Istnbute 0312 eamLeng L nc - =1EEU?¢1I{|F‘|”

Maoment

LOAD PATTERN DEFINITION

Like all loads in OpenSees, gravity loads require two steps. The first step defines the load into a
load pattern (page 317), the second applies the load pattern and the associated gravity load.
The plain pattern (page 317) command with a linear time series (page 313) is used in the load
definition:

pattern Plain $patternTag (TimeSeriesType arguments) {

load $nodeTag (ndf $LoadValues)

pattern Plain 1 Linear {
load 3 0.0 -2000 -168074
load 4 0.0 -2000 168074

}

CREATE ANALYSIS

The constraints (page 339) command is used to construct the ConstraintHandler object.
Constraints enforce a relationship between degrees-of-freedom. The ConstraintHandler object
determines how the constraint equations are enforced in the analysis.

| constraints Transformation

Chapter 43 Getting Started with OpenSees 410

The numberer (page 344) command is used to construct the DOF_Numberer object. The
DOF_Numberer object determines the mapping between equation numbers and degrees-of-
freedom -- how degrees-of-freedom are numbered. With the RCM numberer nodes are assigned
degrees-of-freedom using the Reverse Cuthill-McKee algorithm

numberer RCM

The system (page 346) command is used to construct the LinearSOE and LinearSolver objects
to store and solve the system of equations in the analysis. The BandGeneral command is used
to construct an un-symmetric banded system of equations object which will be factored and
solved during the analysis using the Lapack band general solver

system BandGeneral

The test (page 349) command is used to construct a ConvergenceTest object. Certain
SolutionAlgorithm objects require a ConvergenceTest object to determine if convergence has
been achieved at the end of an iteration step. The convergence test is applied to the following
equation:

KA =R
The NormDisplncr test performs the following check:

Norm Displacement Increment ATAT = tol

| test NormDisplncr $tol $maxNumilter <$printFlag> |

test NormDisplncr 1.0e-6 6

The algorithm (page 352) command is used to construct a SolutionAlgorithm object, which
determines the sequence of steps taken to solve the non-linear equation.

algorithm Newton

The integrator (page 356) command is used to construct the Integrator object. The Integrator
object determines the meaning of the terms in the system of equation object. The Integrator
object is used for the following:

= determine the predictive step for time t+dt
= gpecify the tangent matrix and residual vector at any iteration
= determine the corrective step based on the displacement increment dU

The system of nonlinear equations is of the form:

static anaIySiS: R[U |]| = =L FH(U]I

Chapter 43 Getting Started with OpenSees 411

The type of integrator used in the analysis is dependent on whether it is a static analysis or
transient analysis:

static analysis

LoadControl (page 358) Ao = g T dn

DisplacementControl Ul =Uj g +dlj

(page 358)

MinUnbalDispNorm (page ~ d/dx (dU TdU =0

359)

ArcLength (page 360) du TdU, + of di, = ds?

| integrator LoadControl $dLambda1 <$Jd $minLambda $maxLambda>

integrator LoadControl 0.1

The analysis (page 363) command is used to construct the Analysis object (page 336). This
analysis object is constructed with the component objects previously created by the analyst. All
currently-available analysis objects employ incremental solution strategies.

analysis Static

The analyze (page 369) command is used to apply the gravity load (in 10 steps) and all loads
that have been defined at this point, and the loadConst (page 374) command maintains the
gravity load constant for the remainder of the the analyses and resets the current time to zero.

analyze $numincr <$dt> <$dtMin $dtMax $Jd>

loadConst <-time $pseudoTime>

analyze 10
loadConst -time 0.0

Summary of Gravity Loads

The gravity loads can be placed into a file, called GravityLoads.tcl with the following commands:

pattern Plain 1 Linear {
load 3 0.0 -2000 -168074

Chapter 43 Getting Started with OpenSees 412

load 4 0.0 -2000 168074
}
constraints Transformation
numberer RCM
system BandGeneral
test NormDisplncr 1.0e-6 6
algorithm Newton
integrator LoadControl 0.1
analysis Static
analyze 10
loadConst -time 0.0

This file can be sourced in after the example.tcl file:

source example.tcl
source GravityLoads.tcl

Lateral Loads -- Static Pushover

The following commands assume that the example.tcl and the gravityloads.tcl files have been
run. The wipe command should be used at the beginning of the input to clear any previous
OpenSees-objects definition:

wipe
source example.tcl
source gravityloads.tcl

In this analysis, a lateral displacement of increasing amplitude is imposed at the free nodes (3
and 4). The imposed displacements are applied using a displacement-control integrator, where
the load factors are scaled to reach the desired displacement (compared to an imposed-
displacement analysis). This method is the most efficient when you have a non-strength-
degrading system.

The first step is to define the load pattern. To do so, we create a new load pattern (ID tag 2) for
the lateral loads

pattern Plain 2 Linear {
load 3 100.0 0.0 0.0
load 4 100.0 0.0 0.0

}

Most of the analysis features that were defined in the gravity analysis are still valid since this
type of analysis is also static. The loads, however, are applied differently. While gravity was
applied as a load, using the LoadControl integrator, the DisplacementControl integrator is used
in this pushover:

integrator DisplacementControl $nodeTag $dofTag $dU1 <$Jd $minDu
$maxDu>

The load is applied to node 3, in the direction of DOF 1, with a displacement increment of 0.1

integrator DisplacementControl 31 0.1

Chapter 43 Getting Started with OpenSees 413

A total of a 1-inch displacement needs to be applied, hence 10 steps are needed:

| analyze 10

Lateral Loads -- Cyclic Lateral Load

The following commands assume that the example.tcl and the gravityloads.tcl files have been
run. The wipe command should be used at the beginning of the input to clear any previous
OpenSees-objects definition:

wipe
source example.tcl
source gravityloads.tcl

In this analysis, a lateral displacement cycle (positive and negative) of a prescribed amplitude is
imposed at the free nodes (3 and 4). The imposed displacements are applied using a
displacement-control integrator, where the load factors are scaled to reach the desired
displacement (compared to an imposed-displacement analysis). This method is the most
efficient when you have a non-strength-degrading system.

The first step is to define the load pattern. To do so, we create a new load pattern (ID tag 3) for
the lateral loads

pattern Plain 3 Linear {
load 3 100.0 0.0 0.0
load 4 100.0 0.0 0.0

}

Most of the analysis features that were defined in the gravity analysis are still valid since this
type of analysis is also static. The loads, however, are applied differently. While gravity was
applied as a load, using the LoadControl integrator, the DisplacementControl integrator is used
in this pushover. Similarly, while in the pushover analysis a single load increment was used,
variable load increments are used to reverse the loading from positive to negative, and back to
positive.

The load is applied to node 3, in the direction of DOF 1, with a displacement increment of 1 for
the first rise to amplitude 1, -2 for the reversal to amplitude -1, and again positive 1 for the
reversal back to amplitude zero:

integrator DisplacementControl 3 1 0.1
analyze 10
integrator DisplacementControl 3 1 -0.2
analyze 10
integrator DisplacementControl 3 1 0.1
analyze 10

this can be put into a foreach loop:

foreach Dincr {0.1 -0.2 0.1} {
integrator DisplacementControl 3 1 $Dincr
analyze 10

Chapter 43 Getting Started with OpenSees 414

Lateral Loads -- Dynamic ground motion

The following commands assume that the example.tcl and the gravityloads.tcl files have been
run. The wipe command should be used at the beginning of the input to clear any previous
OpenSees-objects definition:

wipe
source example.tcl
source gravityloads.tcl

The dynamic ground-motion analysis is a transient, rather than static, type of analysis.
Therefore, most of the analysis components should be redefined.

First of all, the load pattern needs to be defined. The load pattern here consists of defining an
acceleration time-history applied at the support nodes. The time-history is defined in a file
named BM68elc.th, taken from the PEER strong-motion database. The first lines of this file are:

-.1368849E-02
-.6172128E-03
-.5300330E-03
-.5659958E-03
-.5176619E-03
-.4626830E-03
-.3772566E-03
-.3668375E-03
-.6621411E-03
-.6258232E-03
-.4103149E-03
-.5021476E-03
-.3076823E-03
-.3814194E-03
-.1381307E-03
-.3092055E-03
-.5252823E-03
-.3528575E-03
-.2328132E-03
-.4585760E-03
-.9604577E-03

.4651973E-03
-.2224880E-03
-.5423656E-03

.3576328E-03
-.6625028E-03

.7732246E-03
.5646968E-03
.1288701E-02

-.1659410E-02
-.5942289E-03
-.5315104E-03
-.5672101E-03
-.5013709E-03
-.4579708E-03
-.3363394E-03
-.4373818E-03
-.6878470E-03
-.5616336E-03
-.4251781E-03
-.4907415E-03
-.2975411E-03
-.3598713E-03
-.1166398E-03
-.3795541E-03
-.5139311E-03
-.3119584E-03
-.2443271E-03
-.5641321E-03
-.8289034E-03

.5026886E-03
-.3475301E-03
-.3657646E-03

.2409380E-03
-.8119362E-03

.1012043E-02
.5919845E-03
.1282487E-02

-.1466880E-02 -.6865326E-03
-.5720329E-03 -.5517003E-03
-.5389920E-03 -.5492582E-03
-.5617805E-03 -.5502959E-03
-.4873454E-03 -.4763228E-03
-.4512405E-03 -.4376077E-03
-.3030926E-03 -.2926074E-03
-.5104884E-03 -.5745380E-03
-.7014600E-03 -.6985488E-03
-.4955459E-03 -.4432164E-03
-.4493034E-03 -.4742715E-03
-.4549906E-03 -.4008473E-03
-.3148410E-03 -.3469618E-03
-.3127679E-03 -.2503611E-03
-.1296596E-03 -.1730662E-03
-.4410602E-03 -.4886626E-03
-.4858098E-03 -.4459504E-03
-.2767747E-03 -.2493392E-03
-.2710242E-03 -.3142711E-03
-.6901264E-03 -.8277058E-03
-.5332316E-03 -.1380318E-03
.3746881E-03 .1623773E-03
-.4529523E-03 -.5485990E-03
-.1048402E-03 .1563278E-03
.2377646E-04 -.2316319E-03
-.9298628E-03 -.1028468E-02

-.1131224E-02 -.1020689E-02 -.7165112E-03 -.2327270E-03

.1013671E-02 .8560355E-03
.7377345E-03 .9490117E-03
.1122759E-02 .8318915E-03

PACIFIC ENGINEERING AND ANALYSIS STRONG-MOTION DATA
BORREGO MOUNTAIN 04/09/68 0230, EL CENTRO ARRAY #9, 270
ACCELERATION TIME HISTORY IN UNITS OF G
NPTS= 4000, DT=.01000 SEC

-.6491235E-03
-.5367939E-03
-.5692027E-03
-.5347288E-03
-.4683559E-03
-.4130071E-03
-.3144186E-03
-.6248976E-03
-.6737667E-03
-.4144737E-03
-.4942019E-03
-.3457893E-03
-.3746677E-03
-.1870004E-03
-.2365307E-03
-.5170590E-03
-.3992677E-03
-.2343354E-03
-.3756243E-03
-.9398496E-03
.2342108E-03
-.5159882E-04
-.5963545E-03
.3291475E-03
-.4694656E-03
-.1108383E-02
.3181869E-03
.6690806E-03
.1157766E-02
.4619941E-03

Chapter 43 Getting Started with OpenSees 415

.7578448E-04 -.2595554E-03 -.4939353E-03 -.6127490E-03 -.6275750E-03
-.5752344E-03 -.4995743E-03 -.4264229E-03 -.3601404E-03 -.3004083E-03
-.2406227E-03 -.1628483E-03 -.3998632E-04 .1649808E-03 .4539122E-03
.7517190E-03 .9316287E-03 .8846478E-03 .5857181E-03 .1074495E-03
-.4397852E-03 -.9508948E-03 -.1343749E-02 -.1561289E-02 -.1537678E-02
-.1227062E-02 -.6359309E-03 .1519731E-03 .9751270E-03 .1659683E-02

A number of tcl scripts are available to the user at the openSees web site which have been
written for specific tasks. The file ReadSMDFile.tcl is a script procedure which parses a ground
motion record from the PEER strong motion database by finding dt in the record header, then
echoing data values to the output file. This file should be saved in the same directory as the
OpenSees executable:

#
READSMDFILE.tcl
Written: MHS
Date: July 2000
A procedure which parses a ground motion record from the PEER strong motion database by finding dt in the record
header, then
echoing data values to the output file. Formal arguments
inFilename -- file which contains PEER strong motion record
outFilename -- file to be written in format G3 can read
dt -- time step determined from file header
Assumptions
The header in the PEER record is, e.g., formatted as follows:
PACIFIC ENGINEERING AND ANALYSIS STRONG-MOTION DATA
IMPERIAL VALLEY 10/15/79 2319, EL CENTRO ARRAY 6, 230
ACCELERATION TIME HISTORY IN UNITS OF G
NPTS= 3930, DT=.00500 SEC
proc ReadSMDFile {inFilename outFilename dft} {
Pass dt by reference
upvar $dt DT
Open the input file and catch the error if it can't be read
if [catch {open $inFilename r} inFilelD] {
puts stderr "Cannot open $inFilename for reading”
} else {
Open output file for writing
set outFilelD [open $outFilename w]
Flag indicating dt is found and that ground motion
values should be read -- ASSUMES dt is on last line
of headerl!!!
set flag 0
Look at each line in the file
foreach line [split [read $inFilelD] \n] {
if {[llength $line] == 0} {
Blank line --> do nothing
continue
} elseif {$flag == 1} {
Echo ground motion values to output file
puts $outFilelD $line

H oH B R

} else {
Search header lines for dt
foreach word [split $line] {
Read in the time step
if {$flag == 1} {
set DT $word
break

}
Find the desired token and set the flag

Chapter 43 Getting Started with OpenSees 416

if {[string match $word "DT="] == 1} {
set flag 1
}

}

}

Close the output file
close $outFilelD

Close the input file
close $inFilelD

—

Once this file has been created, it can be read-in by the input file and used in the analysis
procedure, where an acceleration time-series (page 311) is defined and used in a
UniformExcitation (page 321) load pattern:

Series -dt $dt -filePath $fileName <-factor $cFactor>

pattern UniformExcitation $patternTag $dir -accel (TimeSeriesType arguments)
<-vel0 $ver0>

create load pattern

source ReadSMDFile.tcl

ReadSMDFile BM68elc.th BM68elc.acc dt

set accelSeries "Series -dt $dt -filePath BM68elc.acc -factor 1";
pattern UniformExcitation 2 1 -accel $accelSeries

The stiffness and mass-proportional damping factors can then be defined using the rayleigh
(page 367) command:

| rayleigh $alphaM $betaK $betaKinit $bhetaKcomm

There are three different stiffnesses the user can use, the current value, the initial value, or the
stiffness at the last committed state (which is what is used here):

set damping factors
rayleigh 0. 0. 0. [expr 2*0.02/pow([eigen 1],0.5)]

The various analysis components are defined as follows:

create the analysis
wipeAnalysis

constraints Plain

numberer RCM

system UmfPack

test NormDisplncr 1.0e-8 10
algorithm Newton

integrator Newmark 0.5 0.25
analysis Transient

Chapter 43 Getting Started with OpenSees 417

In a transient analysis, the analyze command also requires a time step. This time step does not
have to be the same as the input ground motion. The number of time steps is equal to the total
duration of the analysis (10 seconds) divided by the time step (0.02):

| analyze [expr 10/0.02] 0.02

418

CHAPTER 44

Getting Going with OpenSees
(under development)

This document will walk you through the following:

= define gravity loads
Define the recorders for output

N =

Define the analysis components. Three types of analyses will be set up:
= a static displacement-controlled pushover analysis

= adisplacement-controlled reversed cyclic analysis

= adynamic ground-motion-input transient analysis

In This Chapter

Problem Definition.............oeii 434
Model BUildingc.ccooiiiiiiiiiiieeeeee e 435
Recorders for Outputccoccieeiiiiiiiec e 454

Analysis COmMPONENtSccooeiviiiiiiiiieeeeeeeeeieee 455

Chapter 44 Getting Going with OpenSees (under development) 419

Problem Definition

The structural system that will be used in this document is the SDOF cantilever column shown in
the figure below. The column cross section consist of a reinforced-concrete fiber section with
different material properties for the confined core and the unconfined cover.

gravity
load| jateral

load
—F node 2{ y ——

AT_ ! E elernert 1

cover

rionlinear bearm-colurn

Y
node 1 rhol:

B W b5, 5 section A-A

L
Column length, Lcol: J6 ft
Column diameter, Dcol: Gt
Cover thickness, cover: finch
Longitudinal-steel ratio, rhol : 1.5%
Superstructure weight, Weight: 3,000 Ik
Nominal Concrete Compressive Strength, Fc: 5,500 psi
Nominal Steel Yield Strength: Fy: 60 ksi

Chapter 44 Getting Going with OpenSees (under development) 420

Figure 71: Problem
Definition -- Geometry

This structure will be subjected to gravity loads, as well as three types of lateral load, applied in
three different analyses. These loads are shown in the figure:

LOAD CASE 1:
DISPLACEME NT-CONTROLLED STATIC PUSHOVER
Alateral LOAD ofincreasing magnitude is applied at node 2 until a
desired maximum lateral dizplacement is reached. This load is
gaviy o applied in predefined increments. This is a static analysis.

foad b joad
node 3 @ s— LOAD CASE 2:
DISPLACEMENT-CONTROLLED REVERSED CYCLIC LOADING
Alateral LOAD iz applied at node 2 such that a predefined
dizplacement history is achieved at node 2. This load is appliedin
predefined increments. This, too, iz a static analysis. The
digplacement history iz shown in the figure:

3
%’l Bw 2 load step
o
] LOAD CASE
9’1"':;' DYNAMIC GROUND-MOTIONAIHPUT TRANSIE NT ANALYSIS

Auniform aceeleration history is imposed at all nodes constrained
in the horzontal x-direction (node 1). The acceleration history is
predefined. This is a transient (dynamic)analysis. A schematic of
the acceleration history iz ghown in the figure:

acoalaration

Figure 72: Problem
Definition -- Loads

Model Building

This chapter describes the main steps necessary to define the physical model of a structure.

Variables and Units

The authors highly recommend that the user define variables and use these variables for the
input commands. Variables can be defined using the Tcl "set" command:

set Radius 5; # define radius of section
set Diameter [expr $Radius/2.]; # define section diameter

Chapter 44 Getting Going with OpenSees (under development) 421

Therefore, it is recommended that the user define all material and geometric properties, as
variables:

set fc -5000;
set fy 60000;

Because OpenSees does not use internal units, the user must keep track of the types of units
being used. For example, the user must define all length units in either inches or meters, etc.,
consistently throughout.

The Tcl feature of being able to handle variables enables the user to define units as variables,
and hence use them in building the model. Here is an example:

First of all, the basic units need to be defined. The OpenSees output will be in these units:

setin 1. # define basic unit -- length
setsec 1. # define basic unit -- time
setkip 1; # define basic unit -- weight (or define force, but not both)

The basic units must be independent of each other. Once they have been defined, additional
units that are made up of these basic units can be defined:

set ksi [expr $kip/pow($in,2)]; # define engineering units
set psi [expr $ksi/1000.];
setft [expr 12.*$in];

It is a good idea to define constants at the same time that units are defined:

setg [expr 32.2*$ft/pow($sec,2)]; # gravitational acceleration

set Pl [expr 2*asin(1.0)]; # define constants

setU 1.e10; # a really large number
setu [expr 1/$U]; # a really small number

Once the units have been defined, model variables can be defined in terms of these units and,
hence, they don't all have to be defined in the basic units:

setfc [expr -5500*$psi]; # CONCRETE Compressive Strength, ksi (+Tension, -Compression)
set Ec [expr 57000.*sqrt(-$fc/$psi)];# Concrete Elastic Modulus

set Fy [expr 68.*$ksi]; # STEEL yield stress

set Es [expr 29000.*$ksi]; # modulus of steel

set epsY [expr $Fy/$Es]; # steel yield strain

It is also a good idea to use variables for IDtags of materials, sections, elements, etc. This is
done to ensure that the same ID tag is not used when defining the input. Also, it makes it easier
in writing the input to use a variable name that makes sense. Here is an example:

set up parameters for column section and element definition
set IDcore 1; # ID tag for core concrete
set IDcover 2; # 1D tag for cover concrete

Chapter 44 Getting Going with OpenSees (under development)

422

set IDsteel 3; # |D tag for steel

For the example structural model, the following variables need to be defined:

define GEOMETRY variables

set Hcol [expr 6.*$ft]; # column diameter

set Lcol [expr 36*$ft]; # column length

set GrhoCol 0.015; # column longitudinal-steel ratio

set Weight [expr 3000.*$kip]; # superstructure weight

set Rcol [expr $Hcol/2]; # COLUMN radius

set Acol [expr $PI*pow($Rcol,2)]; # column cross-sectional area

set cover [expr 6*$in]; # column cover width

set G $U; # Torsional stiffness Modulus

set J 1,; # Torsional stiffness of section

set GJ [expr $G*$J]; # Torsional stiffness

define COLUMN REINFORCEMENT variables

set NbCol 20; # number of column longitudinal-reinforcement bars
set AsCol [expr $GrhoCol*$Acol]; # total steel area in column section

set AbCol [expr $AsCol/$NbCol]; # bar area of column longitudinal reinforcement

define GRAVITY variables

set Mass [expr $Weight/$g]; # mass of superstructure
set Mnode [expr $Mass]; # nodal mass for each column joint

define DAMPING variables from $xDamp --SDOF system, use stiffness proportional damping only
set xDamp 0.02; # modal damping ratio

#------ set analysis variables

set DxPush [expr 0.1*$in]; # Displacement increment for pushover analysis

set DmaxPush [expr 0.05*$Lcol]; # maximum displamcement for pushover analysis
setgamma 0.5; # gamma value for newmark integration

set beta 0.25; # beta value for newmark integration

set DtAnalysis [expr 0.005*$sec]; # time-step Dt for lateral analysis

set DtGround [expr 0.02*$sec]; # time-step Dt for input grond motion

set TmaxGround [expr 50.*$sec]; # maximum duration of ground-motion analysis

Model Builder

For a 2-D problem, you really only need three degrees of freedom at each node, the two
translations in the plane and the rotation about the plane's normal:

model basic -ndm 2 -ndf 3

Chapter 44 Getting Going with OpenSees (under development) 423

Nodal Coordinates & Masses, Boundary
Conditions

NODAL COORDINATES AND NODAL MASSES

Once the dimensions of the problem is defined, it recommended that the user define the
coordinates of the nodes, the mass associated with each node and DOF and the boundary
conditions at the nodes.

The nodal coordinates are defined using the node (page 39) command. The number of
parameters associated with this command are referenced to the model command. Nodal
masses can be defined at the same time as the coordinates. In the two-dimensional problem
considered here, only the x and y coordinates of each node need to be defined, and three mass
parameters (two translation and one rotation of the plane) need to be defined:

node1 0. O0; # column base is located at the origin of the plane
node2 0. $Lcol -mass $Mnode 0. 0.; # the column end has one translational mass in the x
direction, only

the nodal mass (page 40) can also be defined using the mass command:

mass 2 $Mnode 0. 0.; # this command supersedes any previous mass definition at this node.

BOUNDARY CONDITIONS

The boundary conditions are defined using the fix (page 41) command. The tag 0 represents an
unconstrained (free) degree of freedom, the tag 1 represents a constrained (fixed) DOF. For the
structure under consideration, the column base is completely fixed (1-1-1) and the end is free (0-
0-0). Three DOF's need to be defined here, the two translations and the rotation in the x-y plane:

fix1111; # fixed base
fix2000; # free end

Chapter 44 Getting Going with OpenSees (under development) 424

Materials

Once the nodes have been defined, the next step towards defining elements is the material
(page 175, page 47) definition. This step may not be necessary when using elastic element
(page 213) or sections (page 185), as the materials are defined with the element or section.

There are two types of materials currently available in OpenSees, uniaxial materials (page 47)
and nDmaterials (page 175). The different types of concrete and steel materials are among the
uniaxial materials. There are three types of concrete available:

1 Concrete01 (page 141): uniaxial Kent-Scott-Park concrete material object with degraded
linear unloading/reloading stiffness according to the work of Karsan-Jirsa and no tensile
strength

2 Concrete02 (page 145): uniaxial concrete material object with tensile strength and linear
tension softening

3 Concrete03 (page 152): uniaxial concrete material object with tensile strength and nonlinear
tension softening.

Concrete02 will be used for the structure under consideration, as the tensile strength of the
concrete is of interest in the elastic range, and modeling nonlinear tension softening is not
considered necessary for the purpose of the example. The cover and core concrete will be
modeled as different materials, using the same material type, but different stress and strain
characteristics and different material tags. Steel01 (page 157) will be used for the reinforcing
steel.

Because some material characteristics are dependent on others, it is recommended that the
user define the material properties using variables.

Confined concrete:

set fc [expr -5.5*$ksi]; # CONCRETE Compressive Strength, ksi (+Tension, -Compression)
set Ec [expr 57*$ksi*sqrt(-$fc/$psi)]; # Concrete Elastic Modulus

set fc1C [expr 1.26394*$fc]; # CONFINED concrete (mander model), maximum stress

set eps1C [expr 2.*$fc1C/$Ec]; # strain at maximum stress

set fc2C $fc; # ultimate stress

set eps2C [expr 5*$eps1C]; # strain at ultimate stress

Unconfined concrete:

set fc1U $fc; # UNCONFINED concrete (todeschini parabolic model),
maximum stress

set epsiU -0.003; # strain at maximum stress

set fc2U [expr 0.1*$fc]; # ultimate stress

set eps2U -0.006; # strain at ultimate stress

Concrete02 variables:

set lambda 0.1

set ftC [expr -$fc1C/10.];

set ftU [expr -$fc1U/10.];

set Ets [expr $Ec/10.];

reinforcing steel

set Fy [expr 68.*$ksi];
set Es [expr 29000.*$ksi];
set epsY

; # ratio between unloading slope at $epscu and initial slope
tensile strength +tension

tensile strength +tension

tension softening stiffness

STEEL yield stress
modulus of steel
[expr $Fy/$Es]; # steel yield strain

Chapter 44 Getting Going with OpenSees (under development) 425

set Fu [expr 95.2*$ksi]; # ultimate stress of steel

set epsU 0.1; # ultimate strain of steel
set E2 [expr ($Fu-$Fy)/($epsU-$epsY)]; # post-yield tangent stiffness

set Bs [expr $E2/$Es]; # post-yield stiffness ratio of steel

To facilitate referencing the different material types, the user should set up material tags as
variables:

set up parameters for column section and element definition

set IDcore 1; # ID tag for core concrete
set IDcover 2; # ID tag for cover concrete
set IDsteel 3; # 1D tag for steel

The materials are defined using the uniaxialMaterial (page 47) command:

uniaxialMaterial Concrete02 $IDcore $fc1C $epsiC $fc2C $eps2C $lambda $ftC $Ets; # CORE
CONCRETE

uniaxialMaterial Concrete02 $IDcover $fctU $epsiU $fc2U $eps2U $lambda $ftU $Ets; #
COVER CONCRETE

uniaxialMaterial Steel01 $IDsteel $Fy $Es $Bs; # REINFORCING STEEL

Element Cross Section

Some element types require that the element cross section be defined a-priori, this is done using
the section (page 185) command. The section is used to represent force-deformation (or
resultant stress-strain) relationships at beam-column and plate sample points.

While there are many types of sections available, the fiber (page 191) section will be used to
define the cross section of the column in the structure under consideration. A fiber section has a
general geometric configuration formed by subregions of simpler, regular shapes (e.g.
quadrilateral, circular and triangular regions) called patches. In addition, individual or layers of
reinforcement bars can be specified.The fiber section can be defined as a combination of the
following:

fiber (page 191) -- a single fiber can be defined, such as a single reinforcing bar. The
coordinates, associated area and material tag are prescribed with the fiber. (The coordinates are
given with respect to the plane of the cross section, a coordinate transformation is later defined
in the input using the transformation command)

patch (page 192) -- a patch defines an area that has a regular shape: quadrilateral (page 192) or
circular (page 194). A different material can be associated with each patch.

layer (page 197, page 196) -- a layer defines a layer of reinforcement that has a regular shape:
straight (page 196) or circular. (page 197) A different material can be associated with each layer.

The circular cross section of reinforced concrete will be defined using the patch and layer
commands. First of all, it is important to define the variables:

Notes

The center of the reinforcing bars are placed at the inner radius

The core concrete ends at the inner radius (same as reinforcing bars)
The reinforcing bars are all the same size

Chapter 44 Getting Going with OpenSees (under development) 426

The center of the section is at (0,0) in the local axis system
Zero degrees is along section y-axis

set IDcolFlex 2; # |D tag for column section in flexure, before aggregating
torsion

set riCol 0.0; # inner radius of column section

set roCol $Rcol; # outer radius of column section

set nfCoreR 8; # number of radial fibers in core (number of "rings")

set nfCoreT 16; # number of tangential fibers in core (number of "wedges")

set nfCoverR 2; # number of radial fibers in cover

set nfCoverT 16; # number of tangential fibers in cover

cover - cover thickness, has been defined with the geometry

|Dcore - material tag for the core patch, has been defined with the materials

|Dcover - material tag for the cover patches, has been defined with the materials
|Dsteel - material tag for the reinforcing steel, has been defined with the materials

NbCol # number of column longitudinal-reinforcement bars, has been defined with the
geometry

AbCol # bar area of column longitudinal reinforcement, has been defined with the
geometry

The fiber cross section is defined as follows:

section fiberSec $IDcolFlex {
set rc [expr $roCol-$cover]; # Core radius
patch circ $IDcore $nfCoreT $nfCoreR 0 0 $riCol $rc 0 360; # Define the core patch
patch circ $IDcover $nfCoverT $nfCoverR 0 0 $rc $roCol 0 360; # Define the cover patch
set theta [expr 360.0/$NbCol]; # Determine angle increment between bars
layer circ $IDsteel $NbCol $AbCol 0 0 $rc $theta 360; # Define the reinforcing layer

Elements and Element Connectivity

Once the element cross section has been defined, additional mechanical properties must be
associated (aggregated) to it. Elastic torsion needs to be added to the column under
consideration, using an elastic (page 131) uniaxial material:

set IDcolTors 10; # |D tag for column section in torsion

set IDcolSec 1; # ID tag for column section

uniaxialMaterial Elastic $|DcolTors $GJ; # Define torsional stiffness

section Aggregator $IDcolSec $IDcolTors T -section $IDcolFlex; # attach torsion to flexure and create a

new section |Dtag

The geometric transformation (page 302) is used to relate the local element, and section,
coordinates to the global system coordinates (simple here for a 2-D problem):

set IDcolTrans 1; # 1D tag for column transformation, defining element normal
geomTransf Linear $IDcolTrans; # Linear: no second-order effects

The element, a nonlinearBeamColulmn (page 216) element, and its connectivity, are defined as
follows:

set np 5; # Number of integration points
element nonlinearBeamColumn 1 1 2 $np $IDcolSec $IDcolTrans

Chapter 44 Getting Going with OpenSees (under development) 427

Gravity and other Constant Loads

Gravity loads are independent of the type of lateral loading and are considered part of the
structural model. These loads are first defined:

apply constant gravity load (and other constant loads)

set PdI [expr $Weight];
pattern Plain 1 Linear {
load2 0.0 -$Pdl 0.0

}

gravity axial load per column

The above defines the gravity load (ID=1) as a load in the negative y-direction at node 2 with a

magnitude Pdl

And then applied:

set up solution procedure

system UmfPack;

constraints Plain;

transformation

set up convergence criteria

test NormDisplncr 1.0e-5 10 0;
algorithm Newton;

stiffness at every iteration

numberer RCM;

(optimization)

set up load steppring

integrator LoadControl 0.1 1 0.1 0.1;
to converge, Dmax, Dmin

set up type of analysis, static for gravity
analysis Static

initialize

RUN GRAVITY ANALYSIS
analyze 10

loadConst -time 0.0

solution procedure, Super-LU, how it solves system of equations
how it handles boundary conditions, enforce constraints through the

tolerance, max no. of iterations, and print code , 1: every iteration
use Newton's solution algorithm: updates tangent

renumber dof's to minimize band-width

variable load-stepping: Do initial incr., desred no. of iterations

Summary of Defining Structural Model

DEFINE UNITS

setin 1,

setsec 1

setkip 1

setksi [expr $kip/pow($in,2)];

set psi [expr $ksi/1000.];

setft [expr 12.*$in];

setg [expr 32.2*$ft/pow($sec,2)];
set Pl [expr 2*asin(1.0)];

setU 1.e10;

setu [expr 1/$U];

define GEOMETRY variables

define basic unit -- length
define basic unit -- time
define basic unit -- weight (or define force, but not both)

define engineering units

gravitational acceleration
define constants
a really large number
a really small number

Chapter 44 Getting Going with OpenSees (under development) 428

set Heol [expr 6.*$ft]; # column diameter

set Lcol [expr 36*$ft]; # column length

set GrhoCol 0.015; # column longitudinal-steel ratio

set Weight [expr 3000.*$kip]; # superstructure weight

set Rcol [expr $Hcol/2]; # COLUMN radius

set Acol [expr $PI*pow($Rcol,2)]; # column cross-sectional area

set cover [expr $Hcol/15]; # column cover width

set G $U; # Torsional stiffness Modulus

set J 1,; # Torsional stiffness of section

set GJ [expr $G*$J]; # Torsional stiffness

define COLUMN REINFORCEMENT variables

set NbCol 20; # number of column longitudinal-reinforcement bars
set AsCol [expr $GrhoCol*$Acol]; # total steel area in column section

set AbCol [expr $AsCol/$NbCol]; # bar area of column longitudinal reinforcement
define GRAVITY variables

set Mass [expr $Weight/$g]; # mass of superstructure
set Mnode [expr $Mass]; # nodal mass for each column joint

define DAMPING variables from $xDamp --SDOF system, use stiffness proportional damping only

set xDamp 0.02; # modal damping ratio

- set analysis variables

set DxPush [expr 0.1*$in]; # Displacement increment for pushover analysis

set DmaxPush [expr 0.05*$Lcol]; # maximum displamcement for pushover analysis
setgamma 0.5; # gamma value for newmark integration

set beta 0.25; # beta value for newmark integration

set DtAnalysis [expr 0.005*$sec]; # time-step Dt for lateral analysis

set DtGround [expr 0.02*$sec]; # time-step Dt for input grond motion

set TmaxGround [expr 50.*$sec]; # maximum duration of ground-motion analysis

define ModelBuilder

model basic -ndm 2 -ndf 3; # basic: modelbuilder type, ndm= number of dimensions, ndf= #dof/node
Nodal Coordinates and Nodal Masses

node1 0. O0; # column base is located at the origin of the plane

node2 0. $Lcol -mass $Mnode 0. 0.; # the column end has one translational mass in the x

direction, only

Boundary Conditions

fix1111; # fixed base
fix2000; # free end

Confined concrete:

set fc [expr -5.5*$ksi]; # CONCRETE Compressive Strength, ksi (+Tension, -Compression)
set Ec [expr 57*$ksi*sqri(-$fc/$psi)]; # Concrete Elastic Modulus

set fc1C [expr 1.26394*$fc]; # CONFINED concrete (mander model), maximum stress
set eps1C [expr 2.*$fc1C/$Ec]; # strain at maximum stress

set fc2C $fc; # ultimate stress

set eps2C [expr 5*$eps1C]; # strain at ultimate stress

Unconfined concrete:

set fc1U $fc; # UNCONFINED concrete (todeschini parabolic model), maximum stress
set eps1U -0.003; # strain at maximum stress

set fc2U [expr 0.1*$fc]; # ultimate stress

set eps2U -0.006; # strain at ultimate stress

Concrete02 variables:

set lambda 0.1 ; # ratio between unloading slope at $epscu and initial slope
set ftC [expr -$fc1C/10.]; # tensile strength +tension

set ftU [expr -$fc1U/10.]; # tensile strength +tension

set Ets [expr $Ec/10.]; # tension softening stiffness

reinforcing steel

set Fy [expr 68.*$ksi]; # STEEL yield stress

set Es [expr 29000.*$ksi]; # modulus of steel
set epsY [expr $Fy/$Es]; # steel yield strain

set Fu [expr 95.2*$ksi]; # ultimate stress of steel
set epsU 0.1; # ultimate strain of steel

Chapter 44 Getting Going with OpenSees (under development) 429

set E2 [expr ($Fu-$Fy)/($epsU-$epsY)]; # post-yield tangent stiffness

set Bs [expr $E2/$Es]; # post-yield stiffness ratio of steel

set up parameters for column section and element definition

set IDcore 1; # ID tag for core concrete

set IDcover 2; # ID tag for cover concrete

set IDsteel 3; # ID tag for steel

uniaxialMaterial Concrete02 $IDcore $fc1C $eps1C $fc2C $eps2C $lambda $ftC $Ets; # CORE CONCRETE
uniaxialMaterial Concrete02 $IDcover $fc1U $epsi1U $fc2U $eps2U $lambda $ftU $Ets; # COVER CONCRETE
uniaxialMaterial Steel01 $IDsteel $Fy $Es $Bs; # REINFORCING STEEL

element cross-section

Notes

The center of the reinforcing bars are placed at the inner radius

The core concrete ends at the inner radius (same as reinforcing bars)

The reinforcing bars are all the same size

The center of the section is at (0,0) in the local axis system

Zero degrees is along section y-axis

set IDcolFlex 2; # ID tag for column section in flexure, before aggregating torsion

set riCol 0.0; # inner radius of column section

set roCol $Rcol; # outer radius of column section

set nfCoreR 8; # number of radial fibers in core (number of "rings")

set nfCoreT 16; # number of tangential fibers in core (number of "wedges")

set nfCoverR 2; # number of radial fibers in cover

set nfCoverT 16; # number of tangential fibers in cover

cover - cover thickness, has been defined with the geometry

|Dcore - material tag for the core patch, has been defined with the materials

|IDcover - material tag for the cover patches, has been defined with the materials

|Dsteel - material tag for the reinforcing steel, has been defined with the materials

NbCol # number of column longitudinal-reinforcement bars, has been defined with the geometry
AbCol # bar area of column longitudinal reinforcement, has been defined with the geometry
section fiberSec $IDcolFlex {

set rc [expr $roCol-$cover]; # Core radius

patch circ $IDcore $nfCoreT $nfCoreR 0 0 $riCol $rc 0 360; # Define the core patch
patch circ $IDcover $nfCoverT $nfCoverR 0 0 $rc $roCol 0 360; # Define the cover patch
set theta [expr 360.0/$NbCol]; # Determine angle increment between bars

layer circ $IDsteel $NbCol $AbCol 0 0 $rc $theta 360; # Define the reinforcing layer

}

element connectivity

set IDcolTors 10; # ID tag for column section in torsion

set IDcolSec 1; # ID tag for column section

uniaxialMaterial Elastic $|DcolTors $GJ; # Define torsional stiffness

section Aggregator $IDcolSec $IDcolTors T -section $IDcolFlex; # attach torsion to flexure and create a new section
IDtag

set IDcolTrans 1; # ID tag for column transformation, defining element normal

geomTransf Linear $IDcolTrans; # Linear: no second-order effects

set np 5; # Number of integration points

element nonlinearBeamColumn 1 1 2 $np $IDcolSec $IDcolTrans

apply constant gravity load (and other constant loads)
set Pdl [expr $Weight]; # gravity axial load per column
pattern Plain 1 Linear {

load2 0.0 -$Pdl 0.0

set up solution procedure

system UmfPack; # solution procedure, Super-LU, how it solves system of equations
constraints Plain; # how it handles boundary conditions, enforce constraints through the
transformation

set up convergence criteria
test NormDispincr 1.0e-5 10 0; # tolerance, max no. of iterations, and print code , 1: every iteration

Chapter 44 Getting Going with OpenSees (under development) 430

algorithm Newton; # use Newton's solution algorithm: updates tangent
stiffness at every iteration
numberer RCM,; # renumber dof's to minimize band-width

(optimization)

set up load steppring

integrator LoadControl 0.1 1 0.1 0.1; # variable load-stepping
set up type of analysis, static for gravity

analysis Static

initialize

RUN GRAVITY ANALYSIS

analyze 10

loadConst -time 0.0

print to screen that you are done with this step:
puts "Done with Structural Model Generation"

Please note the last command, it communicates to the user that all commands preceding it have
been executed. The above commands can be submitted to OpenSees one-by-one, or they can
be saved into a file, say input1.tcl.

Once the input file has been saved, it can be executed at the OpenSees command prompt:

. C:\Users\AAsilvia\AAprojects\OpenSees

Openfees —— Open System For Earthguake Engineering Simulation
Pacific Earthguake Engineering Rezearch Center — Uersion 1.5.2

{c>» Copyright 1997 The Regentz of the University of California
All Rightz Reszerved

OpenSees > source inputl.tcl

Unf packGenLinS0E: tsetSize — n 3 nnz 2 1Ual 188
dDone with Structural Model Generation
f0penSees >

Chapter 44 Getting Going with OpenSees (under development) 431

Of course, you will likely not get the clean response | got above.

Say you make a mistake. Likely it is a simple mistake it and you go and fix it (most errors that we
ALL commit are simple typing errors). To check it, you need to source the input file once more:

=% C-\Uscrs\AAsivia\AAprajects | Opeiisees| IR \Auth

OpenSees — Open Sysztem For Earthguake Engineering Simulation
Pacific Earthguake Engineering Research Center — Uersion 1.5.2

Cc?» Copyright 1792 The Regents of the University of California
All Rights Reserved

Openfees » source inputl.tcl

Umf packGenLin30E: tzetSize — n 3 nnz 2 1Ual 184
Done with Structural Model Generation

OpenSees > source inputl.tecl

Domain:-addMode — node with tag lalready exists in model
WARMIMNG failed to add node to the domain

Chapter 44 Getting Going with OpenSees (under development) 432

OpenSees does not allow you to define objects with the same IDtag more than once. To solve
this problem, without exiting and re-entering OpenSees, you can use the wipe (page 373)
command:

C:\Users\AAsilvia\AAprojects\OpenSees\Manual | Au

Openfees —— Open System For Earthguake Engineering Simulation
Pacific Earthguake Engineering Research Center — Uersion 1.5.2

¢ Copyright 1997 The Regents of the University of California
All Rights Heserved

OpenSees > source inputl.tcl

Unf packGenLinS0E:tsetSize — n 3 nnz 9 1Ual 188
BDone with Structural Model Generation
f0penSees > source inputl._tcl
Domain: :addMode — node with tag lalready exists in model
UWARMIMG failed to add node to the domain

Hnode: 1

OpenSees > wipe

Openfees > source inputl.tcl

UnfpackGenLin30E: tzet8ize — n 3 nnz 9 1Ual 186
Done with Structural Model Generation

OpenSees > _

Once you get confirmation that all the input commands have been executed correctly, you are
ready to move on to the next step. Type exit, press enter and go on.

~ C:\Users\AAsilvia\AAprojects\DpenSees|ManualAu

Openfees —— Open System For Earthguake Engineering Simulation
Pacific Earthguake Engineering Research Center — Uersion 1.5.2

Cc) Copyright 1999 The Regents of the University of California
All Rights HReserved

1

|0penﬁees *» source inputl.tcl

BUnf packGenLinS0E:setSize — n 3 nnz 9 1Ual 188
HDone with Structural Model Generation
f0penSees > source inputl.tcl
Domain: :addMode — node with tag lalready exists in model
WARNING failed to add node to the domain

DOpenSees > wipe
Openfees » source inputl.tcl
UnfpackGenLinS0E: tzet8ize — n 3 nnz 9 1Ual 18@

Done with Structural Model Generation
OpenSees > exit_

Chapter 44 Getting Going with OpenSees (under development) 433

Error-Checking Tip for Model Building

To enable error-checking, it is good practice to place markers within the input file. Markers are
simple statements to be output to the screen using the puts
(http://docsrv.sco.com:507/en/man/html. TCL/puts. TCL.html) tcl command. These markers tell
the user what commands have been completed. This way, if an error occurs, the user is able to
find the location of the error. Here is an example, where puts commands are placed here and

there in the inputi.tcl file:

puts "Begin units defintion"

DEFINE UNITS

setin 1.

setsec 1.

setkip 1.

set ksi [expr $kip/pow($in,2)];

set psi [expr $ksi/1000.];

setft [expr 12.*$in];

setg [expr 32.2*$ft/pow($sec,2)];
set Pl [expr 2*asin(1.0)];

setU 1.e10;

setu [expr 1/$U];

puts "Units have been defined"
define GEOMETRY variables

set Heol [expr 6.*$ft];

set Lcol [expr 36*$ft];

set GrhoCol 0.015;

set Weight [expr 3000.*$kip];

set Rcol [expr $Hcol/2];
set Acol [expr $PI*pow($Rcol,2)];

define basic unit -- length

define basic unit -- time

define basic unit -- weight (or define force, but not both)
define engineering units

gravitational acceleration
define constants
a really large number
a really small number

column diameter
column length

column longitudinal-steel ratio
superstructure weight

COLUMN radius
column cross-sectional area

column cover width

Torsional stiffness Modulus

Torsional stiffness of section
Torsional stiffness

20; # number of column longitudinal-reinforcement bars
[expr $GrhoCol*$Acol]; # total steel area in column section

[expr $AsCol/$NbCol]; # bar area of column longitudinal reinforcement
[expr $Weight/$g]; # mass of superstructure

nodal mass for each column joint
--SDOF system, use stiffness proportional damping only

0.02; # modal damping ratio

set cover [expr $Hcol/15];

set G $U;

set J 1.;

set GJ [expr $G*$J];

define COLUMN REINFORCEMENT variables
set NbCol

set AsCol

set AbCol

define GRAVITY variables

set Mass

set Mnode [expr $Mass];

define DAMPING variables from $xDamp
set xDamp

- set analysis variables

set DxPush [expr 0.1*$in];
set DmaxPush

setgamma 0.5;

set beta 0.25;

set DtAnalysis

set DtGround

set TmaxGround

Displacement increment for pushover analysis

[expr 0.05*$Lcol]; # maximum displamcement for pushover analysis
gamma value for newmark integration

beta value for newmark integration

[expr 0.005*$sec]; # time-step Dt for lateral analysis

[expr 0.02*$sec]; # time-step Dt for input grond motion

[expr 50.*$sec]; # maximum duration of ground-motion analysis

puts "All inital variables have been defined"

define ModelBuilder
model basic -ndm 2 -ndf 3;
puts "the Model has been built"

basic: modelbuilder type, ndm= number of dimensions, ndf= #dof/node

Nodal Coordinates and Nodal Masses

Chapter 44 Getting Going with OpenSees (under development) 434

node1 0. O0; # column base is located at the origin of the plane
node2 0. $Lcol -mass $Mnode 0. 0.; # the column end has one translational mass in the x
direction, only

Boundary Conditions

fix1111; # fixed base

fix2000; # free end

puts "Nodal Coordinates, Nodal Masses, and Boundary Conditions have been defined"
puts "Begin material definition”

Confined concrete:

set fc [expr -5.5*$ksi]; # CONCRETE Compressive Strength, ksi (+Tension, -Compression)
set Ec [expr 57*$ksi*sqrt(-$fc/$psi)]; # Concrete Elastic Modulus

set fc1C [expr 1.26394*$fc]; # CONFINED concrete (mander model), maximum stress

set eps1C [expr 2.*$fc1C/$Ec]; # strain at maximum stress

set fc2C $fc; # ultimate stress

set eps2C [expr 5*$eps1C]; # strain at ultimate stress

Unconfined concrete:

set fc1U $fc; # UNCONFINED concrete (todeschini parabolic model), maximum stress

set eps1U -0.003; # strain at maximum stress

set fc2U [expr 0.1*$fc]; # ultimate stress

set eps2U -0.006; # strain at ultimate stress

Concrete02 variables:

set lambda 0.1 ; # ratio between unloading slope at $epscu and initial slope
set ftC [expr -$fc1C/10.]; # tensile strength +tension

set ftU [expr -$fc1U/10.]; # tensile strength +tension

set Ets [expr $Ec/10.]; # tension softening stiffness

reinforcing steel

set Fy [expr 68.*$ksi]; # STEEL yield stress

set Es [expr 29000.*$ksi]; # modulus of steel

set epsY [expr $Fy/$Es]; # steel yield strain

set Fu [expr 95.2*$ksi]; # ultimate stress of steel

set epsU 0.1; # ultimate strain of steel

set E2 [expr ($Fu-$Fy)/($epsU-$epsY)]; # post-yield tangent stiffness

set Bs [expr $E2/$Es]; # post-yield stiffness ratio of steel

set up parameters for column section and element definition

set IDcore 1; # ID tag for core concrete

set IDcover 2; # ID tag for cover concrete

set IDsteel 3; # ID tag for steel

puts "All material variables have been defined"

uniaxialMaterial Concrete02 $IDcore $fc1C $eps1C $fc2C $eps2C $lambda $ftC $Ets; # CORE CONCRETE
uniaxialMaterial Concrete02 $IDcover $fc1U $epsi1U $fc2U $eps2U $lambda $ftU $Ets; # COVER CONCRETE
uniaxialMaterial Steel01 $IDsteel $Fy $Es $Bs; # REINFORCING STEEL

puts "All materials have been defined"

puts "Being element cross-section definition"

element cross-section

Notes

The center of the reinforcing bars are placed at the inner radius

The core concrete ends at the inner radius (same as reinforcing bars)

The reinforcing bars are all the same size

The center of the section is at (0,0) in the local axis system

Zero degrees is along section y-axis

set IDcolFlex 2; # ID tag for column section in flexure, before aggregating torsion
set riCol 0.0; # inner radius of column section

set roCol $Rcol; # outer radius of column section

set nfCoreR 8; # number of radial fibers in core (number of "rings")

set nfCoreT 16; # number of tangential fibers in core (number of "wedges")

set nfCoverR 2; # number of radial fibers in cover

set nfCoverT 16; # number of tangential fibers in cover

cover - cover thickness, has been defined with the geometry

|Dcore - material tag for the core patch, has been defined with the materials

|IDcover - material tag for the cover patches, has been defined with the materials

Chapter 44 Getting Going with OpenSees (under development) 435

|Dsteel - material tag for the reinforcing steel, has been defined with the materials

NbCol # number of column longitudinal-reinforcement bars, has been defined with the geometry
AbCol # bar area of column longitudinal reinforcement, has been defined with the geometry
puts "All element-cross-section variables have been defined"

puts "Begin section definition"

section fiberSec $IDcolFlex {

set rc [expr $roCol-$cover]; # Core radius

patch circ $IDcore $nfCoreT $nfCoreR 0 0 $riCol $rc 0 360; # Define the core patch

patch circ $IDcover $nfCoverT $nfCoverR 0 0 $rc $roCol 0 360; # Define the cover patch
puts "All patches have been defined"

set theta [expr 360.0/$NbCol]; # Determine angle increment between bars

layer circ $IDsteel $NbCol $AbCol 0 0 $rc $theta 360; # Define the reinforcing layer

puts "All layers have been defined"

puts "End of element-cross-section definition"
puts "Begin Element Connectivity"
element connectivity
set IDcolTors 10; # ID tag for column section in torsion
set IDcolSec 1; # ID tag for column section
uniaxialMaterial Elastic $IDcolTors $GJ; # Define torsional stiffness
section Aggregator $IDcolSec $IDcolTors T -section $IDcolFlex; # attach torsion to flexure and create a new section
IDtag
puts "All has been aggregated"”
set IDcolTrans 1; # ID tag for column transformation, defining element normal
geomTransf Linear $IDcolTrans; # Linear: no second-order effects
set np 5; # Number of integration points
element nonlinearBeamColumn 1 1 2 $np $IDcolSec $IDcolTrans
puts "End Element defintion"
puts "Begin Gravity loads"
apply constant gravity load (and other constant loads)
set Pdl [expr $Weight]; # gravity axial load per column
pattern Plain 1 Linear {
load2 0.0 -$Pdl 0.0

puts "Gravity Load Pattern has been defined"
set up solution procedure

system UmfPack; # solution procedure, Super-LU, how it solves system of equations
constraints Plain; # how it handles boundary conditions, enforce constraints through the
transformation

set up convergence criteria

test NormDisplincr 1.0e-5 10 0; # tolerance, max no. of iterations, and print code , 1: every iteration
algorithm Newton; # use Newton's solution algorithm: updates tangent
stiffness at every iteration

numberer RCM; # renumber dof's to minimize band-width

(optimization)

set up load steppring

integrator LoadControl 0.1 1 0.1 0.1; # variable load-stepping
set up type of analysis, static for gravity

analysis Static

puts "Static Analysis for Gravity and Constant loads has been defined"
initialize

RUN GRAVITY ANALYSIS

analyze 10

loadConst -time 0.0

puts "End of Gravity Analysis"

print to screen that you are done with this step:

puts "Done with Structural Model Generation"

Chapter 44 Getting Going with OpenSees (under development) 436

The OpenSees control window will look like this:

C:\Users\AAsilvia\AAprojects\DpenSees\Manual\,

Openfees —— Open System For Earthguake Engineering Simulation
Pacific Earthguake Engineering Research Center — Uersion 1.5.2

¢ Copyright 1997 The Regents of the University of California
All Rights Heserved

OpenSees > source inputl.tcl

Begin wnits defintion

gUnits have heen defined

All inital variables have been defined
|the Model has been built
fHodal Coordinates,. Wodal Masses,. and Boundary Conditions have been defined
g#Begin material definition
All material variables have bheen defined

IHll materials have been defined

HBeing element cross—section definition

A1l element—cross—section variabhles have heen defined
Begin section definition

HA1]1 patches have heen defined
All lavers have been defined
End of element—cross—section definition

Begin Element Connectivity

All has bheen aggregated

End Element defintion

Begin Gravity loads

Gravity Load Pattern has been defined

Static Analysis for Gravity and Constant loads has been defined
Unf packGenLinS0E: tsetSize — n 3 nnz 9 1Ual 188

End of Gravity Analysis
Done with Structural Model Generation
OpenSees >

Chapter 44 Getting Going with OpenSees (under development) 437

When there is an error, it can be localized:

. G\Users\AAsilvia\AAprojects\OpenSees\Manual Al

OpenSees — Open System For Earthguake Engineerding Simulation
Pacific Earthguake Engineering Rezearch Center — Uersion 1.5.2

Cc) Copyright 1772 The Regentsz of the University of California
All Rights Reserved

OpenSees » source inputl.tcl

Begin wunits defintion

Units have heen defined

All inital variablesz have been defined

the Model has bheen built

Modal Coordinates,. Modal Masses,. and Boundary Conditions have heen defined
Begin material definition

All material variables have heen defined

All materials have heen defined

Being element crossz—section definition

All element—cross—section variahles have heen defined
Begin section definition

WARMING - error reading information in € X

invalid command name "HELLO"

OpenSees > _

Based on the markers, the erroneous command is located within the section definition, between
the two puts commands.

puts "Begin section definition"

section fiberSec $IDcolFlex {

set rc [expr $roCol-$cover]; # Core radius

patch circ $IDcore $nfCoreT $nfCoreR 0 0 $riCol $rc 0 360; # Define the core patch
HELLO

patch circ $IDcover $nfCoverT $nfCoverR 0 0 $rc $roCol 0 360; # Define the cover patch
puts "All patches have been defined"

set theta [expr 360.0/$NbCol]; # Determine angle increment between bars

layer circ $IDsteel $NbCol $AbCol 0 0 $rc $theta 360; # Define the reinforcing layer

puts "All layers have been defined"

}

Chapter 44 Getting Going with OpenSees (under development) 438

Recorders for Output

The recorder commands are currently being modified and the documentation will be updated
accordingly. So stay tuned..... The following, therefore, may not yet work well.............

Recorders are used to monitor the state of the model at each analysis step. They can be placed
at nodes, elements, sections, fibers....

First of all, it is convenient to place all output data in a subdirectory:

file mkdir data
set FileNameO "data/"

The name $FileName0 will be appended to each filename so that the output be placed in the
data subdirectory.

The first recorder of interest on the cantilever column is a recorder to measure the horizontal and
vertical displacements of the column end, node 2, as well as the rotation. The node (page 326)
recorder is used:

set FileName1 Node2DxDyQz; # it is very good practice to give the output file a descriptive name
set $FileName $FileNameO$FileName1
recorder Node $FileName.out disp -node 2 -dof 1 2 3;

The next items of interest are the element forces and deformations, using the elemen (page
330)t recorder. For the nonlinearBeamColumn (page 216) element, you really only need the
forces at the element ends:

set FileName1 Fell
set $FileName $FileNameO$FileName1
recorder Element 1 -time -file $FileName.out localForce; # output local element forces for element 1

The element deformations at the cross-section level can be recorded at any integration point.
For this example, the deformation at the first integration point (the base of the column) will be
recorded:

set FileName1 Del1sect
set $FileName $FileNameO$FileName1
recorder Element -file $FileName.out -ele 1 section 1 deformations

Recorders can also be placed anywhere on a fiber section to measure fiber stresses and strains.
When more than one material may occupy the location specified (such as a steel bar at the edge
of the confined-concrete core), a preferred material can be specified. The location of the
recorder is specified using the local coordinate system. If no fiber is located at that coordinate, a
blank file will be output (very common error).

set FileName1 SSel1sec1
set $FileName $FileNameO$FileName1
recorder Element -file $FileName.out -ele 1 section 1fiber $Rcol 0. $IDcore stressStrain;

439

CHAPTER 45

Analysis Components

440

CHAPTER 46

Script Utilities Library

A library of Tcl Procedures is included in this chapter. The user sould modify the procedures to
meet the needs of the analysis.

In This Chapter

MatTeStACl ..., 456
RCcircSection.tCl......ccoovvvviiiiiiiiiiiiiee 458
RCcircSectionFEDEAS.ICI.........cooomiiiieiiiiieee, 459
RCFrameDisplay.tClcoovviiiiiiiiiie e 461
MomentCurvature.tCl............evvvveevieiiiiiiiiiiiiiiiiiieainans 462
ReadSMDFile.tClcouvieieieeieeeeeeeeeee e, 463
RoOtSPring2D.........oeiieeiiiiiie e 465
StFramePZLdisplay.tClccccoeiiiiiiiiiiiees 466
LAV ET=To3 (o] 4 1N () R 467
RigidFrame3Ddisplay.tCl..........ccoeiiiiiiiiiiiiiiis 468
Units&Constants.tCl............evvvvieviriiiiiiiiiiiiiiiiiiieieianns 469
MatlabOUPULEC ... 469
genPlaneFrame.dcl ... 470
matTest.tcl

> A script for testing uniaxial materials with a single DOF truss.

= This script requires an additional file
(http://opensees.berkeley.edu/OpenSees/examples/patterni.xt).

matTest.tcl: SDOF truss to test uniaxial material models
Units: kip, in

MHS, Sept 1999

email: mhscott@ce.berkeley.edu

model BasicBuilder -ndm 1 -ndf 1

Define nodes

node 1 0.0

node 2 1.0

Fix node 1

fix 1 1

Define uniaxialMaterial

Chapter 46 Script Utilities Library

441

tag f'c epsc f'cu epscu
uniaxialMaterial Concrete01 1 -5.0-0.002 -1.0 -0.004
Define truss element with unit area
tag ndl ndJ A matTag
elementtruss 1 1 2 1.0 1
setdt 1.0 ;# Increment between data points
set filename patterni.ixt ;# Filename containing data points
set factor 0.006 ;# Factor applied to data values
Read displacement pattern from file
Note, any pattern type can be used here: Linear, Path, Sine, etc.
pattern Plain 1 "Series -dt $dt -filePath $filename -factor $factor” {
Set reference displacement value
node dof value
sp 2 1 1.0
}
Impose monotonic displacements
#pattern Plain 2 "Linear -factor $factor” {
sp211.0
#}
Record nodal displacements (same as strains since truss length is 1.0)
recorder Node truss.out disp -load -node 2 -dof 1
Record truss force (same as stress since truss area is 1.0)
recorder Element 1 -time -file force.out force
system UmfPack
constraints Penalty 1.0e12 1.0e12
Set increment in load factor used for integration
Does not have to be the same as dt used to read in displacement pattern
set dl $dt
integrator LoadControl $dl 1 $dI $dI
test NormDisplncr 1.0e-6 10
algorithm Newton
numberer RCM
analysis Static

analyze 10000

Chapter 46 Script Utilities Library 442

RCcircSection.tcl

> # Define a procedure which generates a circular reinforced concrete section #
with one layer of steel evenly distributed around the perimeter and a confined
core.

Formal arguments
id - tag for the section that is generated by this procedure
ri - inner radius of the section
ro - overall (outer) radius of the section
cover - cover thickness
corelD - material tag for the core patch
coverlD - material tag for the cover patches
steellD - material tag for the reinforcing steel
numBars - number of reinforcing bars around the section perimeter
barArea - cross-sectional area of each reinforcing bar

nfCoreR - number of radial divisions in the core (number of "rings")

nfCoverR - number of radial divisions in the cover

nfCoverT - number of theta divisions in the cover

#

#

#

#

#

#

#

#

#

#

nfCoreT - number of theta divisions in the core (number of "wedges")
#

#

#

Notes

The center of the reinforcing bars are placed at the inner radius
The core concrete ends at the inner radius (same as reinforcing bars)
The reinforcing bars are all the same size

The center of the section is at (0,0) in the local axis system

Zero degrees is along section y-axis

#

proc RCcircSection {id ri ro cover corelD coverID steellD numBars barArea nfCoreR nfCoreT nfCoverR nfCoverT} {

Define the fiber section
section fiberSec $id {
Core radius
set rc [expr $ro-$cover]
Define the core patch
patch circ $corelD $nfCoreT $nfCoreR 0 0 $ri $rc 0 360

Define the cover patch

Chapter 46 Script Utilities Library 443

patch circ $coverlD $nfCoverT $nfCoverR 0 0 $rc $ro 0 360
if {$numBars <= 0} {
return
}
Determine angle increment between bars
set theta [expr 360.0/$numBars]
Define the reinforcing layer
layer circ $steellD $numBars $barArea 0 0 $rc $theta 360

RCcircSectionFEDEAS.tcl

> # Define a procedure which generates a circular reinforced concrete section #
with one layer of steel evenly distributed around the perimeter and a confined
core.

Writes section information in FEDEAS format to the TCL file stream fedeas
#
Formal arguments
id - tag for the section that is generated by this procedure
ri - inner radius of the section
ro - overall (outer) radius of the section
cover - cover thickness
corelD - material tag for the core patch
coverlD - material tag for the cover patches
steellD - material tag for the reinforcing steel
numBars - number of reinforcing bars around the section perimeter

barArea - cross-sectional area of each reinforcing bar

#

#

#

#

#

#

#

#

nfCoreR - number of radial divisions in the core (number of "rings")
nfCoreT - number of theta divisions in the core (number of "wedges")
nfCoverR - number of radial divisions in the cover

nfCoverT - number of theta divisions in the cover

fedeas - file stream to which FEDEAS information is written

Calling procedure should define a TCL file stream, e.g.
set fedeas [open fedeas.out w]

#

#

Notes

Chapter 46 Script Utilities Library

444

The center of the reinforcing bars are placed at the inner radius

The core concrete ends at the inner radius (same as reinforcing bars)
The reinforcing bars are all the same size

The center of the section is at (0,0) in the local axis system

Zero degrees is along section y-axis

S T

Assumes G3 material tags and FEDEAS material tags are consistent
#

proc RCcircSectionFEDEAS {id ri ro cover corelD coverlD steellD numBars barArea nfCoreR nfCoreT nfCoverR

nfCoverT fedeas} {

Define the fiber section

section fiberSec $id {

puts $fedeas fsection; # FEDEAS fsection command
puts $fedeas $id; # fsection id
puts $fedeas 2,0; # 2 patches, reference axis is geometric centroid

Core radius

set rc [expr $ro-$cover]

Define the core patch

patch circ $corelD $nfCoreT $nfCoreR 0 0 $ri $rc 0 360

puts $fedeas $corelD,2,$nfCoreR,$nfCoreT,1,1; # matlD,circular,nfRad,nfAng,proplJ,propdK
puts $fedeas 0,0; # (y,z) center of patch

puts $fedeas $ri,$rc; # R1,R2

puts $fedeas 0,360; # theta1,theta2

puts $fedeas 0,0; # NOT USED

Define the cover patch
patch circ $coverlD $nfCoverT $nfCoverR 0 0 $rc $ro 0 360
puts $fedeas $coverlD,2,$nfCoverR,$nfCoverT,1,1
puts $fedeas 0,0
puts $fedeas $rc,$ro
puts $fedeas 0,360
puts $fedeas 0,0
if {$numBars <= 0} {
puts $fedeas 0
puts $fedeas "
return

}

Determine angle increment between bars

Chapter 46 Script Utilities Library 445

set theta [expr 360.0/$numBars]

puts $fedeas 1; # Number of layers

Define the reinforcing layer

layer circ $steellD $numBars $barArea 0 0 $rc $theta 360

puts $fedeas $steellD,2,$numBars,,$barArea; # matlD,circular,numBars,<barSize>,barArea
puts $fedeas 0,0; # (y,z) center of arc

puts $fedeas $rc; # RL

puts $fedeas $theta,360; # theta1,theta2

puts $fedeas

RCFrameDisplay.tcl

> # a window showing the displaced shape

recorder display DispShape 10 10 300 300 -wipe

next three commmands define viewing system, all values in global coords
vrp 288.0 150.0 0 # point on the view plane in global coord, center of local viewing system
vup010 # dirn defining up direction of view plane

vpn 00 1 # direction of outward normal to view plane

next three commands define view, all values in local coord system

prp 00100 # eye location in local coord sys defined by viewing system
viewWindow -400 400 -400 400 # view bounds uMin, uMax, vMin, vMax in local coords
plane 0 150 # distance to front and back clipping planes from eye

projection 0 # projection mode

port-11-11 # area of window that will be drawn into

fill 1 # fill mode

display 1 0 10

Chapter 46 Script Utilities Library 446

MomentCurvature.tcl

> # A procedure for performing section analysis (only does moment-curvature,
but can be easily modified to do any mode of section reponse.

MHS

October 2000
#

Arguments

secTag -- tag identifying section to be analyzed

axialLoad -- axial load applied to section (negative is compression)
maxK -- maximum curvature reached during analysis

numlncr -- number of increments used to reach maxK (default 100)
#

Sets up a recorder which writes moment-curvature results to file
section$secTag.out ... the moment is in column 1, and curvature in column 2
proc MomentCurvature {secTag axialLoad maxK {numincr 100} } {

Define two nodes at (0,0)

node 1 0.0 0.0

node 2 0.0 0.0

Fix all degrees of freedom except axial and bending
fix1111
fix2010

Define element
tag ndl ndJ secTag

element zeroLengthSection 1 1 2 $secTag

Create recorder

recorder Node section$secTag.out disp -time -node 2 -dof 3

Define constant axial load
pattern Plain 1 "Constant” {
load 2 $axialLoad 0.0 0.0

Chapter 46 Script Utilities Library

447

Define analysis parameters

integrator LoadControl 0 1 0 0

system SparseGeneral -piv; # Overkill, but may need the pivoting!
test NormUnbalance 1.0e-9 10

numberer Plain

constraints Plain

algorithm Newton

analysis Static

Do one analysis for constant axial load

analyze 1

Define reference moment
pattern Plain 2 "Linear" {
load20.00.0 1.0

Compute curvature increment

set dK [expr $maxK/$numincr]

Use displacement control at node 2 for section analysis
integrator DisplacementControl 2 3 $dK 1 $dK $dK

Do the section analysis

analyze $numincr

ReadSMDFile.tcl

» A procedure which converts a PEER strong motion database
(http://peer.berkeley.edu/smcat/) file to OpenSees format

- READSDMFILE.TCL read gm input format

Written: MHS
Date: July 2000
#

Chapter 46 Script Utilities Library

448

A procedure which parses a ground motion record from the PEER

strong motion database by finding dt in the record header, then

echoing data values to the output file.

#

Formal arguments

inFilename -- file which contains PEER strong motion record

outFilename -- file to be written in format G3 can read

dt -- time step determined from file header

#

Assumptions

The header in the PEER record is, e.g., formatted as follows:
PACIFIC ENGINEERING AND ANALYSIS STRONG-MOTION DATA
IMPERIAL VALLEY 10/15/79 2319, EL CENTRO ARRAY 6, 230
ACCELERATION TIME HISTORY IN UNITS OF G

NPTS= 3930, DT=.00500 SEC

proc ReadSMDFile {inFilename outFilename dt} {

#
#
#
#

Pass dt by reference
upvar $dt DT

Open the input file and catch the error if it can't be read
if [catch {open $inFilename r} inFilelD] {

puts stderr "Cannot open $inFilename for reading”
}else {

Open output file for writing

set outFilelD [open $outFilename w]

Flag indicating dt is found and that ground motion
values should be read -- ASSUMES dt is on last line
of headerl!!!

set flag 0

Look at each line in the file

foreach line [split [read $inFilelD] \n] {

if {[llength $line] == 0} {
Blank line --> do nothing
continue

} elseif {$flag == 1} {

Chapter 46 Script Utilities Library

449

Echo ground motion values to output file
puts $outFilelD $line
} else {
Search header lines for dt
foreach word [split $line] {
Read in the time step
if {$flag == 1} {
set DT $word
break
}
Find the desired token and set the flag
if {[string match $word "DT="] == 1} {
set flag 1

}
Close the output file

close $outFilelD
Close the input file

close $inFilelD

RotSpring2D

> # Procedure which creates a rotational spring for a planar problem

rotSpring2D.tcl

SETS A MULTIPOINT CONSTRAINT ON THE TRANSLATIONAL DEGREES OF FREEDOM,
SO DO NOT USE THIS PROCEDURE IF THERE ARE TRANSLATIONAL ZEROLENGTH

ELEMENTS ALSO BEING USED BETWEEN THESE TWO NODES

#

Written: MHS

Date: Jan 2000

#

Formal arguments

elelD - unique element ID for this zero length rotational spring

Chapter 46 Script Utilities Library

450

#
#
#
#

nodeR - node ID which will be retained by the multi-point constraint
nodeC - node ID which will be constrained by the multi-point constraint
matID - material ID which represents the moment-rotation relationship

for the spring

proc rotSpring2D {elelD nodeR nodeC matID} {

Create the zero length element

element zeroLength $elelD $nodeR $nodeC -mat $matID -dir 6

Constrain the translational DOF with a multi-point constraint
retained constrained DOF_1 DOF_2 ... DOF _n
equalDOF $nodeR $nodeC 1 2

StFramePZLdisplay.tcl

» # a window to plot the nodal displacements versus load

if {$displayMode == "displayON"} {

recorder plot StFramePZL1.out Node4Xdisp 10 400 300 300 -columns 3 1

a window showing the displaced shape
recorder display g3 10 10 300 300 -wipe
prp 288.0 150.0 100.0

vrp 288.0 150.0 0

vup010

vpn 00 1

viewWindow -400 400 -400 400

plane 0 150

port-11-11

projection 0

fill 1

display 20 10

Wsection.tcl

» Procedure for creating a wide flange steel fiber section

Wsection.tcl: tcl procedure for creating a wide flange steel fiber section

written: Remo M. de Souza
date: 06/99

modified: 08/99 (according to the new general modelbuilder)

Chapter 46

Script Utilities Library

451

input parameters
seclD - section ID number
matID - material ID number
#d = nominal depth
tw = web thickness
bf = flange width
tf = flange thickness
nfdw = number of fibers along web depth
nftw = number of fibers along web thickness
nfbf = number of fibers along flange width
nftf = number of fibers along flange thickness
proc Wsection { seclD matID d tw bf tf nfdw nftw nfbf nftf} {
set dw [expr $d - 2 * $tf]
set y1 [expr -$d/2]
set y2 [expr -$dw/2]
set y3 [expr $dw/2]
set y4 [expr $d/2]
set z1 [expr -$bf/2]
set z2 [expr -$tw/2]
set z3 [expr $tw/2]
set z4 [expr $bf/2]

#
section fiberSec $secID {
nfld nfdJK yl zI yJ zJ yK zK yL zL

patch quadr $matID $nfbf $nftf $y1 $z4 $y1 $z1 $y2 $z1 $y2 $z4
patch quadr $matID $nftw $nfdw $y2 $z3 $y2 $z2 $y3 $z2 $y3 $z3
patch quadr $matID $nfbf $nftf $y3 $z4 $y3 $z1 $y4 $z1 $y4 $z4

RigidFrame3Ddisplay.tcl

» # a window showing the displaced shape

set displayType "PLAN"
#set displayType "PERSPECTIVE"

a window showing the displaced shape

Chapter 46

Script Utilities Library

452

recorder display g3 10 10 300 300 -wipe

if {$displayType == "PERSPECTIVE"} {
prp -7500 -5000 50000
vrp 0 -500 250
vup 001
vpn 0-10
viewWindow -200 400 -300 300

if {$displayType == "PLAN"} {
prp 0 0 1000
vip000
vup0-10
vpn 00 -1
viewWindow -200 200 -200 200

plane 0 1e12
port-11-11
projection 1
fill 0

display 1 0 10

Units&Constants.tcl

» Procedure to define units and constants

----Units&Constants.tcl

setin1.; # define basic units

setsec 1.;

set kip 1.;

set ksi [expr $kip/pow($in,2)]; # define dependent units

set psi [expr $ksi/1000.];

set ft [expr 12.*$in];

set Ib [expr $kip/1000];

set pcf [expr $Ib/pow($ft,3)];
set ksi [expr $kip/pow($in,2)];

Chapter 46

Script Utilities Library

453

set psi [expr $ksi/1000.];

set cm [expr $in/2.54]; # define metric units
set meter [expr 100.*$cm];

set MPa [expr 145*$psil;

set Pl [expr 2*asin(1.0)]; # define constants
set g [expr 32.2*$ft/pow($sec,2)];

setU 1.e10; # a really large number

setu [expr 1/$U]; # a really small number

MatlabOutput.tcl

> # script to generate .m file to be read by matlab

S MatlabOutput.tcl

set Xframe 1; # this parameter would be passed in
set fDir "Data/";
file mkdir $fDir; # create directory

set outFilelD [open $fDir/DataFrame$Xframe.m w]; # Open output file for writing

puts $outFilelD "Xframe($Xframe) = $Xframe;"; # frame ID

puts $outFileID "Hcol($Xframe) = $Hcol;"; # column diameter
puts $outFilelD "Lcol($Xframe) = $Lcol;"; # column length
puts $outFileID "Lbeam($Xframe) = $Lbeam;"; # beam length

puts $outFileID "Hbeam($Xframe) = $Hbeam;"; # beam depth
puts $outFilelD "Bbeam($Xframe) = $Bbeam;"; # beam width

puts $outFilelD "Weight($Xframe) = $Weight;" ; # superstructure weight

close $outFilelD

genPlaneFrame.tcl

» # Define a procedure which will generate nodes and elements for a plane

frame having absolute column line locations in the list

#'columnLine', absolute girder line locations in the list 'girderLine’,

section IDs for the columns and girders, 'columnID' and 'girderID’, and

'nIntPt' integration points along every member.
#
Notes: automatically fixes the base nodes

only geneartes nonlinearBeamColumn elements

Chapter 46 Script Utilities Library 454

allows columns and girders to be spaced arbitrarily
does not add nodal masses or loads, but can be extended to do so

starts node numbering at 1

Formal arguments
columnLine - a list of column line locations
The actual argument would be defined as so, set columns {0 120 240 360}
girderLine - a list of grider line locations
The actual argument would be defined as so, set girders {180 300 420}

columnID - an integer representing the section ID (tag) for the columns in the frame

HOoH OH OFHF OH OB H OH O OFH O

girderID - an integer representing the section ID (tag) for the girders in the frame
nintPt - an integer representing the number of integration points along each member in the frame
proc genPlaneFrame {columnLine girderLine columnID girderID nIntPt} {
setn 1; # Node number counter
geomTransf Linear 1; # Geometric transformation for all elements
For each column line

foreach xLoc $columnLine {

node $n $xLoc 0

Fix the base node
fix$n 111

incrn 1

For each girder line

foreach yLoc $girderLine {

node $n $xLoc $yLoc

incrn 1

Useful variables

set numCol [llength $columnLine]

set numGir [llength $girderLine]

sete 1; # Element number counter
For each column line

for {seti 1} {$i <= $numCol} {incri 1} {

Chapter 46 Script Utilities Library

455

Node number at the base of this column line
set bottom [expr ($i-1)*$numGir + $i]

Node number at the top of this column line

set top [expr $i*$numGir + $i]

Travel up this column line creating elements
for {set j $bottom} {$j <= [expr $top-11} {incrj 1} {

element nonlinearBeamColumn $e $j [expr $j+1] $nintPt $columniD 1

incre 1

Difference in node numbers | and J for any girder in the frame

set delta [expr $numGir+1]

For each girder line
for {set j 1} {$j <= $numGir} {incr j 1} {

Node number at the left end of this girder line
set left [expr $j+1]
Node number at the right end of this girder line
set right [expr ($numCol-1)*$numGir + $numCol + $j]
Travel across this girder line creating elements
for {set k $left} {$k < $right} {incr k $delta} {

element nonlinearBeamColumn $e $k [expr $k+$delta] $nintPt $columniD 1

incre 1

}; #end proc

456

CHAPTER 47

References

API(1993). Recommended Practice for Planning, Design, and Constructing Fixed Offshore
Platforms. APl RP 2A - WSD, 20th ed., American Petroleum Institute.

Boulanger, R. W. (2003). The PySimple1 Material. http.//opensees.berkeley.edu
(http://opensees.berkeley.edu/).

Cook, R. D., D. S. Malkus, M. E. Plesha. "Concepts and Applications of Finite Element
Analysis." John Wiley & Sons, 1989.

Crisfield, M. A. "Non-linear Finite Element Analysis of Solids and Structures." John Wiley &
Sons, vol. 1, 1991

Elgamal, A., Lai, T., Yang, Z. and He, L. (2001). "Dynamic Soil Properties, Seismic Downhole
Arrays and Applications in Practice," State-of-the-art paper, Proc., 4th Intl. Conf. on Recent
Advances in Geote. E.Q. Engrg. Soil Dyn. March 26-31, San Diego, CA, S. Prakash (Ed.).

Elgamal, A., Yang, Z. and Parra, E. (2002). "Computational Modeling of Cyclic Mobility and
Post-Liquefaction Site Response,” Soil Dyn. Earthquake Engrg., 22(4), 259-271.

Elgamal, A., Yang, Z., Parra, E. and Ragheb, A. (2003). "Modeling of Cyclic Mobility in Saturated
Cohesionless Soils," Int. J. Plasticity, 19(6), 883-905.

Georgiadis, M. (1983). “Development of p-y curves for layered soils.” Proc., Geotechnical
Practice in Offshore Engineering, ASCE, pp. 536-545.

Lowes, Laura N.; Mitra, Nilanjan; Altoontash, Arash A beam-column joint model for simulating
the earthquake response of reinforced concrete frames PEER-2003/10
(http://nisee.berkeley.edu/elibrary/getdoc?id=1288878) Pacific Earthquake Engineering
Research Center, University of California, Berkeley 2003 59 pages (400/P33/2003-10)

Matlock, H. (1970). "Correlations of design of laterally loaded piles in soft clay."Proc. Offshore
Technology Conference, Houston, TX, Vol 1, No.1204, pp. 577-594.

McKenna, F. and Fenves, G. (2001). "The OpenSees Command Language Manual: version
1.2," Pacific Earthquake Engineering Center, Univ. of Calif., Berkeley.
(http://opensees.berkeley.edu (http://opensees.berkeley.edu/)).

Mosher, R. L., (1984) "Load Transfer Criteria for Numerical Analysis of Axially Loaded Piles in
Sand," US Army Engineering Waterways Experimental Station, Automatic Data Processing
Center, Vicksburg, Mississippi, January.

Chapter 47 References 457

Parra, E. (1996). "Numerical Modeling of Liquefaction and Lateral Ground Deformation Including
Cyclic Mobility and Dilation Response in Soil Systems," Ph.D. Thesis, Dept. of Civil Engineering,
Rensselaer Polytechnic Institute, Troy, NY.

Reese, L.C., and O'Neill, M. W., (1987) "Drilled Shafts: Construction Procedures and Design
Methods," Report No. FHWA-HI-88-042, U.S. Department of Transportation, Federal Highway
Administration, Office of Implementation, McLean, Virginia.

Vijayvergiya, V.N. (1977) "Load-Movement Characteristics of Piles," Proceedings, Ports 77
Conference, American Society of Civil Engineers, Long Beach, CA, March.

Yang, Z. (2000). "Numerical Modeling of Earthquake Site Response Including Dilation and
Liquefaction,” Ph.D. Thesis, Dept. of Civil Engineering and Engineering Mechanics, Columbia
University, NY, New York.

Yang, Z. and Elgamal, A. (2002). "Influence of Permeability on Liquefaction-Induced Shear
Deformation," J. Engrg. Mech., ASCE, 128(7), 720-729.

Yang, Z., Elgamal, A. and Parra, E. (2003). "A Computational Model for Liquefaction and
Associated Shear Deformation," J. Geotechnical and Geoenvironmental Engineering, ASCE,
December (in press).

For the Force-Based Beam-Column Element:

Neuenhofer, Ansgar, FC Filippou. Geometrically Nonlinear Flexibility-Based Frame Finite
Element
(http://ascelibrary.aip.org/vsearch/servlet/VerityServlet?KEY=JSENDH&smode=strresults&sort=r
el&maxdisp=25&origquery=%28flexibility%29+&threshold=0&pjournals=lJGNAI%2CJAEEEZ%2
CJAEIED%2CJBENF2%2CJCRGEI%2CJCCOF2%2CJCCEE5%2CJCEMD4%2CJLEED9%2CJ
ENMDT%2CJOEEDU%2CJGGEFK%2CJHEND8%2CJHYEFF%2CJITSE4%2CJIDEDH%2CJM
ENEA%2CJMCEE7%2CJPCFEV%2CJPEPE3%2CJSENDH%2CJSUED2%2CJTPEDI%2CJUP
DDM%2CJWRMD5%2CJWPED5%2CLMEEAZ%2CNHREFO%2CPPHMF8%2CPPSCFX%2C&
pyears=&possible1=flexibility&possible1zone=article&possible3=Neuenhofer&possible3zone=au
thor&bool3=and&OUTLOG=NO&viewabs=JSENDH&key=DISPLAY &docID=1&page=1&chapter
=0&ags=). ASCE Journal of Structural Engineering, Vol. 124, No. 6, June, 1998. ISSN 0733-
9445/98/0006-0704-0711. Paper 16537. pp. 704-711.

Chapter 47 References 458

Neuenhofer, Ansgar, FC Filippou. Evaluation of Nonlinear Frame Finite-Element Models
(http://ascelibrary.aip.org/vsearch/servlet/VerityServlet?KEY=JSENDH&smode=strresults&sort=r
el&maxdisp=258&origquery=%28flexibility%29+&threshold=0&pjournals=IJGNAI%2CJAEEEZ%2
CJAEIED%2CJBENF2%2CJCRGEI%2CJCCOF2%2CJCCEE5%2CJCEMD4%2CJLEED9%2CJ
ENMDT%2CJOEEDU%2CJGGEFK%2CJHEND8%2CJHYEFF%2CJITSE4%2CJIDEDHY%2CJM
ENEA%2CJMCEE7%2CJPCFEV%2CJPEPE3%2CJSENDH%2CJSUED2%2CJTPEDI%2CJUP
DDM%2CJWRMD5%2CJWPEDS5%2CLMEEAZ%2CNHREFO%2CPPHMF8%2CPPSCFX%2C&
pyears=&possible1=flexibility&possible1zone=article&possible3=Neuenhofer&possible3zone=au
thor&bool3=and&OUTLOG=NO&viewabs=JSENDH&key=DISPLAY &doclD=2&page=1&chapter
=0&aqgs=). ASCE Journal of Structural Engineering, Vol. 123, No. 7, July, 1997. ISSN 0733-
9445/97/0007-0958-0966. Paper No. 14157. pp. 958-966.

Neuenhofer, Ansgar, FC Filippou. ERRATA -- Geometrically Nonlinear Flexibility-Based Frame
Finite Element. ASCE Journal of Structural Engineering, Vol. 124, No. 6, June, 1998. ISSN
0733-9445/98/0006-0704-0711. Paper 16537. pp. 704-711.

Taucer, Fabio F, E Spacone, FC Filippou. A Fiber Beam-Column Element for Seismic Response
Analysis of Reinforced Concrete Structures. Report No. UCB/EERC-91/17
(http://nisee.berkeley.edu/elibrary/getdoc?id=237794). Earthquake Engineering Research
Center, College of Engineering, University of California, Berkeley. December 1991.

Spacone, Enrico, V Ciampi, FC Filippou. A Beam Element for Seismic Damage Analysis. Report
No. UCB/EERC-92/07. (http://nisee.berkeley.edu/elibrary/getdoc?id=241936) Earthquake

Engineering Research Center, College of Engineering, University of California, Berkeley. August
1992.

BeamWithHinges Element:

Scott, M.H. and G.L. Fenves. "Plastic Hinge Integration Methods for Force-Based Beam-Column
Elements”, Journal of Structural Engineering, ASCE, 132(2):244-252, February 2006.

ReinforcingSteel Material:

Chang, G. and Mander, J. (1994). “Seismic Energy Based Fatigue Damage Analysis of Bridge
Columns: Part | — Evaluation of Seismic Capacity.” NCEER Technical Report 94-0006.

Dodd, L. and Restrepo-Posada, J. (1995). “Model for Predicting Cyclic Behavior of Reinforcing
Steel” J. Struct. Eng., 121(3), 433-445.

Gomes, A., and Appleton, J. (1997). “Nonlinear Cyclic Stress-Strain Relationship of Reinforcing
Bars Including Buckling.” Eng. Struct., 19(10), 822—826.

Brown, J. and Kunnath, S.K. (2000). “Low Cycle Fatigue Behavior of Longitudinal Reinforcement
in Reinforced Concrete Bridge Columns.” NCEER Technical Report 00-0007.

Chapter 47 References 459

Dhakal, R. and Maekawa, K. (2002). “Modeling for Postyield Buckled of Reinforcement” J.
Struct. Eng., 128(9), 1139-1147.

Concrete04 Element:

Mander, J. B., Priestley, M. J. N., and Park, R. (1988). "Theoretical stress-strain model for
confined concrete." Journal of Structural Engineering ASCE, 114(8), 1804-1825.

Popovics, S. (1973). " A numerical approach to the complete stress strain curve for concrete.”
Cement and concrete research, 3(5), 583-599.

Karsan, I. D., and Jirsa, J. O. (1969). "Behavior of concrete under compressive loading." Journal
of Structural Division ASCE, 95(ST12).

Useful Resources:

National Information Service for Earthquake Engineering -- NISEE. The Earthquake Engineering
Online Archive (http://nisee.berkeley.edu/elibrary/) (full text reports, images and data).
http://nisee.berkeley.edu/elibrary/

National Information Service for Earthquake Engineering -- NISEE. Earthquake Engineering
Abstracts Database (http://nisee.berkeley.edu/eea.html): http://nisee.berkeley.edu/eea.html

American Society of Civil Engineer -- ASCE. Online Journals Program
(http://www.pubs.asce.org/journals/jrns.html). http://www.pubs.asce.org/journals/jrns.htmi

461

Index

-- Contributed Uniaxial Materials « 44

...Build Model and Define Nodes « 34, 35,
36, 37, 39, 375

...Build Model and Define Nodes using
Variables * 376

...Combine Input-File Components « 384

...Define Analysis-Output Generation « 379

...Define Data-Plot During Analysis ¢ 380

...Define Dynamic Ground-Motion Analysis *
383

...Define Elements « 378

...Define Gravity Loads « 380

...Define Materials « 377

...Define Static Pushover Analysis * 381

...Define Tcl Procedure * 370

...Define Units & Constants « 369

...Define Variables and Parameters « 373

...Determine Natural Period & Frequency ¢
388

...Generate Matlab Commands « 370

...Read External files » 372

...Run Dynamic Ground-Motion Analysis °
384

...Run Gravity Analysis « 381

...Run Moment-Curvature Analysis on
Section « 387

...Run Parameter Study « 385

...Run Static Pushover Analysis * 382

A

Additional Tcl Resources * 17

algorithm Command « 24, 28, 324, 337, 340,
352, 353, 361, 411

analysis Command « 24, 29, 324, 346, 347,
351, 356, 361, 409, 412

Analysis Components * 440

Analysis Object « 31

Analysis Objects « 30, 324, 351, 412

analyze Command ¢ 356, 409, 412

Arc-Length Control » 27, 345, 347, 412
Axial Limit Curve * 75

BandGeneral SOE - 27, 335

BandSPD SOE - 27, 335

BARSLIP Material « 25, 44

Basic Model Builder * 12, 34, 35, 36, 37,
184, 186, 187, 189, 191, 316, 317, 322,
376, 400

Bbar Brick Element * 26, 170, 221, 288

Bbar Plane Strain Quadrilateral Element ¢
26, 170, 218, 286

Beam With Hinges Element « 26, 208, 209,
319, 321

Beam-Column Joint Element Discussion *
233

BeamColumndJoint Element « 26, 228

BFGS Algorithm « 28, 342

Bidirectional Section « 26, 196

block Command « 23, 29, 34, 285

block2D Command ¢« 285, 286

block3D Command ¢« 285, 288

Bond_SPO01 - - Strain Penetration Model for
Fully Anchored Steel Reinforcing Bars ¢
25, 46

Brick Elements * 219

BrickUP « 280

Broyden Algorithm « 28, 343

build Command « 35

Building The Model « 373

C

CenterCol_basicModel.tcl 78

CenterColAxialSpring.tcl « 82

CenterColSecFiber.tcl « 80

CenterColShearSpring.tcl « 80

Circular Layer Command ¢ 182, 190, 426

Circular Patch Command « 187, 426

Concrete01 -- Material Behavior « 141

Concrete01 Material -- Zero Tensile
Strength « 25, 137, 425

Concrete02 -- Material Behavior « 148

462 Index

Concrete02 Material -- Linear Tension
Softening « 25, 141, 425

Concrete03 -- Material Behavior ¢ 153

Concrete03 Material -- Nonlinear Tension
Softening ¢ 25, 148, 425

Concrete04 -- Material Behavior * 61

Concrete04 Material -- Popovics Concrete
Material * 25, 57

Constant Time Series * 301

constraints Command ¢ 24, 28, 29, 34, 306,
324, 327, 352, 353, 361, 410

constraints objects * 23, 38

Copyright » 13

Corotational Transformation ¢ 299

Corotational Truss Element « 26, 206

cyclic.txt » 84

CyclicLoading_lso2spring.tcl « 201, 202

D

dataBase Commands « 24, 357

Defining Output * 379

Displacement Control « 27, 345, 346, 352,
412

Displacement-Based Beam-Column
Element « 26, 208, 212, 309, 319, 321

display Command « 364

Display Recorder « 24, 322, 362, 364

Domain Object « 30, 306, 321, 360

Download OpenSees « 393

Drift Recorder « 24, 318

Dynamic Analysis « 383

E

eigen Command « 24, 355, 388

Eight Node Brick Element « 26, 220, 222

Elastic Beam Column Element ¢ 26, 207,
309, 319, 321, 403

Elastic Isotropic Material * 25, 170, 172

Elastic Material « 25, 127, 427

Elastic Membrane Plate Section « 26, 195

Elastic Section « 26, 180

Elastic-No Tension Material « 25, 131

Elastic-Perfectly Plastic Gap Material * 25,
130

Elastic-Perfectly Plastic Material « 25, 128

eleLoad Command ¢ 306, 309

element Command ¢ 23, 29, 34, 205, 319,
321, 361, 425

Element Cross Section « 426

Element Recorder ¢ 24, 43, 170, 179, 206,
207, 209, 212, 213, 214, 215, 216, 217,
219, 222, 224, 227, 228, 231, 319, 439

Elements « 403

Elements and Element Connectivity « 427

Energy Increment Test « 28, 339

Enhanced Strain Quadrilateral Element « 26,
170, 218, 286

EnvelopeElement Recorder « 24, 320

EnvelopeNode Recorder « 24, 317

EPState « 172, 176

equalDOF Command « 41

Error-Checking Tip for Model Building « 434

Evolution Law « 172, 175

Example Files for Limit State Material » 78

example ss_ic1.tcl « 52

Example Tcl Commands « 16

F

Fatigue Material « 25, 61

FatigueMaterialExample.tcl « 63

Fiber Command « 182, 184, 426

Fiber Section « 26, 182

FileDatastore Command ¢ 357

fix Command ¢ 38, 376, 377, 402, 424

fixX Command ¢« 39

fixY Command ¢ 39

fixZ Command « 40

FluidSolidPorousMaterial « 275

FluidSolidPorousMaterial Material * 25, 177,
178

FourNodeQuadUP - 276

FourNodeQuadUP Element « 26, 227

G

genPlaneFrame.tcl » 454

Geometric Transformation Command « 23,
29, 34, 207, 208, 212, 213, 292, 427

getTime Command « 361

Getting Going with OpenSees (under
development) « 419

Getting Started with OpenSees * 390

Gravity and other Constant Loads « 428

Gravity Loads « 380, 409

groundMotion Command « 300, 301, 311,
312, 313

H
Hardening Material « 25, 136

Index 463

Hilbert-Hughes-Taylor Method « 27, 345,
349

How To.... » 365

Hysteretic -- Material Behavior « 169

Hysteretic Material « 25, 166

imposedMotion Command « 311, 313, 328
integrator Command « 24, 27, 312, 344,
352, 353, 408, 411
Interpolated GroundMotion « 313
Introduction « 11, 392
Introduction to the Tcl command language °
14
Isolator2spring Section
Model to include buckling behavior of an
elastomeric bearing « 26, 197

J

J2 Plasticity Material « 25, 171

K

Krylov-Newton Algorithm « 28, 342
L

Lagrange Multipliers « 28, 328, 330

Lateral Loads -- Cyclic Lateral Load « 414

Lateral Loads -- Dynamic ground motion
415

Lateral Loads -- Static Pushover « 413

Limit State Material 25, 73

Linear Algorithm « 28, 340

Linear Time Series » 301, 345, 410

Linear Transformation « 292, 298, 299, 403

load Command ¢ 306, 307

Load Control * 27, 345, 352, 412

loadConst Command « 361, 412

Loads and Analysis « 407

M

mass Command « 23, 29, 34, 37, 376, 377,
402, 424

materialmodels.tcl « 56

Materials « 425

MatlabOutput.tcl » 454

matTest.tcl « 441

Minimum Unbalanced Displacement Norm ¢
27, 345, 347, 352, 412

Miscellaneous Commands * 359

Model Builder * 400, 423

Model Building « 421

model Command ¢ 23, 34, 40, 41, 42, 298,
299, 307, 308, 313, 318, 346, 361, 375

ModelBuilder Object « 29, 30, 35, 38, 39,
207, 211

Model-Building Objects « 33

Modified Newton Algorithm « 28, 342

MomentCurvature.icl « 447

MultipleSupport Pattern « 311, 313, 316, 328

Multi-Point Constraints « 41, 328

N

nDMaterial Command ¢ 23, 29, 34, 170,
177, 214, 216, 218, 219, 221, 224, 361,
425

Newmark Method ¢ 27, 345, 348, 353

Newton Algorithm « 28, 340, 352, 353

Newton with Line Search Algorithm « 28,
341

Nine_Four_Node QuadUP « 278

Nodal Coordinates & Masses, Boundary
Conditions « 424

node Command ¢ 12, 23, 29, 34, 36, 361,
376, 401, 402, 424

Node Recorder « 24, 228, 315, 355, 439

nodeBounds * 363

nodeDisp Command « 361

Nodes 401

Nonlinear Beam Column Element ¢ 26, 208,
309, 310, 319, 321, 427, 439

NonLinear Beam-Column Elements ¢ 180,
208

Norm Displacement Increment Test « 28,
338

Norm Unbalance Test « 28, 337, 352, 353

Notation « 11

numberer Command ¢ 24, 27, 324, 332,
352, 353, 411

o)

OpenSees * 19
OpenSees Features « 21
OpenSees Interpreter « 18, 360

P

Parallel Material « 25, 133

Path Time Series « 304

pattern Command « 24, 29, 34, 300, 301,
302, 303, 304, 306, 361, 410

P-Delta Transformation « 298

464 Index

Penalty Method - 28, 328, 329

PINCHING4 Material « 25, 46, 84

PINCHING4 Uniaxial Material Model
Discussion « 91

Plain Constraints « 28, 328, 329, 352, 353

Plain GroundMotion « 312

Plain Numberer « 27, 332

plain Pattern « 306, 410

Plane Stress Material * 25, 171

Plate Fiber Material » 25, 172, 195

Plate Fiber Section « 26, 195, 217

play Command ¢ 362, 363

playback Command « 24, 323

Plot Recorder « 24, 323

Potential Surface « 172, 174

PR1.tcl « 232, 233, 236, 237

PressureDependMultiYield « 255

PressureDependMultiYield02 « 262

PressurelndependMultiYield « 267

print Command « 355, 359

Problem Definition ¢ 399, 420

procMKPC.tcl « 232, 233, 236, 247

procRC.tcl » 232, 233, 236, 249

procRCycDAns.tcl 90, 91, 93, 104

procUniaxialPinching.tcl » 90, 91, 93, 102,
232, 233, 236, 248

ProfileSPD SOE - 27, 335, 352, 353

PyLiq1 Material « 108

PySimple1 Material « 105

PySimple1Gen Command « 111

PyTzQz Uniaxial Materials « 25, 105

Q

Quad Element « 26, 170, 216, 286

Quadrilateral Elements « 216

Quadrilateral Patch Command « 182, 185,
426

QzSimple1 Material < 107

R

RandomStrainHistory1.tcl « 67
RandomStrainHistory2.tcl « 70

rayleigh command « 24, 354, 417
RCcircSection.tcl « 443
RCcircSectionFEDEAS.tcl « 444
RCFrameDisplay.tcl « 446

RCM Numberer « 27, 332, 333, 352, 353
RCyclicPinch.tcl « 90, 91, 93, 97
ReadSMDFile.tcl » 448

Recorder Object « 30, 31

Recorder Objects * 31, 315, 323
Recorders « 404

Recorders for Output « 439
Rectangular Time Series « 302
References « 72, 209, 457

region Command « 23, 290
Reinforcing Steel Material « 25, 113
ReinforcingSteel -- Material Behavior « 127
reset Command ¢ 360

restore Command « 358
rigidDiaphragm Command ¢ 41
RigidFrame3Ddisplay.tcl « 452
rigidLink Command « 42
RotSpring2D « 450

Run OpenSees * 366, 395

S

save Command ¢ 358

Script Utilities Library « 441

Section Aggregator « 26, 192

section Command « 23, 29, 34, 179, 192,
205, 206, 208, 209, 211, 213, 215, 217,
320, 321, 425, 426

Series Material « 25, 134

Shear Limit Curve « 74, 76

Shell Element « 26, 170, 217, 286

Sine Time Series * 303

Single-Point Constraints « 38, 328

Soil Models and Solid-Fluid Fully Coupled
Elements « 254

sp Command - 306, 308, 328

SparseGeneral SOE « 27, 335

SparseSPD SOE - 27, 336

Standard Brick Element « 26, 170, 219, 288

Static Analysis « 29, 31, 324, 345, 351, 381,
409

Steel01 -- Material Behavior « 160

Steel01 Material « 25, 153, 425

Steel02 -- Material Behavior « 166

Steel02 Material -- Giuffré-Menegotto-Pinto
Model with Isotropic Strain Hardening ¢
25, 161

StFramePZLdisplay.tcl « 451

Straight Layer Command « 182, 189, 426

Summary of Defining Structural Model « 428

Summary of Gravity Loads « 412

Summary of Model-Building Input File « 404

system Command « 24, 27, 334, 337, 338,
339, 352, 353, 361, 411

Index 465

T

Tags.tcl » 83

Tcl Commands Format « 15, 18

Template Elasto-Plastic Material « 25, 172

test Command - 24, 28, 337, 411

Time Series « 24, 29, 34, 300, 301, 302,
303, 304, 306, 310, 312, 417

Transformation Method « 28, 328, 331

Transient Analysis « 29, 31, 324, 345, 351,
352, 356, 409

Truss Element « 25, 205

Twenty Node Brick Element « 26, 224

Twenty_Eight_Node_BrickUP « 282

TzLig1 Material = 109

TzSimple1 Material < 106

TzSimple1Gen Command « 112

u

UmfPack SOE « 27, 336

Uniaxial Section « 26, 181

uniaxialMaterial Command « 23, 24, 29, 34,
43,133, 134, 181, 182, 184, 185, 187,
189, 190, 192, 205, 206, 213, 214, 361,
425, 426

UniformExcitation Pattern « 310, 316, 417

Units&Constants.tcl » 372, 453

updateMaterialStage * 178, 273

updateParameter « 274

u-p-U element « 26, 226

'

Variables and Units * 421

VariableTransient Analysis « 29, 31, 324,
351, 353, 356, 409

video Command ¢ 362, 363

Viscous Material » 25, 169

w

wipe Command « 360, 433
wipeAnalysis Command * 360
Wsection.tcl « 451

Y
Yield Surface = 172, 173
Z

Zero-Length Element « 26, 213
Zero-Length Elements « 213
Zero-Length ND Element « 26, 214

Zero-Length Section Element « 26, 215,
320, 322

