Open System for Earthquake Engineering Simulation (OpenSees)

OpenSees Command
Language Manual

Silvia Mazzoni, Frank McKenna, Michael H. Scott, Gregory L. Fenves,
et al.

Printed on 1 July, 2007

Contents

Introduction 11
I\ o) 7= { o] o [T 11
(070703 o] 1 SRR 13
Introduction to the Tcl command IaNQUAGEcooiiuiiiiiiiiiiie e 14
Tcl CommaNds FOMMAL.....cooiiiiii et e e e e e e e e e e e annneeas 15
(=5E=Ta] o) (=T Wed W @7e] 1100 F- U o RSP 16
AdditioNal TCl RESOUICTESeeiiiiiiiiie ettt e e sttt e e s sate e e e s rabe e e e senteeeesaneeeeeeas 17
OPENSEES INTEIPIELEN ... eeii ittt e sttt e e e s bt e e e saate e e e saabeee e santeeeesaneeeaeaas 18
OpenSees 19
OPENSEES FEATUIES ...ttt et e bt ae e e e bt e e sabe e e be e e eabe e sneeesareeeneeas 21
WHY OPENSEES? ...ttt ettt ettt e s et e eae e e mee e et e bt e ebeeaaeeeneeemseemseenseeaseeseeens 21
+ The library of materials, elements and analysis commands makes OpenSees a powerful tool
for numerical simulation of nonlinear structural and geotechnical systems 21
+ The OpenSees library of components is ever-growing and at the leading edge of
numerical-simulation MOEISooi i 21
+ The OpenSees interface is based on a command-driven scripting language which enables
the user to create more-versatile iNPUL fileS.oooivieii i 21

+ OpenSees is not a black box, making it a useful educational tool for numerical modeling21
+ You can create your own material, element or analysis tools and incorporate them into

L0 01T g RS- PP 21

+ NEES is supporting integration of OpenSees as the simulation component of laboratory

LE=E]] o T PP PPPTPPPR 21

1Y@ T U 22

+ linear & nonlinear structural and geotechnical models ..o, 22

] 11 g T N PR 23

+ Static PUSH-OVEI @NAIYSEScooeiiiie e 23

+ static reversed-CyCliC @nalYSESccuuuiii i s 23

+ dynamic time-Series @nalYSES......ccoiuiiii i 23

+ UNIfOrmM-supPOrt @XCItATION. ..o 23

+ MUItI-SUPPOIT EXCITALION ... 23

MODELING FEATURES : ...ttt ettt ettt b e s saneeneens 23
MODEL-BUILDING FEATURES : ...ttt ettt eeee e e 24
ANALYSIS FEATURES ...ttt ettt ettt et et e e be e sbe e sae e emeeeeeebeesaeesaeeaneeanneas 26
MOdEIBUIIAET OBJECT it ae e st e e ar e e e be e e nee e 29
Do 0 F= 1 N O o] =] SRS RPR 30

R T=ToTo] (o [T R ©] o] 1= o1 SRR RR 31

F N QE 1) T LT @ o] =T o PR SR 31
Model-Building Objects 33
model Command 34
oY (oY [oTo [T I = U o 1= 34

PUIID COMMEANG ... et s e s ane e e sneeenee e 35
node Command 36

mass Command 37

Contents iv

constraints objects 38
SiNGIE-POINt CONSIIAINTS ...ccuiiiieiie ettt e e st e e raee e sbeeeneeea 38
L0 @e 321 1.4 = U o ST 38
1100, Qo 421 1 4= U o S 39
L0 A0 o] 491 1 4= U o SRR 39
L1074 @701 1 0121 oo [ST 40
MUIti-POiNt CONSIIAINTSeeiiiiiieiie e e e e e e e e snnee e e e e 41
L=To [WE= 11 D@ i @] 1 o1 o ¢ F- g o H USRS 41
(gTe]lo|DIF=TolgTr=To 4o T @] 4] 0 F- Voo SRR 41
1o (o | T 0] 1Q @ o] 4 o1 o ¢ F- g T HFU USRS 42
uniaxialMaterial Command 43
-- Contributed Uniaxial Materials 44
oy I | 1V = =Y - R 44
Concrete04 Material -- Popovics Concrete Materialcoooeiiiiiiiieniiii e 57
Concrete04 -- Material Behavior 61
FatigueMaterialExample.tcl 63
Limit State Material 73
Shear LMt CUIVE ...ttt e s r e s e e s n e ann e sne e nnreenaneas 74
AXIAL LIMIE CUIVE <ottt st e e sttt e e s aat e e e s anbe e e e snbeee e sanbeeeesaneeeeeaas 75
Shear LMt CGUIVE ...ttt e s r e s e e ann e sne e nnreenareas 76
Example Files for Limit State Material...........coooiiiiiii e 78
PINCHINGA MaEEIIALcuveiieiiiiiieeeiiiie sttt s et e st e s ee e e et e e e s stae e e sssaeeeassseeeeaanseeaeennseeeeennnes 84
PINCHING4 Uniaxial Material Model DiSCUSSION........ccoicuiiieiiiieeeeiieeeeiieeeesieeeeeseeeeeesneeeeeenees 90
PyTzQz Uniaxial Materialsoouei ittt st sb e aee e 104
PySIimpleT1 MatErialcoo ittt ee e st e e rne e e s beeenee e 104
TZSIMPIET MALEITAL ...ttt s e b e b e s be e e sane e 105
QZSIMPIET MAEETTAL ... ettt sbe e e e ne s 106
I 1Y = (T - U PP SR 107
B I4 Lo 1Y = =T = PP 108
PySimple1Gen COMMENG.........ooiiiiiiiie et e e ane e e s e nnee e 110
TzSIiMpPlIeT1GeNn COMMANG.......coiiiiiiii et e e nnn e 111
ReinforcingSteel -- Material Behavior 125
=Ty (ol (T = SRR 125
Elastic-Perfectly Plastic Material...........ocuooi e 126
Elastic-Perfectly Plastic Gap Materialc.ooiiioiiiiii e 128
Elastic-NO Tension Material ...t e e e 129
Parallel Material..........ooo i et e e e e sn e e 130
SIS MAEIIAL ... e 131
Hardening Materialc..ooi i e st e e e 133
Concrete01 Material -- Zero Tensile Strength..........oooii i 134
Concrete01 -- Material Behavior 137
Concrete02 Material -- Linear Tension SOfteNiNgceeeiiiriiiiiiii e 137
Concrete02 -- Material Behavior 143
Concrete03 Material -- Nonlinear Tension SOftening.........ccoceiiiiiiniiiee e 143

Concrete03 -- Material Behavior 147

Contents

SEEEIOT MALEIIA ... oottt e e e e e e e et e e e e e e ee st e e s eeeeessasaaeeeaaeenes

Steel01 -- Material Behavior

Steel02 Material -- Giuffré-Menegotto-Pinto Model with Isotropic Strain Hardening..............

Steel02 -- Material Behavior

HySteretic Materiall.........oo.eeiiiieie et e s e e e sneeeas

Hysteretic -- Material Behavior

VAo LU T3 F= L (=Y =

nDMaterial Command

Elastic 1SOtropiC MatErialc..eiiiieiiee e
J2 PIaStiCity Material.........cooiuiiiiiiiie e
Plane Stress Materialcooiiiiiiiiiiiiee et e e e s e e s e e e e e e e anaees
Plate FIDer Materialoooeiiiieiiee et
UC DavVis SOil MOTEIS.......cueeiiieiiiee et
Template Elasto-Plastic Material...........c.oooi i
UCSD SO0il MOGEIS......eeiieeiieeectee ettt e e e e e

section Command

Ty (oS T=T] (0] o F TR
8 a1 E = RS =To] 1o TR
] o= GRS 1T o1 (o] o [P TR
FIDEIr COMMEANG... ..ottt e e e e e e et e e e e e e e e e e e e e eeeesansaaeeeaasenes
Quadrilateral Patch COMMANG........coooiieeieee et e e e e e e e e e e e e e e e eaaaaas
(OF1 o1 U1 =Tl == (o] a T 011 011 =V (o [
Straight Layer COMMEANGeeiiiiiiieieiiee et
Circular Layer COMMENGcooi ittt sbee e e sbee e e e ebee e e e s bee e e s sneeeeennnee
S T=Tor (o] g e [o =T = Lo ST P R PRR
Elastic Membrane Plat@ SECHONcoi it e e e s e e e e e e eees
e L LT T o TS S T=To3 1o o I
230 [TE=Te] 1To] g T= LS T=Tel 1 o] TR TR
Isolator2spring Section: Model to include buckling behavior of an elastomeric bearing

element Command

Contents Vi

B O FT 3 1= 0 1= o |
Corotational Truss Element...........ooooueeeiiiiiiieeeeeeeeeeee,
Elastic Beam Column Element..........ccoooveeimiiieeeeiieeiieeen.
NonLinear Beam-Column Elements.........cooouueeeeiieeiiiiieinnen.
Nonlinear Beam Column Element...........coovuvueeeiiiiiiiiieen.
Beam With Hinges Element ...,
Displacement-Based Beam-Column Element
Zero-Length Elements........cccoeiiiiiie i
Zero-Length Element.........oocveiiiii e
Zero-Length ND Element ...
Zero-Length Section Element ...
Quadrilateral EIements......c...ueeiiiieiieeieeee e,
QUAA EIBMENT .o
Shell BEIEMENt ... et a e
Bbar Plane Strain Quadrilateral Element............ccceeeeeeeeenin.
Enhanced Strain Quadrilateral Element...........ccccceeeeieeennennn.
Brick EIEMENESieeeeieeeeee e
Standard Brick Element..........coooeiiiiiiieiieee e,
Bbar Brick Element..........ueeeiiiiiiieieee e
BeamColumndJoint Element...........ueeeiiiiiiiiiiiieeeeeeee,
Beam-Column Joint Element DiscusSion........ccccooevvvevvvvnnnnnn..

Beam-Column Joint Element Discussion

UC Davis Soil EIementscoociiieeiiieniieeee e
FourNodeQuadUP Elementcccoiieiiieniiininiee e
U-P-U element.........cooiiii e
Eight Node Brick Elementcoooiiiiiiiiiieee e,
Twenty Node Brick Element ..o

UC San Diego Soil Elements

block Command

o] (01 1924 DX 0701 41 3 -1 s [o
o] (011 1€ T DX 07011 41 34 -1 s [o

region Command

Geometric Transformation Command

Linear Transformationouueeiiiieiiiiieec e e
P-Delta Transformationecoeeeuiiiiiee e e
Corotational Transformation...........coeeuueeeeiiiiiiiieeee e,

Time Series

Constant TiMe SErES.......oouuueeeeeeeeeeeeeee e
Linear TiMeE SeriEScoevuureeeiieeeeeeee e
Rectangular Time Series.......oocvviiiiiieiiiiee e
SiNE TIME SEIIES c.vvvveeiieieeeeeeee et e
Path TiMeE SeriES.....cooooieeeeee e

pattern Command

Contents vii

plain Pattern ..o
[0ad CoMMANGccocueiiiiieiiee et
SP COMMANGcoiiiiiiii e

eleLoad Command

UniformExcitation Pattern
MultipleSupport Pattern
groundMotion Command
Plain GroundMotion
Interpolated GroundMotion
imposedMotion Command

Recorder Objects

Node ReCOrder.......cuueiiieeeeeiiieieeeeeeeeeeeeeeee e
EnvelopeNode Recorder
Drift RECOIrEr ...cuueieeeeeeeeeeee e

Element Recorder

EnvelopeElement Recorder
Display Recorder........cccocueeiiiiieeeiiiee e
Plot RECOIEreeeieeiiee e
playback Command

Analysis Objects

constraints Command

Plain Constraintscccccceeeeiiiee e
Penalty Methodoooviiiiii e
Lagrange Multipliers
Transformation Method

numberer Command

Plain NUMDErer ..o,
RCM NUMDEIEY ...

system Command

BandGeneral SOE

BandSPD SOEcccocvviiieeeceee e
ProfileSPD SOEccovviieieeee e
SparseGeneral SOE
UmfPack SOEcccovviiiiiie e
SparseSPD SOE ...

test Command

Norm Unbalance Test
Norm Displacement Increment Test
Energy Increment Test

algorithm Command

Linear Algorithmooooiiiiie e
Newton AIgorithm ...
Newton with Line Search Algorithm
Modified Newton Algorithm
Krylov-Newton Algorithm
BFGS Algorithmc.oooiiiiiiii e

Broyden Algorithm

integrator Command

Contents viii

o= To N 0o o1 (o] SRR 334
DisplacemMeENnt CONTIOL.......o.eiiieii ettt ettt ae e st e e e rae e e sabeeeneeeas 335
Minimum Unbalanced Displacement NOIM........cooiiiiiiiiiiiie e 336
ArC-LENGTN CONTIOL ...ttt sttt e ae e st e e e be e e st e e e be e e saneeeaee 336
L= g =T Q1Y 1= 1. o T SRR 337
Hilbert-Hughes-Taylor Methodcoo i 338
analysis Command 339
SEALIC ANAIYSIS ..t nnn e 339

L= LT (= 0 Y A F= = PR 340
VariableTranSiENt ANGIYSIS.....cooiiiiiii it e s b e e s bae e e s sneeeas 341
rayleigh command 342
eigen Command 343
analyze Command 344
dataBase Commands 345
FileDatastore COMMANccuiiiiiiiiie ettt e e et e e e et e e e s enre e e e enae e e e anneeeeennnes 345

ST AT @)1 0102 - To 1RSSR 346

L (o] (=3 @] 1 014 o= L T TSR P RO RPRRP 346
Miscellaneous Commands 347
o111 9 @7o] 2 0122 =T o [PPSR 347

FESEE COMMEANG......cc et 348

LT o T @ o a1 1 4= U o SRR 348
WIPEANAIYSIS COMMEANGviiiiiiiiiiiii ettt ettt e re e e e e s e neenes 348

[oF=To (@70 a1=3 @0 491 1 4= Ly o PRSPPI 349
(oI T T= T @70 14100 =T o [T 349

(aToTe =BT o J @ o] s 40 =T To IR RS 349

14T [T T @7 T 1 012 1 =T Lo [P RS 350

[0 F= 3V @e 114 2 F- e 1SRRI 351
LaTeTe =] = o T8 TgTo ROV 351
(o] 0] = 1A @] 1 41 .1 F=Tg T RS 352

How To.... 353
RUN OPENSEES ...ttt ettt e e et e e e et e e e e ette e e e e ste e e e esteeeeesaeeeeeseeeesanneeeeennnes 354
...Define UNits & CONSTANTSvviiei et e e e e s et e e e e e e e e enre e e e nnnee 356
...Generate Matlab CoOMMANASviiiiiiiee e e e e e e e 357

B B 1= {1 1= I o] I el (e ToT= T (U ¢ T SRR 357

B =T o I e q (=T g B L 111 SRR 359
BUIlAING TNE MOGEL......c i enre e e e 360
...Define Variables and Parameters.........ccooviiiii e 360

...Build Model and Defing NOGESc.ciiiiiiiiii e 363

...Build Model and Define Nodes using Variables.........ccocceviiiiiiniiinec e, 364

2. DEFINE MALEITAIS ... 364

e DEfINE EIBMENTS ... e 365

(DLt 1o Ta ol @ 1011 o | TSP PSP URRRRN 366
...Define Analysis-Output GENErationooceioiii e 366

...Define Data-Plot DUrNG ANAIYSIS.......ccoiuiiiiiiiiie e 368

LG 1= 1771472 Mo Y- Lo - TSR 369
..DEfINE Gravity LOAASccoeeiiieii ittt e 369

co:RUN Gravity ANAIYSIS.cueiiiieiie ettt ar e aee e 370

SEALIC ANAIYSIS -.eeeieeie et nnn e 370

...Define Static PUShOVEr ANalYSIScoiiiiiiiiiiie e 370

Contents ix

...RUN Static PUShOVEr ANAIYSIS.......oi it 371
DYNAMIC ANGIYSIS ...ttt e et e e e e e s e e e e e e e e e anr e e e e e 372
...Define Dynamic Ground-Motion ANalYSiSccuoiiiiiiiiiieeiee e 372
...Run Dynamic Ground-Motion ANGIYSIScuireiriiiiiiee et 373
...Combine Input-File COMPONENTSoiiiiiiiiie e 373
ceRUN Parameter STUAYeoi ittt rne e e e aee e 374
...Run Moment-Curvature Analysis 0N SECHONc.cooiiiiiieiie e 376
...Determine Natural Period & FrEQUENCYueiiiiiiiiiieiee e 377
Getting Started with OpenSees 379
T goTo 11T o] o FO PP PR PP 381
DOWNIOAA OPENSEES ...ttt ettt ettt sttt e ra e s bt e ettt sat e e e be e e sabeesabeeeaneeesabeeanneeans 382
RUN OPENSEES ...ttt ettt sttt e e a e e s bt e e abe e e sabe e e be e e sabeesabeeeaneeesabeeanneeans 384
Problem Definitiono et e e e e e e e 386
1Y/ ToTo (=T I = 11 1o = SRR 387
I\ (0T [SRR 388
=T =T] £ SRR 390
U=t] (o [T = TR PU PP PRSP 391
Summary of Model-Building INPut Fileceiiiii e 391
o T=To 3= Ta o [N Q = 7 I PR 394
1. Load defiNITION ... e 394
2. Analysis definition and fEATUIESeevi i s 395
3. ANAIYSIS EXECULION.eeiiiiiieie ittt ettt et e st e e et e e e e aabe e e e s aabe e e e e aanneeeeanneeas 396
LG 1= 1Y/1472 Mo Y- Lo - TSRS 396
Summary Of Gravity LOAAS.cc.uiiiiiieii ettt ae e sareeseeas 399
Lateral Loads -- Static PUSHOVEToi it 400
Lateral Loads -- Cyclic Lateral LOAdcoocueiiiiiiiiiiee ettt 401
Lateral Loads -- Dynamic ground MOtIONeeiiiiieii it 402
Getting Going with OpenSees (under development) 406
Problem DefiNitiON ... 407
AV ToT L= B =T 1o |1 o PSR 408
Variables and UNIES ..o 408
1Y/ ToTo (=T I = 10 1 (o = SRR 410
Nodal Coordinates & Masses, Boundary Conditionscccccveiiiiereeniieee e 410
Y= L C=T g =1 SRR 411
Element CroSS SECHON ...ttt sttt et e e e be e e sate e sabe e e eneeesabeeeneeeas 412
Elements and Element CONNECHIVILYcuiiiiiiiiiieiiee e 413
Gravity and other Constant LOAASc.cooiiiiiiiiiie ettt 414
Summary of Defining Structural MOdel ..o 414
Error-Checking Tip for Model BUildiNgcoooiiiiiiiiieee e 419
RECOrders fOr QUIPUL........eiie et e e st e e s e e s snee e e e e 425
Analysis Components 426

Script Utilities Library 427

Contents X

MaAatTESACH 427
RCCITCSECHION.ACHt e e e e e e e e e e e e e e e e eabraeeeeaaeeeennneees 429
RCCIrCSECHONFEDEASACt e e e e e e e e e annees 430
RO o =T g [=T D 1] o) = LY (o] SRR TUSPURRRRN 432
MOMENTCUIVAUIE.ACK ...eeeie et e et e e e e e e e e e e e e e e e nnneees 433
REAASMDFIIE.AC ...t e e e e e e et e e e e e e e e aareee e e e e e e e nnneees 434
[RT0Y 657 o] gl T =1 I SRR 436
StFramePZLAiSPIay.Clcoiiieiee e 437
L A= o 8 (o RS ST 437
RigidFrame3DdiSPIay.tClcueiiiiiiie e e 438
g} A @ 0] g =] ¢=) T8 (o] PP 439
1Y =L = oL@ U1 101U 8 (o USRS 440
GENPIANEFTAME.ICT ... e e e 440
References 443

Index 447

11

CHAPTER 1

Introduction

This document is intended to outline the basic commands currently available with the OpenSees
interpreter. This interpreter is an extension of the Tcl/Tk language for use with OpenSees.

OpenSees is an object-oriented framework for finite element analysis. OpenSees' intended users
are in the research community. A key feature of OpenSees is the interchangeability of
components and the ability to integrate existing libraries and new components into the framework
(not just new element classes) without the need to change the existing code. Core components,
that is the abstract base classes, define the minimal interface (minimal to make adding new
component classes easier but large enough to ensure all that is required can be accommodated).

In This Chapter

[N\ [o) 7= o] o TSRS 11
COPYIGNT .. e 13
Introduction to the Tcl command language............... 14
OpenSees Interpreter.......ovveiiiieeee i 18
Notation

The notation presented in this chapter is used throughout this document.

Input values are a string, unless the first character is a $, in which case an integer, floating point
number or variable is to be provided. In the Tcl language, variable references start with the $
character. Tcl expressions can also be used as input to the commands where the input value is
specified by the first character being a $.

Optional values are identified in enclosing <> braces.

When specifying a variable quantity of values, the command line contains (x $values). The
number of values required, x, and the types of values, $values, are specified in the description of
the command.

An arbitrary number of input values is indicated with the dot-dot-dot notation, i.e. $value1 $value2

Chapter 1 Introduction 12

The OpenSees interpreter constructs objects in the order they are specified by the user. New
objects are often based on previously-defined objects. When specified as an object parameter, a
previously-defined object must have already been added to the Domain. This requirement is
specified in the description of the command arguments.

Also, and very important:

Do not use greek fonts ANYWHERE in your documentation, not only do they not come out in Html,
they are not allowed in tcl, which is where this is important. | recommend spelling out the letters:
alpha, beta, gamma, eps (short for epsilon), etc.

I recommend to not use them in your figures either, as you would be unable to refer to them. If you
must use them you have to do it very carefully, as it may be okey for internal variables.

Example command:

| node $nodeTag (ndm $coords) <-mass (ndf $MassValues)>

This line executes the node command (page 36) assigns coordinates and masses to a specified
node. The $nodeTag argument is an integer tag identifying the node.The coordinate arguments
are specified with the parentheses () because the number of arguments is dependent on the
definition of the model (ndm (page 34)): two arguments in 2D and three in 3D.

The mass specification at the node definition is optional. Therefore, it is enclosed in <> braces.
The number of mass arguments is also dependent on the model definition, depending on the
number of degrees of freedom assigned to a node (ndf (page 34)).

Chapter 1 Introduction 13

Copyright

Copyright © 1999,2000 The Regents of the University of California. All Rights Reserved.

Permission to use, copy, modify, and distribute this software and its documentation for
educational, research and non-profit purposes, without fee, and without a written agreement is
hereby granted, provided that the above copyright notice, this paragraph and the following three
paragraphs appear in all copies.

Permission to incorporate this software into commercial products may be obtained by contacting
the University of California. [Bill Hoskins Office of Technology Licensing, 2150 Shattuck Avenue
#150 Berkeley, CA 94720-1620, (510) 643-7201]

This software program and documentation are copyrighted by The Regents of the University of
California. The software program and documentation are supplied "as is", without any
accompanying services from The Regents. The Regents does not warrant that the operation of
the program will be uninterrupted or error-free. The end-user understands that the program was
developed for research purposes and is advised not to rely exclusively on the program for any
reason.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING
LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGE. THE UNIVERSITY OF CALIFORNIA SPECIFICALLY
DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE
SOFTWARE PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
ENHANCEMENTS, OR MODIFICATIONS.

Chapter 1 Introduction 14

Introduction to the Tcl command language

The Tcl scripting language was chosen to support the OpenSees commands, which are used to
define the problem geometry, loading, formulation and solution. These commands are one-line
commands which have specific tasks, as described in this manual. The Tcl language provides
useful programming tools, such as variables manipulation, mathematical-expression evaluation
and control structures.

Tcl is a string-based scripting language which allows the following:

= Variables and variable substitution

= Mathematical-expression evaluation

= Basic control structures (if , while, for, foreach)
= Procedures

= File manipulation

More information on Tcl commands can be found at its web site: Tcl/Tk Primer
(http://dev.scriptics.com/scripting/primer.html) (http://dev.scriptics.com/scripting/primer.html)

Handy Tcl commands:

incr - Increment the value of a variable:

seta
incr a

a book reference:

Brent Welch <welch@acm.org>, Ken Jones, and Jeff Hobbs: Practical Programming in Tcl and
Tk, (http://www.beedub.com/book/) 4th Edition ISBN: 0-13-038560-3, June, 2003
(http://www.beedub.com/book/)

Chapter 1 Introduction 15

Tcl Commands Format

Tcl scripts are made up of commands separated by new lines or semicolon (;).

The basic syntax for a Tcl command is:

| command $arg1 $arg2 ...

command name of the Tcl command or user-defined procedure
$arg1 $arg2 ... arguments for the command

Tcl allows any argument to be nested command:

command [nested-command1] [nested-command2]

where the [] are used to delimit the nested commands. The Tcl interpreter will first evaluate the
nested commands and will then evaluate the outer command with the results to the nested
commands.

The most basic command in Tcl is the set command:

| set variable $value |

for example:

setab

The Tcl interpreter regards a command starting with the pond sign (#) to be a comment statement,
so it does not execute anything following the #. For example:

this command assigns the value 5 to the variable a
setab

The pound sign and the semicolon can be used together to put comments on the same line as the
command. For example:

| set a 5; # this command assigns the value 5 to the variable a

Chapter 1 Introduction

16

Example Tcl Commands

arithmetic procedure for & foreach functions
>seta 1 >proc sum {a b} { for {seti 1} {$i < 10} {incri 1} {
1 return [expr $a + $b] puts “i equals $i”
>setb a } }

a >sum 2 3

>set b $a 5

1 >set ¢ [sum 2 3] set sum 0

>expr2 + 3 5 foreach value {1 2 3 4} {
5 > set sum [expr $sum +
>expr 2 + $a $value]

3 }

>set b [expr 2 + $a]
3

>

puts $sum
10

>

file manipulation

procedure & if statement

>set fileld [open tmp w]
anumber

>puts $fileld “hello”
>close $filelD

>type tmp

hello

>

>source Example1.icl

>proc guess {value} {
global sum
if {$value < $sum} {
puts “too low”
}else {

if {$value > $sum} {

puts “too high”

} else { puts “you got it!"}

> guess 9
too low

Chapter 1 Introduction 17

Additional Tcl Resources

Here are additional resources for Tcl:

http.//www.freeprogrammingresources.com/tcl.htm/
(http://www.freeprogrammingresources.com/tcl.html)

(a large list of helpful resources)

http://www.tcl.tk/man/ (http://www.tcl.tk/man/)

(Tcl/Tk manual pages)

http://www.mit.edu/afs/sipb/user/golem/doc/tclik-iap2000/TclTk1.html
(http://www.mit.edu/afs/sipb/user/golem/doc/icltk-iap2000/TclTk1.html)

(a tutorial describing many commands by describing their implementation in a short
program)

http://www.beedub.com/book/ (http://www.beedub.com/book/)

(some sample chapters from Practical Programming in Tcl and Tk, by Welch and
Jones)

http://philip.greenspun.com/tcl/ (http://philip.greenspun.com/tcl/)

(not the most readable tutorial IMHO, but it does have Tickle-me-Elmo ;) It can be
accessed from the link below as well.)

http://www.tcl.tk/scripting/ (http://www.tcl.tk/scripting/)

Chapter 1 Introduction 18

http://hegel.ittc.ukans.edu/topics/tcltk/tutorial-noplugin/index.html
(http://hegel.ittc.ukans.edu/topics/tcltk/tutorial-noplugin/index.html)

(a short tutorial on the essential Tcl commands, also includes a manual of Tcl/Tk
commands at the website below)

http://hegel.ittc.ukans.edu/topics/linux/man-pages/index/index-mann.html
(http://hegel.ittc.ukans.edu/topics/linux/man-pages/index/index-mann.html)

http://pages.cpsc.ucalgary.ca/~saul/personal/archives/Tcl-Tk stuff/tcl examples/
(http://pages.cpsc.ucalgary.ca/~saul/personal/archives/Tcl-Tk_stuff/tcl_examples/)

(Tk widgets with screenshots)

OpenSees Interpreter

The main abstractions of OpenSees will be explained using the OpenSees interpreter. The
interpreter is an extension of the Tcl (page 15) scripting language. The OpenSees interpreter adds
commands to Tcl for finite element analysis. Each of these commands is associated (bound) with
a C++ procedure that is provided. It is this procedure that is called upon by the interpreter to parse
the command. In this document we outline only those commands which have been added to Tcl by
OpenSees.

For OpenSees we have added commands to Tcl for finite element analysis:

= Modeling — create nodes, elements, loads and constraints

= Analysis — specify the analysis procedure.

= Qutput specification — specify what it is you want to monitor during the analysis.
» HELP

OpenSees Documentation Web Page (http://opensees.berkeley.edu/OpenSees/primer.html)

http://opensees.berkeley.edu/cgi-bin/OpenSeesCommands.pl
(http://opensees.berkeley.edu/cgi-bin/OpenSeesCommands.pl)

19

CHAPTER 2

OpenSees

» What is OpenSees?

= +AAn object-oriented software framework for simulation applications in earthquake engineering using

finite element methods. OpenSees is not a code.

= +AA communication mechanism within PEER for exchanging and building upon research

accomplishments.

= +AAs open-source software, it has the potential for a community code for earthquake engineering.

my favorite: o
+ You can describe a structural/geotech. traditional code vs. O
component at a number of levels:

penSEES

S e | T [ot o et ol e | Traditional Code Framework of Components
- section level - moment-curvature model User Interface L |osel Buicer
- fiber level - material stress-strain model t t
Input Language > * Model Domain ¥
element node Integralgnooints elemert node g
lm) Base Code =« Elements ‘Materials ‘Other
[* % = = ¥ ’—} S -
Elements = 1 Solution Procedures 1
element ————— ciement 2 | '
4 i > Solvers
e Compute Technology
[} Compute Technology
1
¥ Databases
fiber

simulation-framework
components

computation information
technology

Algorithms, Software framework,
Solvers, - Databases, Visualization,
Parallel/distributea Internet/grid computation
computing

Simulation models,

Performance models,

Limit state models

Material, component, system models

Open-Source Community
Simulation Framework

+— Application Program
Interface (API)

Chapter 2

OpenSees

20

OpenSees is comprised of a set of modules to perform creation of the
finite element model, specification of an analysis procedure, selection of
quantities to be monitored during the analysis, and the output of results. In
each finite element analysis, an analysis is used to construct 4 main types
of objects, as shown

main abstractions in
O p en S E E S Holds the state of the model at time 1, and

(1; + dt) & is responsible for storing the
objects created by the ModelBuilder
object and for providing the Analysis and
Recorder objects access to these objects

‘ModelBuiIderH Domain H Analysis

Constructs the objects Moves The. model from
state af time t; to state

in the model and adds I
them to the domain. at time and (t; + df)

Monitors user-defined
parameters in the
model during the
analysis

all this is within the
Tel interpreter & commands

domain & analysis objects

O

[
‘ Element ‘ ‘ Node ‘ ‘MP_Constraint‘ ‘SP_Constraint‘ ‘LoadPattern ‘ ‘ TimeSeries‘

[|
‘ ElementalLoad ‘ ‘ NodalLoad ‘ ‘SP_Constraint‘
Analysis

<&

[I [[I |
‘ CHandler H Numberer‘ ‘AnalysisModel‘ ‘SolnAIgorithm‘ | Integrator | ‘ SystemOfEqgn ‘

In This Chapter

OpenSees Features
ModelBuilder Object
Domain ODJECEeeveiiiiiiiiiiiieee e
Recorder Object ...
Analysis ObJECtccoiiiiiiiiie e

Chapter 2 21

OpenSees Features

+ The library of materials, elements and analysis
powerful tool for numerical simulation of nonline
systems

+ The OpenSees library of components is ever-gt
numerical-simulation models

+ The OpenSees interface is based on a comman
enables the user to create more-versatile input fil

+ OpenSees is not a black box, making it a useful
modeling

+ You can create your own material, element or a
into OpenSees

+ NEES is supporting integration of OpenSees as
laboratory testing

WHY OPENSEES?

Chapter 2 22

MODELS:

+ linear & nonlinear structural and
geotechnical models

Chapter 2

23

SIMULATIONS:

+ static push-over analyses

+ static reversed-cyclic analyses
+ dynamic time-series analyses
+ Uuniform-support excitation

+ multi-support excitation

MODELING FEATURES:

> MODEL-BUILDING CAPABILITIES:

= model command (page 34)

= node command (page 36)

= mass command (page 37)

= constraints objects

= uniaxialMaterial command (page 43)
= nDMaterial command (page 162)

= section command (page 191)

= element command (page 215)

= block command (page 273)

= region command

= Geometric Transformation command (page 280)

Chapter 2

24

Time Series command (page 288)
pattern command (page 294)

ANALYSIS CAPABILITIES
constraints command (page 316)
numberer command (page 321)
system command (page 323)
test command (page 326)
algorithm command (page 329)
integrator command (page 333)
analysis command (page 339)
rayleigh command (page 342)
eigen command (page 343)
dataBase command

RECORDER/OUTPUT CAPABILITIES

Node Recorder (page 303)
EnvelopeNode Recorder
Drift Recorder

Element Recorder (page 307)
EnvelopeElement Recorder
Display Recorder (page 310)
Plot Recorder

playback Command

MODEL-BUILDING FEATURES:

> UNIAXIAL MATERIALS (page 43):

Chapter 2 25

Elastic Material (page 125)

Elastic-Perfectly Plastic Material

Elastic-Perfectly Plastic Gap Material

Elastic-No Tension Material

Parallel Material

Series Material

Hardening Material

Concrete01 Material -- Zero Tensile Strength (page 134)
Concrete02 Material -- Linear Tension Softening (page 137)
Concrete03 Material -- Nonlinear Tension Softening (page 143)
Steel01 Material (page 147)

Steel02 Material -- Giuffré-Menegotto-Pinto Model with Isotropic Strain Hardening (page 153)
Hysteretic Material (page 158)

Viscous Material

BARSLIP Material

Bond_SPO01 - - Strain Penetration Model for Fully Anchored Steel Reinforcing Bars
Concrete04 Material -- Popovics Concrete Material (page 57)
Fatigue Material

Limit State Material

PINCHING4 Material (page 84)

Py TzQz Uniaxial Materials

Reinforcing Steel Material

MULTIDIMENSIONAL/nD MATERIALS:
Elastic Isotropic Material (page 162)

J2 Plasticity Material

Plane Stress Material

Plate Fiber Material (page 164)

Template Elasto-Plastic Material
FluidSolidPorousMaterial Material
PressurelndependMultiYield Material
PressureDependMultiYield Material

ELEMENTS:

Truss Element
Corotational Truss Element

Chapter 2 26

= FElastic Beam Column Element (page 217)

= Nonlinear Beam Column Element (page 218)

= Beam With Hinges Element (page 219)

= Displacement-Based Beam-Column Element (page 223)
= Zero-Length Element

= Zero-Length ND Element

= Zero-Length Section Element (page 226)

* Quad Element

= Shell Element

» Bbar Plane Strain Quadrilateral Element (page 228)
» Enhanced Strain Quadrilateral Element

= Standard Brick Element

= Bbar Brick Element

= Eight Node Brick Element (page 259)

= Twenty Node Brick Element

= y-p-U element

» FourNodeQuadUP Element (page 256)

» BeamColumndJoint Element

» SECTIONS:

= Elastic Section (page 192)

= Uniaxial Section (page 193)

= Fiber Section (page 194)

= Section Aggregator

= Elastic Membrane Plate Section

= Plate Fiber Section (page 205)

= Bidirectional Section

= [solator2spring Section: Model to include buckling behavior of an elastomeric bearing

ANALYSIS FEATURES:

> Linear Equation Solvers (page 323) -- provide the solution of the linear system
of equations Ku = P. Each solver is tailored to a specific matrix topology.

Chapter 2 27

Profile SPD (page 324) -- Direct profile solver for symmetric positive definite matrices
Band General -- Direct solver for banded unsymmetric matrices

Band SPD -- Direct solver for banded symmetric positive definite matrices

Sparse General -- Direct solver for unsymmetric sparse matrices

Sparse Symmetric -- Direct solver for symmetric sparse matrices

UmfPack General -- Direct UmfPack solver for unsymmetric matrices

Full General -- Direct solver for unsymmetric dense matrices

Conjugate Gradient -- Iterative solver using the preconditioned conjugate gradient method

Eigenvalue Solvers -- provide the solution of the generalized eigenvalue
problem Kv = MvL

Symmetric Arpack -- Arpack solver for symmetric matrices
Band Arpack -- Arpack solver for banded matrices

DOF Numberers (page 321) -- number the degrees of freedom in the domain
Plain (page 321) -- Uses the numbering provided by the user

RCM (page 322) -- Renumbers the DOF to minimize the matrix band-width using the Reverse
Cuthill-McKee algorithm

Static Integrators (page 333) -- determine the next time step for an analysis

Load Control (page 334) -- Specifies the incremental load factor to be applied to the loads in
the domain

Displacement Control (page 335) -- Specifies the incremental displacement at a specified DOF
in the domain

Minimum Unbalanced Displacement Norm (page 336) -- Specifies the incremental load factor
such that the residual displacement norm in minimized

Arc Length (page 336) -- Specifies the incremental arc-length of the load-displacement path

Transient Integrators (page 333) -- determine the next time step for an analysis
including inertial effects

Newmark (page 337) -- The two parameter time-stepping method developed by Newmark

Hilbert-Hughes-Taylor (page 338) -- The three parameter Hilbert-Hughes-Taylor time-stepping
method

Central Difference -- Approximates velocity and acceleration by centered finite differences of
displacement

Chapter 2 28

Solution Algorithms (page 329) -- Iterate from the last time step to the current
Linear Algorithm -- Uses the solution at the first iteration and continues

Newton Algorithm (page 329) -- Uses the tangent at the current iteration to iterate to
convergence

Modified Newton Algorithm -- Uses the tangent at the first iteration to iterate to convergence
Newton with Line Search Algorithm

Krylov-Newton Algorithm

BFGS Algorithm

Broyden Algorithm

Convergence Tests (page 326) -- Accept the current state of the domain as
being on the converged solution path

Norm Unbalance -- Specifies a tolerance on the norm of the unbalanced load at the current
iteration

Norm Displacement Increment -- Specifies a tolerance on the norm of the displacement
increments at the current iteration

Energy Increment -- Specifies a tolerance on the inner product of the unbalanced load and
displacement increments at the current iteration

Relative Unbalance
Relative Displacement Increment
Relative Energy Increment

Constraint Handlers (page 316) -- Handle the constraints defined on the domain

Plain Constraints (page 318) -- Removes constrained degrees of freedom from the system of
equations

Lagrange Multipliers (page 319) -- Uses the method of Lagrange multipliers to enforce
constraints

Penalty Method (page 318) -- Uses penalty numbers to enforce constraints

Transformation Method (page 320) -- Performs a condensation of constrained degrees of
freedom

analysis Command (page 339) -- defines what type of analysis is to be
performed

Chapter 2 29

= Static Analysis (page 339) -- solves the KU=R problem, without the mass or damping matrices.

= Transient Analysis (page 340) -- solves the time-dependent analysis. The time step in this type
of analysis is constant. The time step in the output is also constant.

= Variable Transient Analysis (page 341) -- performs the same analysis type as the Transient
Analysis object. The time step, however, is variable. This method is used when there are
convergence problems with the Transient Analysis object at a peak or when the time step is
too small. The time step in the output is also variable.

ModelBuilder Object

The model builder constructs As in any finite element analysis, the analyst's first step is to
subdivide the body being studied into elements and nodes, to define loads acting on the elements
and nodes, and to define constraints acting on the nodes.

The ModelBuilder is the object in the program responsible for building the following objects in the
model and adding them to the domain:
= Node (page 36)

= Mass (page 37)

= Material (page 162, page 43)

= Section (page 191)

= Element (page 215)

= LoadPattern (page 294)

= TimeSeries (page 288)

= Transformation (page 280)

= Block (page 273)

= Constraint (page 316)

Chapter 2 30

Domain Object

The Domain object is responsible for storing the objects created by the ModelBuilder (page 29)
object and for providing the Analysis (page 313) and Recorder (page 31) objects access to these

objects.

Figure 1: Domain Object

Domaln

| | | ? | | |

Elemert Mode MF_Constraing EP_Constraind |LoadPattern TitmeSeries

?

I I |
il aterial ElermentalLoad | [Modalload| BP_Constrain

Chapter 2 31

Recorder Object

The recorder object monitors user-defined parameters in the model during the analysis. This, for
example, could be the displacement history at a node in a transient analysis, or the entire state of
the model at each step of the solution procedure. Several Recorder (page 303) objects are
created by the analyst to monitor the analysis.

> What does a recorder do?

= Monitors the state of a domain component (node, element, etc.) during an analysis
= Writes this state to a file or to a database at selected intervals during the analysis
= There are also recorders for plotting and monitoring residuals

Once in a file, the information can be easily post-processed.

Analysis Object

The Analysis objects are responsible for performing the analysis. The analysis moves the model
along from state at time t to state at time t + dt. This may vary from a simple static (page 339) linear
analysis to a transient (page 340, page 341) non-linear analysis. In OpenSees each Analysis
object is composed of several component objects, which define the type of analysis how the
analysis is performed.

Analysis

? Salver

CHandler Mumberer Analysizhodel | | SolnAlgorithm Irtegrstar SystemOiEgn

D e P Sp

Pl =0 Tt Equ ksl &igo Sigticlvkq Etor BawdGe veral
P alty RCM Liear LgdCoitol BandsAD
L5 rEkge I Ik Dieg ree VAL TR R AT ey R iz DEpCoial FromesRD
Trakshm Jto INcediect & W b arclengty Sparre Ge el
Mewrbion Lines: anch MisUsbalD EpH om Umack
B oy » Sparse Symmet
BFGS TNk ptivteg Eor

FIyioun emiioy Newmark
HHT

Chapter 2 32

Figure 2: Analysis Object

CHAPTER 3

Model-Building Objects

These objects are used to create the physical model.

In This Chapter

mModel ComMmMaNd.........ouuiiiieiieie e 34
Node ComMMANd.........uiiiiiiiie e 36
Mass Commandccooeivvueiiiiiiee e 37
constraints ObjecCtS...........uveiiiiiii 38
uniaxialMaterial Commandccceeeveiiieiieiiiieeees 43
nDMaterial Commandcoovveviiiiiiieieiieiee e, 162
section CommaNndcooovueiiiiiiiie e 191
element Command.........c.oeeiieiiiiiiiiii e 215
block Commandoooueiiiiiiiiiieiee e 273
region ComMmaNd.........ccoueeiiiiiiiiiiieeee e 278
Geometric Transformation Command.............c......... 280
TIME SEIHES ... e 288

pattern Command............eeevveeeiiiiiiiiiieeee e 294

34

CHAPTER 4

model Command

This command is used to construct a ModelBuilder object.

Currently there is only one type of ModelBuilder accepted.

For an example of this command, refer to the Model Building Example (page 363)

In This Chapter
Basic Model BUIlder.......c.veeeeeeeeeeeeeeeeeeeeeeeeeee, 34
build ComMmMAaNdcon e 35

Basic Model Builder

This command is used to construct the BasicBuilder object.

| model BasicBuilder -ndm $ndm <-ndf $ndf>

$ndm dimension of problem (1,2 or 3)
$ndf number of degrees of freedom at node (optional)
(default value depends on value of ndm:
ndm=1 -> ndf=1
ndm=2 -> ndf=3
ndm=3 -> ndf=6)

These additional commands allow for the construction of Nodes (page 36), Masses (page 37),
Materials (page 162, page 43), Sections (page 191), Elements (page 215), LoadPatterns (page
294), TimeSeries (page 288), Transformations (page 280), Blocks (page 273) and Constraints

(page 316). These additional commands are described in the subsequent chapters.

EXAMPLE:

Chapter 4 model Command

35

model basic -ndm 3 -ndf 6; # 3 spacial dimensions, 6 DOF's per node
For an example of this command, refer to the Model Building Example (page 363)

build Command

This command is used to invoke build() (???7?) on the ModelBuilder (page 29) object.

| build

This command has no effect a BasicBuilder (page 34) object, but will on other types of
ModelBuilder (page 29) objects.

36

CHAPTER 5

node Command

This command is used to construct a Node object. It assigns coordinates and masses to the Node
object.

| node $nodeTag (ndm $coords) <-mass (ndf $MassValues)>

$nodeTag integer tag identifying node
$coords nodal coordinates (ndm (page 34) arguments)
$MassValues nodal mass corresponding to each DOF (ndf (page 34)

arguments) (optional)

The optional -mass string allows analyst the option of associating nodal mass with the node

EXAMPLE:

node 1 0.0 0.0 0.0; # x,y,zcoordinates (0,0,0) of node 1

node 2 0.0 120. 0.0; # x,y,z coordinates (0,120,0) of node 2

For an example of this command, refer to the Model Building Example (page 363)

37

CHAPTER 6

mass Command

This command is used to set the mass at a node.

| mass $nodeTag (ndf $MassValues)

$nodeTag integer tag identifying the node associated with the mass

$MassValues mass values corresponding to each nodal degrees of freedom
(ndf (page 34) values)

EXAMPLE:
mass 2 2.50.0 2.50.00.0 0.0; # define mass in x and z coordinates
For an example of this command, refer to the Model Building Example (page 363)

38

CHAPTER 7

constraints objects

From Cook: " A constraint either prescribes the value of a DOF (as in imposing a support
condition) or prescribes a relationship among DOF. In common terminology, a single-point
constraint sets a single DOF to a known value (often zero) and a multi-point constraint imposes a
relationship between two or more DOF-.... For example, support conditions on a three-bar truss
invoke single-point constraints, while rigid links and rigid elements each invoke a multi-point
constraint."

In This Chapter
Single-Point Constraints.........cccocveiiiiiiiee e 38
Multi-Point Constraints ..., 41

Single-Point Constraints

The following commands construct homogeneous single-point boundary constraints.

fix Command

This command is used to construct homogeneous single-point boundary constraints.

| fix $nodeTag (ndf $ConstrValues)

$nodeTag integer tag identifying the node to be constrained

$ConstrValues constraint type (0 or 1). ndf (page 29) values are specified,
corresponding to the ndf degrees-of-freedom.

The two constraint types are:
0 unconstrained
1 constrained

EXAMPLE:
fix 111111 1; # node 1: fully fixed

Chapter 7 constraints objects 39

fix2010010-mass 2.50.0 2.50.0 0.0 0.0; # node 2: restrain axial elongation and
torsion, translational masses in x-z plane only

For an example of this command, refer to the Model Building Example (page 363)

fixX Command

This command is used to construct multiple homogeneous single-point boundary constraints for
all nodes whose x-coordinate lies within a specified distance from a specified coordinate.

| fixX $xCoordinate (ndf $ConstrValues) <-tol $tol>

For example, this command is used when specifying boundary conditions for a series of nodes
lying in a plane parallel to the y-z plane in global coordinates.

$xCoordinate x-coordinate of nodes to be constrained

$ConstrValues constraint type (0 or 1). ndf (page 29) values are specified,
corresponding to the ndf degrees-of-freedom.

The two constraint types are:
0 unconstrained
1 constrained
$tol user-defined tolerance (optional, default = 1e-10)

EXAMPLE:
fixX0.0111111-tol 0.1; # fully restrain all nodes in y-z plane at origin (x=0.0)

fixY Command

This command is used to construct multiple homogeneous single-point boundary constraints for
all nodes whose y-coordinate lies within a specified distance from a specified coordinate.

| fixY $yCoordinate (ndf $ConstrValues) <-tol $tol>

For example, this command is used when specifying boundary conditions for a series of nodes
lying in a plane parallel to the x-z plane in global coordinates.

Chapter 7 constraints objects 40

$yCoordinate y-coordinate of nodes to be constrained

$ConstrValues constraint type (0 or 1). ndf values are specified, corresponding to
the ndf (page 34) degrees-of-freedom.

The two constraint types are:
0 unconstrained
1 constrained
$tol user-defined tolerance (optional, default = 1e-10)

EXAMPLE:
fixY 0.0111111-tol 0.1; # fully restrain all nodes in x-z plane at origin (y=0.0)

fixZ Command

This command is used to construct multiple homogeneous single-point boundary constraints for
all nodes whose z-coordinate lies within a specified distance from a specified coordinate.

| fixZ $zCoordinate (ndf $ConstrValues) <-tol $tol>

For example, this command is used when specifying boundary conditions for a series of nodes
lying in a plane parallel to the x-y plane in global coordinates.

$zCoordinate z-coordinate of nodes to be constrained

$ConstrValues constraint type (0 or 1). ndf values are specified, corresponding to
the ndf (page 34) degrees-of-freedom.

The two constraint types are:
0 unconstrained
1 constrained
$tol user-defined tolerance (optional, default = 1e-10)

EXAMPLE:
fixZ0.0111111-tol 0.1; # fully restrain all nodes in x-y plane at origin (z=0.0)

Chapter 7 constraints objects 41

Multi-Point Constraints

The following commands construct multi-point boundary constraints.

equalDOF Command

This command is used to construct a multi-point constraint between nodes.

| equalDOF $rNodeTag $cNodeTag $dof1 $dof2 ...

$rNodeTag integer tag identifying the retained, or master node (rNode)
$cNodeTag integer tag identifying the constrained, or slave node (cNode)
$dof1 $dof2 ... nodal degrees-of-freedom that are constrained at the cNode to

be the same as those at the rNode

Valid range is from 1 through ndf (page 34), the number of nodal
degrees-of-freedom.

EXAMPLE:

equalDOF 231 35; #impose the traslational displacements in x and z directions, and
rotation about the y-axis of node 3 to be the same as those of
node 2.

rigidDiaphragm Command

This command is used to construct a number of Multi-Point Constraint (MP_Constraint) objects.
These objects will constraint certain degrees-of-freedom at the listed slave nodes to move as if in
a rigid plane with the master node.

rigidDiaphragm $perpDirn $masterNodeTag $slaveNodeTag1 $slaveNodeTag2

Chapter 7 constraints objects 42

$perpDirn direction perpendicular to the rigid plane (i.e. direction 3
corresponds to the 1-2 plane)

The rigid plane can be the 1-2, 1-3 or 2-3 plane

$masterNodeTag integer tag identifying the master node
$slaveNodeTag1 nodes that are to be constrained to the master node
$slaveNodeTag?2 ...

NOTE: The constraint object is constructed assuming small rotations.

NOTE: The rigidDiaphragm command works only for problems in three dimensions with
six-degrees-of-freedom at the nodes (ndf (page 34) = 6).

EXAMPLE:
rigidDiaphragm 22 4 5 6; constrain nodes 4,5,6 to move as if in the same x-z plane as node 2.

rigidLink Command

This command is used to construct a single MP_Constraint object.

| rigidLink $type $masterNodeTag $slaveNodeTag

$type string-based argument for rigid-link type:

rod only the translational degree-of-freedom will be
constrained to be exactly the same as those at
the master node

beam both the translational and rotational degrees of
freedom are constrained.

$masterNodeTag integer tag identifying the master node
$slaveNodeTag integer tag identifying the slave node to be constrained to master
node

NOTE: The constraint object constructed for the beam option assumes small rotations

EXAMPLE:
rigidLink beam 2 3; # connect node 3 to node 2 via a rigid link-beam.

43

CHAPTER 8

uniaxialMaterial Command

This command is used to construct a UniaxialMaterial object which represents uniaxial
stress-strain (or force-deformation) relationships.

The valid queries to any uniaxial material when creating an ElementRecorder (page 307) are
'strain,' 'stress,' and 'tangent.’

In This Chapter

-- Contributed Uniaxial Materialscccccccoeviunnneeee. 44
Elastic Material...........cccovvieeiiiiiicce e, 125
Elastic-Perfectly Plastic Material...........cccccoevveeeee. 126
Elastic-Perfectly Plastic Gap Material....................... 128
Elastic-No Tension Material..........cccccceeeeiiiiiiiennnnnnnn. 129
Parallel Material..........ccccoceeeiiiiiiiiicce e, 130
Series Materialcooooeiiiiiiiiiiie e, 131
Hardening Material ..o, 133
Concrete01 Material -- Zero Tensile Strength........... 134

Concrete02 Material -- Linear Tension Softening...... 137
Concrete03 Material -- Nonlinear Tension Softening143

Steel01 Materialceeeviiiiiiiii e 147
Steel02 Material -- Giuffré-Menegotto-Pinto Model with Isotropic
Strain Hardeningceeveeiiiiiiiie 153
Hysteretic Material..............uuvueiiiiiiiiiiiiiiiiiiiiiiiiiiiieeens 158

Viscous Materialcoveeeeeeeee e 161

44

CHAPTER 9

-- Contributed Uniaxial Materials

These additional materials are contributions to OpenSees and should be available in the latest
executable.

If you have questions about these objects, please do contact the individual authors directly.

In This Chapter

BARSLIP Materialccooveeiiiiiiiiiieieeee e 44
Bond_SPO01 - - Strain Penetration Model for Fully Anchored Steel
Reinforcing Bars..........coooviiiii 46
Concrete04 Material -- Popovics Concrete Material.. 57

Fatigue Material...........cooiiiiii s 61

Limit State Material..............euveeiiiiieiiiiiiiiiiiiiiiiiiieiennns 73
PINCHING4 Materialcccovveeeeieeiiiiiiiiieeee e 84

PyTzQz Uniaxial Materialsccccccooiiiiiiieeiiinnnnns 104
Reinforcing Steel Materialcccooiiiiiiiieinnnns 112

BARSLIP Material

Contact Author:

This command is used to construct a uniaxial material that simulates the bar force versus slip
response of a reinforcing bar anchored in a beam-column joint. The model exhibits degradation
under cyclic loading. Cyclic degradation of strength and stiffness occurs in three ways: unloading
stiffness degradation, reloading stiffness degradation, strength degradation.

uniaxialMaterial BarSlip $matTag $fc $fy $Es $fu $SEh $db $id $nb $depth
$height <$ancLratio> $bsFlag $type <$damage $unit>

$matTag unique material object integer tag

$fc positive floating point value defining the compressive strength of
the concrete in which the reinforcing bar is anchored

Chapter 9 -- Contributed Uniaxial Materials 45

$ty
$Es
$fu
$Eh
$id

$db
$nb
$depth

$height

$ancLratio

$bsFlag
$type

$damage

$unit

NOTE:

Model Characteristics:

positive floating point value defining the yield strength of the
reinforcing steel

floating point value defining the modulus of elasticity of the
reinforcing steel

positive floating point value defining the ultimate strength of the
reinforcing steel

floating point value defining the hardening modulus of the
reinforcing steel

floating point value defining the development length of the
reinforcing steel

point value defining the diameter of reinforcing steel
an integer defining the number of anchored bars

floating point value defining the dimension of the member (beam
or column) perpendicular to the dimension of the plane of the

paper
floating point value defining the height of the flexural member,

perpendicular to direction in which the reinforcing steel is placed,
but in the plane of the paper

floating point value defining the r