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Abstract 

Soil-Structure Interaction Analysis Using High-Performance Parallel Computation 

by 

Georgios Petropoulos 

Doctor of Philosophy in Engineering-Civil and Environmental Engineering 

University of California, Berkeley 

Professor Gregory L. Fenves, Chair 

The primary objective of this dissertation is to design and develop high-performance algo­

rithms and software for the simulation of soil-foundation-structure interaction on large soil 

domains using finite elements and mixed time integration on parallel computers. Second, 

the dissertation presents a preliminary study, conducted with numerical simulations, of 

the response of simplified structural models to near-fault, pulse-type ground motion for 

varying soil conditions. 

The development of a scalable and efficient finite element software, is based on the 

external loading computation, the element state determination, the mixed time integration 

scheme and its implementation, and finally the communication scheme and the solution 

phase. The object-oriented paradigm is used for the software design because it allows for 

usage of existing software components for the remaining parts of the software that are 

modified for performance and scalability reasons. 

The external loading computation uses a novel method of effective seismic input, the 

Domain Reduction Method, which requires processing of large data sets that represent 
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the wave field used to generate the input forces. Specialized classes are developed to 

implement this loading pattern. 

Explicit time integration with diagonal mass matrices is selected for regions dominated 

by wave propagation because it does not require factorization of the dynamic stiffness 

matrix, it has a minimal memory footprint, and it is highly scalable. To analyze structures 

implicit time integration is needed, and therefore the coupled problem is solved using a 

mixed time integration algorithm that is extended to handle nonlinear systems in the 

implicit partition by combining it with Newton-Raphson iterations. The software design 

for this algorithm allows for various types of communication between the implicit and 

explicit partitions via subclassing and use of virtual methods, for example within the 

same address space, within the same communicator or between subcommunicators of a 

communicator. 

The communication scheme used by the explicit time integration solver is designed to 

be tunable depending on the problem size, number of processors, hardware platform and 

message passing library. An efficient numbering scheme is presented for general purpose 

finite element degree of freedom numbering which is almost embarassingly parallel. Two 

methods for setting up the communication graph are presented, one based on the all-to-all 

multicast and one based on the one-to-all multicast. 

The second part of the dissertation consists of computational simulations of the soil-

foundation-structure-interaction response of simple structural models on large soil do­

mains. Initially the response of a large, near-fault soil domain to low-frequency pulse-type 

input is studied, and then compared to broadband input. The soil simulation for low-

frequency input is repeated for a softer soil profile and increased spatial variability over 

the surface of the soil domain is observed. 

The low-frequency input is used to shake the same soil volume with single sim­

plified structural models for two and four second vibration period systems. The re­

sults indicate that the simplified soil-foundation-structure interaction closed-form solu-
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tions tend to overestimate the effects of this interaction as far as period lengthening 

and damping. For the four second period systems reduction of the effective damping 

is observed which is due to rocking. Significant variability on the permanent offsets of 

yielding structures which have the same fundamental elastic period of vibration is ob­

served. The interaction in most cases reduces the structural deformations. Finally, two 

building interaction analyses are conducted to examine the ensemble effects of interac­

tion between buildings and to examine the scalability of the mixed integration method. 

Professor Gregory L. Fenves 
Dissertation Committee Chair 
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Chapter 1 

Introduction 

Earthquakes are a constant threat in large areas of the United States and around the 

world. Assessing the risks and mitigating the hazards of earthquakes is one of the primary 

missions of the earthquake engineering community. Estimating the ground motion to 

which structures will be exposed during their lifetimes and predicting their responses to 

this motion is essential in designing and retrofitting earthquake-resistant buildings and 

infrastructure. Determining performance of structures, including damage and loss, is also 

of great use for emergency planning and management purposes. In the context of these 

societal needs, the research project Seismic Performance Of Urban Regions (SPUR) has 

been conceived. The goal of SPUR is to create a powerful new computational modeling 

and simulation system for understanding the impact of an earthquake on a region, for use 

by public policy makers and earthquake engineering researchers. SPUR aims to achieve 

this by simulating the performance of the infrastructure of an urban region subject to an 

earthquake scenario. The ultimate goal is to use simulation coupled with visualization to 

examine the amount, distribution and type of damage to buildings, bridges, and lifelines 

caused by a realistic earthquake scenario in an actual urban site, and provide decision­

makers and stakeholders a better understanding of this complex phenomenon. 

SPUR's approach can be divided into three major areas: 
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1. Earthquake ground motion for a prescribed earthquake source and geological struc­

ture: simulation of ground motion using three dimensional finite element and wave 

propagation analysis from the fault to the area of interest. 

2. Structural modeling of the dynamic response of realistic-based building models for 

the inventory within a region of interest: A smaller domain with appropriate bound­

ary conditions and a set of structural models is analyzed using three-dimensional 

finite elements to account for site effects and soil-foundation-structure interaction 

(SFSI) to the dynamic response of a given structure. 

3. Visualization tools for the soil and structures as part of a three-dimensional domain. 

1.1 Problem statement 

The objective of this research is to develop an efficient parallel computational method 

for the regional SFSI problem using representative simplified structural models, three-

dimensional finite element models of a region of interest, realistic earthquake scenarios and 

investigate factors increasing the complexity of the structural response such as near-fault 

ground motions and local site-effects. This is a sub-region of the system that includes the 

fault, the propagation path of the excitation up to the region of interest, and the region 

of interest along with the buildings and foundations. The scientific goals are to model 

a three-dimensional subdomain with appropriate boundary conditions, account for the 

proper wave propagation and energy transfer from and to the half-space that represents 

the soil, and using structural models simulate, study and provide a better understanding 

of the dynamic response of structures accounting for local site effects, complex SFSI and 

the effects of near fault ground motion. 

To enable the simulation of a sub-region of soil, foundations and structures at the 

desired scale, high performance and scalable computational tools are necessary. The ad­

vances in the field of computer science and specifically hardware architecture, networks, 
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programming languages and operating systems have enabled the widespread of paral­

lel or distributed memory computing, which is the computational platform that enables 

large scale scientific computations. Massive computational power is available today to 

researchers enabling them to analyze larger problems than ever at unparalleled computa­

tional speeds. At the same time the requirements within this computational environment 

are for high performance, scalability and efficiency which allow the better utilization of 

the computing resources. 

The following components of the problem are identified and addressed in this research: 

• Modeling: layered soil models that accurately describe the site response for a sub-

region; provide effective seismic input for the soil subdomain, and enable simulation 

for different scenarios; appropriate boundary conditions that account for the fact that 

the soil is a semi-infinite layered halfspace; structural models of the superstructure 

and foundation that coupled with the soil will enable the study of the SFSI problem. 

• Computational efficiency: since a large problem with many degrees of freedom (in the 

order of hundreds of millions) is to be solved, efficiency and speed of parallel solution 

are essential. Algorithmic and data structures issues are to be addressed for efficient 

computational strategies. Explicit and mixed explicit-implicit time integration of 

domains must be addressed because of the different physics for wave propagation 

in the soil and vibration in the buildings. Scalability of the application is required 

to be able to solve very large problems with full utilization of massive numbers of 

processors. 

• Software implementation: utilization of the object-oriented programming paradigm, 

the message passing interface and customized, platform-dependent tuning, to develop 

a custom application of high-performance. 

• Study of various scenarios: varying of soil parameters, structural properties, and 

input intensities to study SFSI in the regional scale. The influence of softening the 



soil profile is examined, the characteristics of low frequency versus broadband input, 

and the seismic performance of structural models with varying structural properties 

are studied. 

1.2 Factors influencing the dynamic response of a building 

1.2.1 Ground motion 

The factors that affect the strong motion recording are : (1) basin effects, (2) local 

site effects and (3) surface topography. 

The term basin effects refers to the potential amplification and time elongation of 

ground motions tha t can occur when waves become trapped in deep sedimentary basins. 

A basin consists of alluvial deposits and sedimentary rocks tha t are geologically younger 

and have lower seismic wave velocities than the underlying rocks upon which they have 

been deposited. Waves that become trapped in deep sedimentary basins can produce up 

to 50% stronger amplitudes at intermediate and low frequencies ( / < 1 Hz) and elongate 

their duration up to about two times (Graves et al., 1998), compared to those recorded 

on comparable surface materials outside basins. Also it has been shown that it is possible 

that basin response effects are also important at higher frequencies (Davis et al., 2000), 

or can affect structures having higher fundamental mode frequencies. Where the basin 

effects "end" and the local ground response "begins" is ambiguous. In the present work 

local ground response effects are defined as representing the "one-dimensional ground re­

sponse of the soil column" (which in practice is often modeled using only the upper several 

hundred meters), and basin effects as producing ground motions that deviate from the 

predictions of the one-dimensional models as a result of relatively complex wave propa­

gation in basins. The term "one-dimensional ground response" refers to the modification 

of vertically propagating waves by sediment layers. It is one of the two processes that 

contribute to the motion amplification at sediment sites as previously mentioned. The soil 
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properties most commonly utilized for horizontal ground motions include a profile of small 

strain with shear wave velocity (Vs), relationships for the variation of the normalized shear 

modulus {G/Gmax), hysteretic soil damping (£) with shear strain (7). Ground response 

analysis models solve the equation of motion for one-dimensional wave propagation. The 

distinguishing feature among the analysis routines is the soil material model, for which 

three general categories exist: equivalent linear and nonlinear models for one horizontal 

direction of shaking and nonlinear models for multiple directions of shaking. The most 

popular code in the first category is SHAKE91, developed by (Idriss and Sun, 1992). 

The term "local site effects" refers to the influence of relatively shallow (top 30 m) 

soil materials on (nearly) vertically propagating waves. These effects are ideally modeled 

using the full soil profile, but for deep alluvial basins, the modeling domain generally does 

not extend beyond depths of 100-200 m. A means of characterizing the top 30 m layers 

is via the average shear wave velocity Vs which is defined as (using the total distance 

traveled over the travel time through each layer): 

n 

£* 
E di 

V^ 

Finally the term "surface topography" is self explanatory. 

A discussion of factors influencing ground motion can be found in Stewart et al. 

(2001). The traditional way of analyzing structures using a fixed base model does not 

allow for analyses that incorporate the factors that influence the ground motion. The 

need for a sophisticated analysis tool that enables the modeling of the factors contributing 

to complex site effects and allows for accounting for site effects in structural analysis is 

evident. 
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1.2.2 Soil-foundation-structure interaction 

During the shaking of an earthquake, seismic waves are transmitted from the fault 

rupture through the soil to a structure. The wave motion of the soil excites the structure 

which in turn modifies the input motion by its movement relative to the ground. This 

interaction is termed "soil-foundation-structure interaction" (SFSI) or sometimes simply 

"soil-structure interaction" (SSI) even though accounting for the foundation type is of 

equally critical importance as that of the modeling of the structures. Depending on the 

soil properties, the type of the foundation and the seismic waves, the response of a structure 

can be quite different from the case when the supporting system is rigid. This interaction 

is generally considered to be favorable in earthquake engineering design, meaning that 

the design demands as computed by a fixed base analysis are assumed to be higher than 

the demands due to a SFSI analysis. Regardless of its effect, SFSI imposes additional 

complication in the analysis. It is characterized by complex wave propagation phenomena 

which can be summarized as follows: 

• The influence of non-vertically incident seismic waves. Complicated coupling phe­

nomena may occur for non-vertically incident body waves or for surface waves, since 

those tend to cause rotation of the foundation as well as translation. The rota­

tional component is neglected if SFSI is neglected but can be very important for tall 

buildings. 

• The dissipation of energy from the superstructure is important for characterizing the 

building response. In the case when interaction is not neglected, the semi-infinite 

soil medium acts as a sink because the energy is dissipated by geometrical radiation 

of energy. 

• The configuration of the superstructure and its foundation can be important. For 

example torsional vibration may be induced by horizontal excitation if the structure 

is not symmetrical. 
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• The influence of surrounding buildings may also be significant. The vibration of 

the nearby foundations can be thought as additional wave sources. Therefore, in 

densely constructed urban areas, motion of a particular foundation may be amplified 

or attenuated by the existence of neighboring structures. This effect can be more 

significant when the nearby structures are heavier than the one under consideration. 

• A flexible support may allow larger relative movements between the heavier struc­

tural frames which can result in high localized stresses. 

In general two mechanisms of interaction (Stewart et al., 1999a,b) take place between 

the soil, foundation and structure: 

• Inertial Interaction: Inertia developed in the structure due to its own vibrations 

gives rise to base shear and moment, which in turn cause displacements of the 

foundation relative to the free-field. Frequency dependent foundation impedance 

functions describe the flexibility of the foundation support as well as the damping 

associated with foundation-soil interaction. 

• Kinematic Interaction: The presence of stiff foundation elements on or in the soil 

cause foundation motions to deviate from free-field motions as a result of ground 

motion incoherence, wave inclination, or foundation embedment. Kinematic effects 

are described by a frequency dependent transfer function relating the free-field mo­

tion to the motion that would occur on the base slab if the slab and structure were 

massless. 

Inertial interaction is the most important effect when foundations do not have large 

rigid base slabs or deep embedment. For building structures, inertial interaction is the 

most common case and the focus of this work. A system commonly employed for the 

simplified analysis of inertial interaction is shown in Fig. 1.1. The impedance function 

for the foundation and soil, is represented by ku and kg and perhaps a coupling spring. 

Simplified impedance function solutions are available for rigid circular disk foundations 
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Figure 1.1. Simplified model for analysis of inertial interaction (Stewart et al., 1999a) 

mounted or embedded in a uniform, viscoelastic half-space. Analytical procedures are 

available for the computation of impedance functions for rigid foundations, many of which 

are summarized in Luco (1980) and Roeset (1980). There are also important effects due 

to nonuniform soil profiles, embedded foundations, noncircular foundation shapes, flexible 

foundations, and piles or piers beneath the base slab that must be taken into account, and 

that are also addressed in the literature. 

For the effects of inertial SFSI on structures Veletsos and Meek (1974) found tha t 

the seismically induced deformations of a single degree of freedom system with a surface 

foundation can be accurately represented by an equivalent fixed base single degree of 

freedom system with period T and damping ratio (, which are called the flexible-base 

properties of the system. The flexible-base period as calculated by Veletsos and Meek 

(1974) is given by: 

f f k kh? 

where T is the fixed-base period of the structure in Fig. ?? . The flexible-base damping 

ratio as calculated by Veletsos and Nair (1975) is given by: 

C = Co + —^— (1-2) 

A series of analysis procedures and system identification techniques for evaluating inertial 

SSI effects on seismic structural response is given in Stewart et al. (1999a,b). 



Kinematic interaction occurs in the form of base-slab averaging or in the case of deep 

foundations. Base-slab averaging results from incoherent or incident wave fields. Motions 

on surface foundations are modified relative to the free field when incident waves impinge 

on the foundation with an oblique angle, or when the incident wave is incoherent. The 

first case is referred to as the wave passage effect and the second case as the ground 

motion incoherence effect. In the presence of these wave fields, translational base-slab 

motions are reduced relative to the free field, and rotational motions are introduced. The 

rotational motions include rocking in the presence of inclined SV waves, P waves, and 

Raleigh waves, and torsion in the presence of SH waves or Love waves. The reductions of 

base-slab translation, and the introduction of torsion and rocking, are all effects tha t tend 

to become more significant with increasing frequency. The frequency dependence of these 

effects is associated with the increased effective size of the foundation relative to the seismic 

wavelengths at higher frequencies. In addition, ground motions are more incoherent at 

higher frequencies. The seismic response of a pile-supported foundation differs from that 

of a surface foundation due to the increased stiffness of the pile-soil system as compared 

to soil only, and due to the scattering of seismic waves from the piles. Most theoretical 

studies of kinematic effects associated with pile-soil interaction have been performed for 

single piles or pile groups with a rigid cap not in contact with the ground. 

In brief conclusion, SFSI is a problem widely investigated both theoretically and 

experimentally by many researchers, and fairly well understood. Closed form solutions 

are provided for many idealized cases. However the need for an analysis tool that enables 

complex 3D analysis capabilities, thus setting the limitations of analytic potential into the 

sophistication and detail of modeling of the soil, foundation and structure is still present, 

to address more complex problems such as nonlinear SFSI modeling for detailed system 

response analyses and the structural design of foundation elements. 
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1.3 Projects similar to SPUR 

In the context of simulating the seismic behavior of an urban region researchers have 

conducted several investigations. A difficulty which researchers often encounter is the scale 

of the model which is hundreds of millions or billions of degrees of freedom, thus presenting 

enormous computational demands. Another difficulty is the inability to represent the 

structural inventory, which mainly arises from lack of detailed enough information about 

the buildings, the foundation and the soil. Research projects with aims similar to those 

of the SPUR project are briefly summarized next. 

1.3.1 Macro-Micro analysis for predict ion of strong mot ion distribution 

in metropol is 

In this project by Ichimura and Hori (2000), the researchers utilized parallel com­

puting to efficiently perform the simulation of a 300 m x 300 m x 60 m subregion of the 

Roppongi Area, in Tokyo, Japan; which contained about 150 buildings. The soil shear 

wave velocity profiles Vs ranged from 120 m to 600 m. The structural data required where 

available from Japan's GIS, and for each building an equivalent MDOF system was con­

structed, according to Chopra (2001). Their methodology for analyzing their virtual city 

was as follows: 

1. Carry out the macro-analysis for the geological model, and obtain the input for the 

micro-analysis. 

2. Carry out the micro-analysis for the underground structure model, and obtain the 

displacement distribution on the ground surface as time data series. 

3. Compute the structure responses by inputting the strong motion to the MDOF 

systems and applying the modal analysis. 
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The disadvantage of this methodology is that the analysis of the structures was decoupled 

from the soil simulation. Consequently the effects of SFSI and the interactions between 

structures were not included. 

1.3.2 Site-city interaction in urban areas 

This work by Semblat et al. (2004) treated the structural inventory of an urban area as 

an additional earthquake source that modifies the free-field ground motion contents. The 

problem was investigated at the scale of a basin and a whole city to examine the potential 

influence of "city-site interaction" on site response and the resulting ground motion. A 

two-dimensional model was used to represent an actual alluvial valley in Nice, Prance. The 

boundary element method was used to compute the wave propagation in the frequency 

domain. The excitation was limited to a vertically propagating SH wave and 33 buildings 

where accounted for. The scale of the model was 2 km. This work was limited to a specific 

type of wave propagation problem and thus did not represent the three-dimensional nature 

of the wave propagation and the soil-structure interaction problem. 

1.3.3 HAZUS methodology for damage prediction in an urban area 

HAZUS (FEMA, 2008) is a methodology developed by the Federal Emergency Man­

agement Agency and the National Insti tute of Building Sciences for estimating earthquake 

losses, intended for local, regional, or s tate officials contemplating an earthquake loss study. 

The methodology has been pilot tested in Portland, Oregon and Boston, Massachusetts 

and calibrated with data from Northridge, Loma Prieta and other earthquakes. The 

methodology generates an estimate of the consequences to a city or region of a "scenario 

earthquake" - tha t is, an earthquake with a specified magnitude and location. The result­

ing "loss estimate" generally describes the scale and extent of damage and disruption that 

may result from potential earthquakes. The methodology is based on simple statistical 

approaches for the estimation of seismic performance. 
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1.4 Organization of the dissertation 

The dissertation is organized as follows: 

• Chapter 2 presents the methodology selected for providing effective seismic input in 

soil domains and provides a theoretical overview of the method. Issues of explicit 

time integration are discussed. The presentation of the algorithms and software 

design that lead in the development of a parallel application for the analysis of soil 

domains using explicit finite elements follow next. The chapter concludes with a 

scalability study of the performance of the parallel application. Almost linear weak 

scalability is demonstrated. 

• Chapter 3 contains an application of the simulation software for the study of the 

response of a soil region in downtown Los Angeles under two different excitations: 

a low frequency one and a broadband. Also the effect of softening the soil profile is 

studied. The area under study is in very close proximity with the Puente Hills fault. 

• Chapter 4 presents the use of mixed explicit-implicit time integration algorithms for 

analyzing coupled domains of soil and structures. The modification of an existing 

algorithm is developed, with an extension for nonlinear systems in the implicit par­

tition. The algorithms are presented together with an efficient software design tha t 

allows for maintaining the scalability and performance of the explicit application 

described in Chapter 2. 

• Chapter 5 utilizes the tools developed in the previous two chapters in order to analyze 

the seismic performance of the structural inventory of the same region previously 

mentioned. Simplified structural models are used for the simulations. 

• Chapter 6 contains conclusions and points to certain future directions. 
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Chapter 2 

Modeling of soil domains 

This chapter describes the Domain Reduction Method as a means for providing ef­

fective seismic input in soil domains. The theoretical and implementation aspects of the 

method are examined. A brief discussion of the time integration methods for wave prop­

agation through soil domains follows. The software design and implementations of a set 

of classes that are used together with components of a large software framework to form 

a custom, very scalable and high performance parallel application used for the analysis of 

soil domains are presented next. The chapter concludes with the presentation of scalability 

results for this application. 

2.1 Theory background related to modeling of soil domains 

2.1.1 Introduction 

In the recent years, a tremendous development has occurred in the simulation of 

earthquake motions using physics based 3D models in seismic regions. Numerical model­

ing methods for anelastic wave propagation tha t take into consideration the earthquake 

source, propagation path, and local site effects have been significantly advanced by many 
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researchers. Several types of these methods exist, such as boundary-element and discrete 

wave-number methods, suitable for moderately sized problems with relatively simple geo­

metrical and geological conditions, finite difference methods (Olsen, 2001; Graves, 1993) 

and finite element methods (Aagard et al., 2001; Bao et al., 2001). The latter are bet ter 

suited for large-sized problems involving realistic basin models with material heterogeneity 

because of the ability to define arbitrary geometries and material properties. Common 

difficulties that researchers encounter when utilizing finite difference methods are restric­

tive simplifications and approximations such as limiting the maximum frequency or lowest 

shear wave velocities that are considered. The main reason for this is that most methods 

currently in use for large-sized problems are based upon uniform structural grids. 

Finite elements are more flexible since they can better tailor the mesh size to local 

wavelengths of the propagating waves. A common feature of both the finite difference and 

the finite element methods is that the ground motions near the causative fault and those 

along the propagation path and in the region of interest are all calculated simultaneously, 

using a single computational model tha t encompasses the entire geological structure. This 

allows for incorporating source, propagation path and local site effects in the same analysis. 

This approach of using a single model works well in many cases, however when the source 

is far from the region of interest or when it is desired to analyze the region's structural 

inventory, the exceedingly large size of the model renders any such method ineffective. 

One method that uses a finite element formulation but avoids the need to represent 

accurately the geometric and material properties of the whole region within a single com­

putational model, consists in subdividing the problem in two sequential computational 

phases. First, a background structure is considered from which the localized features have 

been removed and the corresponding ground motion is computed. The computational grid 

required for this step is as dictated by the softest material under consideration and the 

desired level of accuracy for the representation of a certain frequency range. The ground 

motion computed from this first step is used to compute a set of localized equivalent earth-
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quake forces which are then applied as input in a computational domain that represents 

the region of interest (a subdomain of the first step's domain) with all its local features 

and structural inventory if desired. This method has many advantages for the problem 

of detailed soil-foundation-structure interaction analysis, was developed by Bielak et al. 

(2003a,b) and is named the Domain Reduction Method (DRM). 

In addition to the increased numerical method availability, major progress in the com­

puter science fields of architecture and systems has enabled the usage of large computing 

clusters and supercomputers with very high performance and capacities that allow the use 

of many processors for a simulation. This has consequently increased tremendously the 

potential size of the finite element model in addition to the speed of the numerical solution 

of the resulting systems of equations. Parallel computing is now widely available and fi­

nite elements codes have closely followed these evolutions. This is another very important 

reason that motivates the usage of a finite element based methodology as the DRM. 

2.1.2 The domain reduction method (DRM) 

The Domain Reduction Method (DRM) developed by Bielak et al. (2003a,b), is a 

two-step, finite element based methodology for modeling earthquake ground motion in 

media characterized by high heterogeneity and significant contrast in wavelengths. The 

problem that the method treats is a semi-infinite seismic region, that includes the fault-

system, the wave propagation path and localized geological features in three dimensions. 

Since the localized geological features require higher frequency resolution than the large 

scale wave propagation path, the DRM separates the problem into two sub-problems. The 

first solves the wave propagation of the seismic excitation from the fault system to the 

region of interest (ROI), and the second sub-problem provides the detailed analysis of the 

smaller subdomain that comprises the ROI under the equivalent excitation that results 

from the wave propagation of the earthquake excitation from the source. 

Fig. 2.1 shows a domain of interest. The interface layer V divides the domain into 
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Figure 2.1. Truncated seismic region. Outer boundary T+ restricts computations to a finite 
domain; fictitious interface F divides region into two subdomains: Ci+ which includes the 
seismic source represented by nodal forces Pe, and Q which contains the localized geological 
features (Bielak et al., 2003a) 

two parts: fi which contains the ROI, and 0 + which is the semi-infinite half-space that 

includes the fault system. The exterior boundary F+ allows for the modeling of the semi-

infinite domain as finite. The entire system JTi+Uil is governed by Navier's equation's 

of elastodynamics which upon finite element spatial discretization can be written for the 

entire domain as: 
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Applying the partitioning that the interface T defines in Fig. 2.1, the Eq. (2.1) can 

be rewritten as: 
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In the above equations the matrices M, C and K denote mass, damping and stiffness 

matrices respectively, the subscripts e, b and i denote the nodes in the exterior domain, 

interface and interior domain. The superscripts fi+ and Q refer to the domain over which 

the matrices are defined. To transfer the excitation from the causative fault to the ROI an 

auxiliary problem is denned in which for the exterior domain, the materials and the source 

remain identical to those of the original problem but the interior domain is substituted by 

a simpler one denoted as fi0, such that the entire system now defined as fi+Ufio is easier 

to be solved. Now rewriting Eq. (2.3) for S7+: 
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The matrices M, C and K are identical to those in Eq. (2.3) and so is p e . The 

second component of Eq. (2.4) can be expressed in terms of p e as: 

Pe - JVleb
 u b + M e e U e + U e b U b + C e e U e + K e b U 6 + K e e U e (2.5) 

By substitution of Eq. (2.5) into Eq. (2.1), a direct solution for the unknown wavefield can 

be obtained. This formulation though offers no computational advantage over a traditional 
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finite element formulation of the problem, since it requires the free field wave u° stored 

throughout f2+. 

To devise an efficient scheme the DRM (Bielak et al. (2003a,b)) proceeds with a 

variable transformation such that the total wavefield ue is expressed as the summation of 

the free field due to the background structure Ug and a residual displacement due to the 

ROI which is the relative displacement field with respect to the free field we: 

ue = u" + we 

Substitution of the above into Eq. (2.1) yields: 

(2.6) 
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Figure 2.2. Seismic region with the two neighboring surfaces F and Te where the effective 
forces ~Peff defined by Eq. (2.9) are to be applied (Bielak et al., 2003a) 

Substitution for p e from Eq. (2.5) into Eq. (2.7) yields: 

Mg M?h 0 

M« M « + M « + MJT 

0 Met M 

Lbe "ft > + 

+ 

cS 
^ 6 i 

0 

KS 

Kg 
0 

c&+c«+ 

Kg 
Kbb + K 6 b 

K e b 

K 

K 

0 

be 

ee 

< Ufc * 

W e 

(2.8) 

iV1be U e ^be U e *He u e 

. eb U b + C e b U b + K e b U b 

By means of these substitutions the seismic forces p e have been transferred into Q, and 

replaced by the effective seismic forces peff as shown in Fig. 2.2: 
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(2.9) 

The main advantage of the DRM is the separation of the problem into two steps. 

Transfer of the excitation from the causative fault to the ROI, and the solution of the 
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problem within the ROI. For the second step the wave field is required only at the single 

element layer interface r e - r , and this is the advantage over the traditional one step ap­

proach. For the regional simulations, the equations of motion Eq. (2.8) within the ROI 

(fi) must be solved. Thus it is required to set up and apply Eq. (2.9) to the subdomain 

under consideration. This implies significant computational cost. The design and imple­

mentation of a code that targets solution of soil subdomains using explicit time integration 

and the DRM method is presented later in this chapter. 

2.1.3 Absorbing boundary conditions 

In the previous discussion, there is an implicit requirement for the conversion of the 

semi-infinite domain to a finite one, thus allow for the use of finite elements. This requires 

that an absorbing boundary condition to be used on T+, to prevent energy from reflecting 

back to the ROI. The absorbing boundary chosen is the Lysmer absorbing boundary 

presented by Lysmer and Kuhlemeyer (1969), which is a local boundary condition chosen 

because it provides a simple and efficient numerical procedure. That is opposed to global 

absorbing boundary conditions that are more accurate and computationally expensive due 

to the full coupling in space and time. This boundary absorbs the propagating waves in 

such a way that no outgoing waves from within the ROI are reflected back to the interior 

domain. 

The presentation next follows Zhang et al. (2008). The one-dimensional vertical shear 

wave propagation equation is: 

d2u(x,t) d2u(x,t) 
- k 1 = V8-±t± (2.10) 

where u denotes the soil particle displacement perpendicular to wave propagation direction 

and Vs is the soil shear wave velocity. The solution of the above is of the form: 

u(x,t) = Ur(t-£-)+Ui(t+-£-) (2.11) 
Vs Vs 

20 



where ur(...) and v,i(...) are functions of (t — x/Vs) and (t + x/Vs), respectively. The 

term ur represents the wave traveling at velocity Vs in the positive x-direction, while ttj 

represents the wave traveling at the same speed in the negative x-direction. Thus, ui is 

the incident to the computational domain wave and ur is the reflected wave. Taking the 

partial derivative with respect to time of both sides of the above equation and multiplying 

by pVs gives: 

pVsdui^ = pVs<{t _ x^ + pVs<{t + x^ {212) 

where the prime denotes differentiation with respect to the prime argument of the function. 

The uniaxial, linear elastic shear stress - shear strain relation is given by: 

T(l,() = 0 ^ = _ |< ( i - i ) + | „ ; ( t + ^ ) (2.13) 

which using Eq. (2.12) and also that Vs = \jGj p can be rewritten as: 

r(x, t) = -pVs^^ + IpVsu^t + jL) (2.14) 

The term du(x,t)/dt is the velocity of the total soil particle motion and the term u[{t + 

x/Vs is the velocity of the incident motion. Therefore the first term of Eq. (2.14) is the 

equivalent of a force (per unit area) generated by a dashpot of coefficient pVs and the 

second term is equivalent to the force (per unit area) proportional to the velocity of the 

incident wave. Thus the soil surrounding the finite soil domain of our interest can be 

replaced by a dashpot, and a force for the equivalent seismic input. 

The equivalent seismic input is provided by the DRM by the means we saw previously 

and the dashpots whose coefficients are shown in Fig. 2.3 are calibrated as follows: 

CP = pVs 

CN = pVp 

fPi = CPuPl 

fp2 = Cpiip2 

IN = CNUN 

(2.15) 
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Figure 2.3. Lysmer one-dimensional absorbing boundaries 

where p is the soil density, Cp and CJV are the damping coefficients for the tangential and 

normal directions respectively and fp1,fp2 and /N are the forces per unit area generated 

by the dampers on the two tangential and the normal to the element's longitudinal axis 

plane. One question that can be raised here is that the energy absorption does not only 

depend on the material properties but also depends on the frequency contents of the wave 

field. The choice of the Lysmer absorbing boundary is dictated by the computational 

efficiency and ease of implementation. 

2.2 Explicit time integration schemes for the solution of 

equations of motion 

A time integration method is required for the solution of the system of ordinary dif­

ferential equations (ODE) of Eq. (2.8). Since the soil elements tha t will be used have 

linear elastic governing material laws, no iterations are required for their state determi­

nation. The methods that are best suited for the wave propagation problem using finite 

element discretization are explicit methods. Among those the focus is on the central 

difference method and an explicit variant of the Newmark (3 method, which will be the 

primary method used in this work. The great advantage of the explicit algorithms for 
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transient analysis lies in the fact that they can lead to the solution of the resulting system 

of equations: 

A x = b (2.16) 

without requiring the factorization of A, when it is diagonal, simply by performing 

, 1 , . 
X i (2.17) 

2.2.1 Central difference method 

The central difference method is a second order accurate explicit scheme. It is well 

suited for the wave propagation problem because it does not require matrix factorization 

for the solution of the resulting system of equations A x = b under certain conditions tha t 

make it diagonal. The general formulation of the central difference method is: 

M C 
+ \_{Atf 2 At. K + i } = P^ 

M 

2At 
{Urc-l} K -

2 M 
{ u n } (2.18) 

however notice that it results in a system of equations Eq. (2.16) where: 

M C 
+ [(At)2 2At\ 

(2.19) 

and 

b = p ext 
M 

[{At)2 2At 

x = u n + i 

{u„_ i} K -
2 M 

(Alf {Un} 

(2.20) 

(2.21) 

From Eq. (2.19) it is clear that in the general case of Rayleigh damping where the damping 

matrix is C = a M + /3K, the matrix A is not diagonal and thus factorization is required. 

Using mass proportional Rayleigh damping: C = a M , combined with lumped mass ma-

M 
(Atp 

. This is an explicit scheme tha t trices (Mjj = 0 if i ^ j), results in A = (1 + a) 

does not require factorization and the solution can be obtained by Eq. (2.17). Another 

approach tha t also leads to avoiding the matrix factorization is by performing operator 
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splitting on the damping matrix and sending the off- diagonal terms to the right hand side 

and evaluating them at the previous time step. This approach works well when mass and 

stiffness proportional damping are to be used but results in decreasing of the accuracy of 

the method. 

2 .2 .2 A l t e r n a t i v e c e n t r a l d i f f erence m e t h o d 

This presentation follows from Cook et al. (1988). For the case of general Rayleigh 

damping but still using lumped mass matrices, an alternative formulation of the same 

method is used, one that assumes a half t ime step lag of the damping forces and results 

in the following expression: 

M 

. (At) 2 

where: 

/ , , 1 _ „ ext _ mt , 
\ u n + l / — Pn ~ Pn. + (Aty 

:M {un - A t u n _ 1 / 2 } - [C] { u n „ 1 / 2 } (2.22) 

" n - l / 2 — X7( U « _ u n - l ) (2.23) 

Eq. (2.22) can be rewritten as: 

M 

(Atf 
/ , , l _ ext int . 
| U n + l } — p n - Pn + 

2 , M - J L C 
[(At)^ At J 

—1—M--J-C 
(At) 2 At 

{»n} 

{ u „ - i } 

(2.24) 

The later formulation clearly for the case of lumped mass matrix allows for an explicit 

method according to Eq. (2.16) where: 

M 
A = 

(Aty 
(2.25) 

and 

b = p ext pJT* + (At) 2 At 

u n + i 

{Un} 
(At) : 

r M 
At 

(2.26) 

{ u n _ ! } (2.27) 
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the solution is very easily obtained by Eq. (2.17). 

An alternative way of "diagonalizing" the central difference method would be to ignore 

the damping forces and use again a lumped mass matrix approach as suggested in Bathe 

(1996). 

2.2.3 Newmark j3 explicit variant 

This algorithm belongs to the general family of explicit predictor-corrector algorithms 

in Hughes et al. (1979): 

M u n + i + /(Un+1, Un+l) = Pn+1 

Liu and Belytschko (1982) use an explicit predictor-corrector method that is based on the 

Newmark /3-algorithm and is "compatible" with it: 

Mi i n + i + C u n + i + K u n + 1 = p n + i 

which leads to Eq. (2.18) with: 

(2.28) 

A = 
M 

(2.29) 

and 

where: 

x = A u n + l 

b = ven+i ~ K u n + i - Cu„+i - M u n + i 

(2.30) 

(2.31) 

(At)2 

u n + i = u n + Atun H — (1 - 2/3)iin (2.32) 

un+i = Un + At(l - j)ur, (2.33) 
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iin+1 = - ^ U n + ( l - ^ ) i i „ (2.34) 

This method is used for the simulations in this work. 

2.2.4 Accuracy and stability of the t ime integration scheme 

The term stability is used both for ODE initial value problems (IVP) and also with 

respect to numerical methods for their solution. First, a brief discussion about ODE 

solution stability is given. Assume a linear system of ODEs: 

ui(t) — auui(t) + auu2(t) 

u2(t) — a2i«i(t) + a22u2(t) (2.35) 

which can be written as: 

u = Au 

Assuming A is invertible and with distinct eigenvalues, the sole fixed point (u = 0) is 

u = 0. The general solution is: 

u = a!eAl*Ci + a2e
X2tc2 

where Ai^ and C12 are eigenvalues and eigenvectors of A respectively and a%t2 are con­

stants due to the initial conditions. The stability of the system is: 

• A , 2 € f 

Ai 2 < 0: l im u = 0 =$• stable 
' t—>+oo 

Ai 2 > 0: lim u = oo =>• unstable 

Ai < 0 < A2: 

* If u(0) = ac i then lim u = 0 
£—>+oo 
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* If u(0) = i»C2 then lim u — oo 
t—*+oo 

unstable saddle 

• Ai?2 € C: Then A = a ± vi and assuming u G M2 then u = etit{d\cosvt + d2sinut) 

where the di?2 are formed by A's eigenvectors and the initial conditions. 

— n > 0 =4> unstable 

— a < 0 =£> stable 

— [x — 0 => marginally stable 

— If Ai = A2 the case is left to the literature. 

In this work stability is used with respect to the numerical methods used for the 

solution of the system of ODE: Eq. (2.8). Excellent references on numerical methods 

for nonstiff and stiff problems are Hairer et al. (1993, 2004). The definition of stability 

for a general multistep numerical method is given in Hairer et al. (2004) for a general 

k-multistep method: 

akVm+k H 1- a0ym = h(/3kfm+k + ••• + /30/m) (2.36) 

where y' — f. Applying it to the linearized autonomous system y' = Jy we have: 

akVm+k H H aoVm = hJ{j3kym+k H h (30ym) (2.37) 

For the coefficients of ym+i with respect to an eigenvector v of J we have the same recur­

rence as Eq. (2.37) with J replaced by the corresponding eigenvalue A. 

(ak - u(3k)ym+k -\ h (a0 - nPo)ym = 0 (2.38) 

where u = hX. To solve Eq. (2.38) Lagrange's method is used by setting y; = £*, and 

dividing with £ m throughout: 

K " VPk)£,k + • • • + (oo - Ufa) = P(0 - M O = 0 (2.39) 

where p{£) = ak£
k + a ^ ^ 1 + • • • + « 0 and *(£) = fat* + flfc-i**-1 + ••• + /%. 
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Definition 1. The set 

all roots £j(fi)of Eq. (2.39) satisfy |£j(//)| < 1, 
S= < 

multiple roots satisfy \£j(fJ>)\ < 1 

is called the stability domain or stability region or region of absolute stability of Method 

(2.36). 

The stability and accuracy of the time integration schemes are presented next fol­

lowing Belytschko et al. (2000). For simplicity the analysis is on free vibration of a 

one-degree-of freedom system, hence all involved quantities are scalar: 

Mun + Ciin + p™* = 0 (2.40) 

The central difference method uses: 

un =-nr—^{un+i-2un + un^-1) (2-41) 

un = ——(un+1 - un_i) (2.42) 

Eq. (2.41),Eq. (2.42) are second order accurate approximations of the acceleration and 

velocity at time-step n, which can be seen by a Taylor Series expansion of the right hand 

sides: 

.. , 1 , A . (At)2.. (At)3d3un 
Un ~ ((AlFK + Un + ~^Un + ~^^~ (2 43) 

2un + un- Atun + {-^un _ M l ^ f i + O(At)4)) = 0({Atf) 

/ 1 / A • ( A * ) 2 -

Un ~ W A ^ ' " " + tUn H O Un + 

A[m) l
 2 (2.44) 

un - Atun - ^ U n + 0((At)3)) = 0((At)2) 

The above two equations clearly demonstrate the second order accuracy of Eq. (2.18). In 

order to derive the stability region of Eq. (2.18) the linear elastic, damped, free vibration 
problem is solved: 

Un + I^UJUn + 0J2Un — 0 (2-45) 
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The central difference approximation to this is obtained by plugging in, Eq. (2.41) and 

Eq. (2.42) and obtain: 

(1 + (ujAt)un+i + {{AtfuJ2 - 2)un + (1 - CwAt)nn_i = 0 (2.46) 

Assuming a solution of the form un = Xn : 

(1 + C^At)An+1 + ( ( A t ) V - 2)Xn + (1 - C^AflA"-1 = 0 (2.47) 

and upon dividing with An_1 the following arises: 

(1 + (ujAt)X2 + ((At)2a;2 - 2)A + (1 - C^A*) = 0 (2.48) 

Conditional stability for Eq. (2.18) or Eq. (2.24), requires that the spectral radius p(A) 

of the matrix A whose characteristic polynomial is Eq. (2.48) be p(A) < 1. The case that 

the solution is two complex conjugate roots is: 

Ai,2 = D ± iE (2.49) 

with: 

2 -c j 2 (At ) 2 _ a ; A V 4 - 4 C 2 - c j 2 ( A t ) 2 " 
~ 2 ( l + CwAt)' ~~ 2(l + (ivAt) 

when 

uoAt < y/A - 4C2 

The case of two real roots is: 

Aij2 = D±E 

with: 

D^ 2-u2{At)2 uiAt^-4 + 4C2 + cu2{Atf 
~ 2(1 + CwAt)' 2(1 + CwAt) 

when 

uAt > \J\ - 4C2 
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The region of stability for the central difference method, can be obtained more easily 

if instead of analyzing in the /it-plane, the 2-transform and Hurwitz matrices are used. 

Stability is determined by whether the characteristic equation has any non-negative real 

roots which is easy. The ^-transform is : 

1 + z 
X = 

\ - z 
(2.55) 

Using the above and substituting in Eq. (2.48): 

(1 + QuAt)(\±^f + ((At) V - 2)\^- + (1 - CwAt) = 0 
1 — z \ — z 

Multiplying by (1 — z)2 which is non-zero since z < 1 is required and simplifying: 

(4 - u*(Aty)z2 + {A^At)z + (At)2^ = 0 

The Hurwitz matrix of a polynomial equation of order p, 

p 

(2.56) 

(2.57) 

£ az*-* = o, co > o (2.58) 
i=0 

Ha = < Hj (2.59) 

is given by: 

c2j-i if 0 < 2j - i < p 

0 otherwise 

The real parts of the roots of Eq. (2.57) are negative if and only if the leading principal 

minors of the Hurwitz matrix are positive and CQ is positive. The Hurwitz matrix for 2.57 

H = (2.60) 

is: 

c2 0 

c0 ci 

where Co = 4 — uj2(At)2, C\ — 4^wAt and c2 — (At)2oj2. The condition that the principal 

minors of the matrix are positive and CQ > 0 yield the following set of equations: 

i-uj(At)2 > 0 

4(uAt > 0 

(Atfcu2 > 0 (2.61) 
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From the requirements of Eq. (2.61) only the first one is nontrivial and leads to the 

following constraint that yields the critical time step: 

which is simply stated as: 

At < min \ — } (2.62) 

At < —^— (2.63) 
UJrn.n.rr. 

This completes the stability analysis of Eq. (2.18). 

Since the central difference formulation section requires mass proportional damping 

only to become diagonal, which limits the damping options, the analysis of an alternative 

difference scheme that allows for complete damping (mass and stiffness proportional) is 

presented. The basic assumption of the formulation of Eq. (2.24) lies in the alternative 

equilibrium equation: 

Mun + Cun_1/2 + p™* = 0 (2.64) 

This assumption, of the damping forces lagging half a time step, is a first order accurate 

assumption since: 

Un = < - l / 2 

«n-l/2 =Un + 0{At) (2.65) 

Eq. (2.24) is also analyzed using the method previously used for Eq. (2.18): Start 

with Eq. (2.64) for the free vibration of a linear elastic, damped system: 

un + 2(coun_1/2 + oj2un = 0 (2.66) 

Substituting in the above Eq. (2.41) and Eq. (2.23) results in: 

un+x + (2(uAt + co2{At)2 - 2)un + (1 - 2C^At)u„_i = 0 (2.67) 

which upon substituting with un = An and dividing with An_1: 

A2 + (2C^At + Lo2(At)2 - 2)A + (1 - 2(iuAt) = 0 (2.68) 
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Applying the z-transform the set of equations that arise from CQ > 0 and the requirement 

that the principal minors of the Hurwitz matrix being positive yield: 

4-4ujAt-uj2(At)2 > 0 

2(uAt > 0 

( A t ) V > 0 (2.69) 

Again, from the first one of the above constraints the critical t ime step for Eq. (2.24) is: 

A t < m m | ^ - ( ^ 1 + C ? - C i ) } (2-70) 

but it is sufficient to use: 

At<—(VlTe-0 (2.71) 

This completes the stability analysis for Eq. (2.24). 

For the Newmark based method the stability discussion is in Chapter 4. 

It is desirable to avoid solution of the eigenvalue problem required to find the highest 

frequency mode. For practical considerations the CFL condition by Courant et al. (1967), 

is satisfied for the wave propagation which essentially means to satisfying the requirement 

of Eq. (2.41) for each element in the mesh. So if A is the critical length to be represented, 

the total time for a wave to travel past a point is tw — - where c is the wave speed. 

Assuming that n time steps are necessary to represent the travel of this wave: 

At = ^ (2.72) 
n 

and the effective length of the finite elements should be: 

Le = cAt (2.73) 

The formulation of Eq. (2.24) is first order accurate with respect to the equilibrium 

equation. The local truncation error from using Eq. (2.64) instead of using Eq. (2.40) is 
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defined as: 

T = C(un - Un-l/2) 

= C(un - (un - ^un)) (2.74) 

At 
= C—un where At = tn+1 - tn 

This concludes the discussion on explicit time integration methods. Having a diagonal left 

hand side (LHS) comes at the cost of losing the second order accuracy but adds a great 

computational advantage. 

2.3 Software architecture for simulation of soil subdomains 

This section describes the development of a software for the analysis of seismic wave 

propagation through a domain of interest and creates the basis for the target goal which 

is the coupled analysis of soil structure interaction using the DRM. The emphasis is on 

efficiency, scalability and speed of the solution using parallel computation. 

2.3.1 Specification of the application 

A traditional approach is used for the implementation of the simulation capability. 

The problem solution is decomposed into several phases as shown in Fig. 2.4 as opposed 

to an end to end approach, where all the capabilities required for the complete tackling of 

the problem are part of the same software. Rather than developing an entire application 

with all its necessary components from the beginning, the choice is to use components of 

an existing simulation framework. The reason is two-fold. On one hand, the literature is 

rich in developed finite element codes and secondarily when using available components, 

reduces the development time and allows for the focus to be shifted to the components 

that need the most attention, assuming of course that the usable components are of high 

quality and performance. In this case the new components that need attention and are of 

interest are related to large scale explicit and later mixed explicit-implicit time integration 
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in parallel computers and specifically efficient and scalable numerical methods, algorithms 

and data structures related to this. The basis framework that is selected is OpenSees 

(McKenna and Fenves, 2004). 

The problem solving pipeline is essentially defining the application and is outlined 

as: 

• Physical modeling 

• Partitioning (serial or parallel) 

• Solution and output data generation 

• Visualization 

• Understanding of the results 

In summary this section presents: the new finite element classes shown in Fig. 2.5, and 

the new analysis classes shown in Fig. 2.8. These are new, additional to the framework 

implementations, and optimized for the problem under consideration and for the target 

platforms which are Datastar at the San Diego SuperComputing Center (SDSC, 2006) and 

Abe at the U.S. National Center for Supercomputing Applications (NCSA, 2008). Use of 

platform optimal math libraries ESSL (IBM, 2006) and MKL (INTEL, 2008) was done, 

wherever appropriate. 

2.3.2 Brief overview of OpenSees 

For a description of the basic architecture of the code and the current implementa­

tion one can refer to McKenna and Fenves (2004). OpenSees is a simulation framework 

targeting the analysis of the performance of structural and geotechnical systems subjected 

to earthquakes. It is developed using the object oriented programming paradigm and it is 

written in C++. The advantages of the adoption of the object-oriented paradigm (OOP) 

for engineering software design have been demonstrated in Fenves (1990). 
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Figure 2.4. Traditional workflow pipeline 

OpenSees contains modeling classes used to create the finite element model, finite 

element model classes that compose the finite element model and store the results, analysis 

classes that form and solve the equations and numerical classes that handle the numerical 

procedures used at the various solution classes. For an in detail description of the OpenSees 

architecture see McKenna (1997). 

2 . 3 . 3 F i n i t e e l e m e n t c l a s s e s 

2.3.3.1 M e s h 3 D S u b d o m a i n 

The Mesh3DSubdomain class serves a dual role. Its first purpose is to create, par­

tition, and prepare input for the main parallel program that will analyze a cubical three 

dimensional mesh using the DRM or some other loading pat tern. It starts by the model 

details such as the number of elements in X,Y and Z directions, material properties and 

number of partitions of the domain's element graph. It performs a serial or parallel graph 

partition of the hexahedral element mesh using an interface to the METIS or ParMETIS 

Karypis (1998) library, and then proceeds in the generation of an input script, unique for 
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Figure 2.5. Modified OpenSees class diagram for the finite element method for soil sub-
domains (new implementations shown in bold) 
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each processor that will be participating in the solution of the problem. The resulting in­

put script for each process, contains all the necessary data required for the corresponding 

partition to be created, such as node numbering, nodal coordinates, element connectivity, 

numbering and properties, for both the hexahedral and the absorbing boundary elements 

if present. 

The second purpose of the Mesh3DSubdomain class is that inside the main parallel 

program it is used as the model builder class, therefore it is the entry point to the main 

program executed in each process. It reads the input data from the corresponding input 

file depending on the rank of the calling process in the MPI (Forum, 1994) communicator, 

and then constructs the necessary OpenSees objects that populate the Domain object that 

is created in each processor. 

2.3.3.2 DRMLoadPattern class 

The DRMLoadPattern class implements the basic functionality of any other LoadPat-

tern instance in OpenSees, i.e. provides the virtual void apply Load (double time) 

implementation that provides effective seismic loads according to the DRM. The method 

implementation is shown in Fig. 2.6. The helper classes that are related to this class are 

described further down. 

2.3.3.3 PlaneDRMInputHandler 

The PlaneDRMInputHandler class is a subclass of the DRMInputHandler class which 

is responsible for handling the input data required for the application of the Domain 

Reduction Method. As the name suggests it implements the case in which the boundaries 

T and Te in Fig. 2.1, of the DRM box are planes. The input data of the DRM load pattern, 

which can be displacements, velocities, accelerations or combination of those, is provided 

in input files that contain the time histories for all the nodes of a mesh that is topologically 

equivalent to the e and b nodes of the mesh analyzed. This class is responsible for opening 
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void 

DRMLoadPattern : : applyLoad (double t ime) 

{ 

DRMBoundaryLayerDecorator *myDecorator = new DRMBoundaryLayerDecorator () ; 

myDecorator—>setDomain (this—>getDomain ( ) ) ; 

Vector U(24) ; 

Vector Ud(24); 

Vector Udd(24); 

Vector l o a d ( 2 4 ) ; 

U. Zero ( ) ; 

Ud .Ze ro ( ) ; 

Udd.Zero ( ) ; 

load . Zero () ; 

myDecorator—>setMap (this—>eNodes ) ; 

for ( std : : marKint , Element*>:: i t e r a t o r pos=this—>elem . begin () ; 

pos! = this—>elem . end ( ) ; pos++) { 

Element* ele = (Element*) pos—>second ; 

if (e le != 0) { 

U. Zero ( ) ; 

Ud .Zero ( ) ; 

Udd. Zero ( ) ; 

load . Zero () ; 

myDecorator—>setBrick ( ele ); 

this—>myHandler—>getMotions ( ele , t ime , U, Ud, Udd); 

myDecorator—>applyDRMLoad( load , U, Ud, Udd); 

} 

} 

delete myDecorator; 

} 

Figure 2.6. Implementation of virtual void applyLoad (double time) of DRMLoad­
Pattern class 
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files and handling the request of an FLBrick element pointer of the Domain object tha t 

requests the necessary input wave field at its exact nodal locations at a specific instance of 

time. This handler class returns to the calling FLBrick element pointer the input motions 

required to compute its equivalent effective seismic input load. This is done by buffering in 

advance a certain number of time steps from the input time histories, performing spatial 

and temporal interpolations as required, as well as numerical integration or differentiation. 

The main function call provided by this class is void get M o t ions (...) , which upon 

completion has populated accordingly three vectors: U, Ud, Udd which correspond to the 

displacement, velocity and acceleration wave field at the nodes of the element. These are 

then used by the DRMLoadPattern class to apply the load for the specific decorated by 

the DRMBoundaryLayer decorator element pointer. The public members of the class are 

shown in the appendix A of the present document. 

2.3.3.4 FLBrick 

The FLBrick class is an implementation of a standard, three dimensional, isopara­

metric, linear elastic, brick element. All the element computations are optimized for the 

linear elastic case. 

• The element stiffness matrix is computed once and stored in a static variable for 

all the elements residing in one processor and if needed is appropriately scaled with 

respect to the volume element and the Young's modulus of the material layer that 

it belongs to. 

• The element mass matrix is computed once and stored in a static variable and if 

needed is scaled appropriately with respect to the density of the layer it belongs to. 

• The element state determination is performed simply as K e u without going through 

the calculation of stresses via strains for speedup of the computation. 

• The element needs to hold as a history variable for the time integration of the DRM 
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input, the displacements as computed from the previous time entry where DRM 

input is given. Previous time entry implies the time value ti such that the DRM 

input is given, U <t where t is the time for which the loading pat tern requests the 

application of DRM effective seismic input and also \t — t j | is min. 

2.3.3.5 Geometr i cBr ickDecorator and D R M B o u n d a r y L a y e r D e c o r a t o r 

The purpose of a decorator class is to dynamically attach additional functionality to 

an object (Gamma et al., 1995). It provides an alternative to subclassing for extending 

the functionality of an object. Decorators are also known as wrappers. The two decorator 

classes under discussion serve the purpose of adding necessary functionality to some objects 

of the FLBrick class, for the computations necessary for the construction and application 

of the effective seismic input via the DRM. 

The GeometricBrickDecorator class implements all the operations needed for an el­

ement to be able to identify itself as to whether it is participating to the DRM loading 

pattern or not which is decided exclusively based on the element's geometrical information. 

With reference to Fig. 2.2 the single element layer r e ~ r is essentially a special volume 

within the domain's volume. This volume needs be functionally identifiable in order for a 

specific element's volume to be able to figure out whether it belongs to it or not. In the 

most general case this is done by describing this volume by a specific point set such that 

a "point in volume" query suffices for all the elements of the domain in order to partition 

them in those belonging to this interface and those who don't . In a less geometrically 

general case this volume can be described by a set of curves that solely intersect the vol­

umes of the participating elements. Finally the simplest case is when a certain number of 

planes suffices to describe this interface. Such is the case in a uniform hexahedral mesh, 

which also is the case of interest for the scope of this work. Specifically for the later case, 

for the purpose of the identification of the elements that participate in the DRM load 

pattern six coordinates are provided, min and max for the three directions and these are 
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the bounding coordinates of the cube whose exterior one-element layer comprises the set 

of elements that participate in the load pattern. Given those bounding coordinates and 

since the elements have access to the nodal coordinates of their node objects, via a simple 

linear traversal of the Domain object's elements and simple geometric comparisons, a da ta 

container is populated with the appropriate element pointers as part of the initialization 

of the PlanelDRMInputHandler instance in each processor. The GeometricDecorator class 

contains implementations of the necessary queries to handle all the possible geometric def­

initions of the layer r e - r even though for the purpose of the present work the geometry is 

a simple cube. This class is also responsible for determining which of the element's nodes 

(assuming it belongs to the interface layer) are e and which are b nodes with respect to Fig. 

2.2; this operation has similarities with the identification of the elements that participate 

in the loading pattern. In brief this decorator is performing geometric actions necessary 

for both the initialization and application of the DRM loading pattern. 

The DRMBoundaryLayerDecorator class implements all the functionality required 

by an element that belongs to the enclosure of the two boundaries Te and T in Fig. 2.2, 

in order for it to construct and apply its equivalent effective seismic input load according 

to Eq. (2.9). The DRMLoadPattern class makes a call to an appropriate element pointer 

which upon being decorated with this class, is executing the void a p p l y D R M L o a d ( . . . ) , 

which is passed as arguments the wave field at the nodal locations. The method's imple­

mentation is shown in Fig. 2.7. 

2.3.4 Domain decomposition 

The term refers to the method of solving boundary value problems (BVPs) by parti­

tioning them into smaller independent BVPs and solving those on subdomains and then 

coordinating the solution among the subdomains. Consider a domain Q split into element-

wise disjoint sundomains fli and f̂  with the interface surface between the two subdomains 

Tip as shown in Fig. 2.9. The unknowns of Eq. (2.24) are partitioned into three sets: x i 
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void DRMBoundaryLayerDecorator :: applyDRMLoad (Vector &drmLoad , 

const Vector &displ , 

const Vector &veloc , 

const Vector feaccel) 

{ 

Node *theNode; 

drmLoad. Zero () ; 

Vector load (3 ); 

this—>computeDRMLoad(drmLoad , displ , veloc , a c c e l ) ; 

Node** nodes = this—>myBrick—>getNodePtrs () ; 

for ( int i=0 ; i <8; i++) { 

theNode = n o d e s [ i ] ; 

load . Zero ( ) ; 

load (0) = drmLoad(i*3); 

l o a d ( l ) = drmLoad(i*3 + l ) ; 

load (2) = drmLoad ( i *3 + 2); 

theNode—>addUnbalaneedLoad (load ); 

} 

} 

Figure 2.7. Implementation void getMotions (...) of PlaneDRMInputHandler class 
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Custom Solver 

PlainHandler Custom 
DOF_Numberer AnalysisModel 

Node 0 DOF_Group 

Linear 

M E L E 

FE_Element q Element 

Figure 2.8. Modified OpenSees class diagram for transient analysis (new implementations 
shown in bold) 

corresponding to Qi, those corresponding to O2 denoted as X2 and those corresponding to 

r \ 2 denoted as X3. 

In the general case the matrix equation is rewritten in block form as 

(2.75) 

where A33 = A33 + A33, which means A33 contains both contributions from elements in 

Qi and 0,2- The unknowns Xi and X2 are easily eliminated from the system using the 

Schur compliment of A33 in A. The resulting system yields 

A n 

0 

A31 

0 

A22 

A32 

A i 3 

A2 3 

A33 

< 

r > 
X l 

x2 

X3 

> = < 

' > 
b i 

b 2 

b 3 

Af3x3 = bf (2.76) 

where 

As A1 
A 3 1 A I A 1 3 + A | o - A s a A ^ A L 3 i A n A13 33 ^32-^-22 -^23 

- A 1 5 + A 2 S 

— A 3 3 + A 3 3 

(2.77) 
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Figure 2.9. Domain fi partitioned into two subdomains fii and O2 

and 

bf = b j - A3 1 A ^ b i + b | - A32A22
1b2 

b\s + b f 
(2.78) 

•»3 " r " 3 

Upon determining the X3 the remaining unknowns of the problem are easily determined 

using Eq. (2.75). This concept can be easily extended to n subdomains. For a more in 

depth discussion of domain decomposition algorithms and methods refer to Toselli and 

Widlund (2005). 

For the purpose of the parallel solution of the system of equations that arise from the 

explicit time integration of Eq. (2.8), a non-overlapping domain decomposition method 

is used which means that only interfaces of partitions are duplicated in the distributed 

matrix layout. The system solution does not require forming the LU factorization of the 

matrix because the left hand side is a diagonal matrix as it is shown in Eq. (2.17). The 

system of equations for the two subdomain case in blocked form is 

Ai 0 

0 A2 

(2.79) 
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where1 A$ = A * + A | , which means that the diagonal block Aj contains both contributions 

from elements in fix a n ( l ^2- Similarly bj = b 1 + b | , which means that the vector bj 

contains both contributions from elements in fix and ^2- The diagonal matrix Aj gets 

assembled once in the first time step and is stored in process i of the MPI communicator., 

whereas the vector b , need be assembled at each time step in process i with contributions 

of all the processes that process i shares an interface with. This is in essence what the 

customSOE and customSolver classes are solving in the most efficient possible way. 

2.3.5 Parallel analysis in OpenSees 

To utilize parallel computing, OpenSees implements the master-slave model, using 

an actor-shadow model, with process 0 (PE 0) being the master process and the rest of 

the processes in the MPI communicator being the slaves. The software design is shown 

in Fig. 2.10. A PartitionedDomain object is created in P E 0, and the element graph gets 

partitioned and each partition is broadcast to the corresponding slave process. In PE 0 no 

elements are stored but all the interface nodes are stored. Thus P E 0 stores the union of 

the "in pairs" intersections of the nodal graphs that get stored in all the other processes. 

Using a domain decomposition method (overlapping or non-overlapping), the interface is 

solved first in P E 0, then the result is broadcast to the other processes and the solution 

of each process's dofs takes place locally in its space. The communication between P E 0 

and the rest of the processes is done via the actor-shadow model. In P E 0, besides the 

Partit ionedDomain object, there exist also ShadowSubdomain objects one per process P E 

i of the communicator except for P E 0. In each process P E i an ActorSubdomain object 

is constructed, which communicates with its corresponding ShadowSubdomain object in 

PE 0. The Partit ionedSubdomain solves the interface dofs then communicates them to 

the ActorSubdomain objects. This is done with a message that gets sent from P E 0 to P E 

i through the Channel that connects the ShadowSubdomain corresponding to P E i tha t 

1 subscript i indicates part of matrix owned by PE i 
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V: x4 | ActorSubdomain I 

Figure 2.10. Parallel analysis architecture in OpenSees 

resides in the address space of PE 0 to the ActorSubdomain that resides in the address 

space of PE i. 

2.3.6 Parallel analysis implementation in the soil subdomain application 

For parallel computing and to solve the governing equations for a model, one inde­

pendent Domain object, is constructed in each process PE i of the communicator. Each 

Domain solves the total equation for each dof that it holds including the shared ones. 

The Domain objects do not need to communicate at all during the computation. This 

approach is in a way a small deviation from the general OpenSees architecture where a 

Domain object is considered a complete model rather than a partitioned component of one. 

Since the goal is a new implementation, this becomes acceptable. Each Domain object 

contains its own DirectlntegrationAnalysis object, which in turn contains a customSOE 

and a customSolver class instance. It is the responsibility of the customSOE and cus-
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Figure 2.11. Parallel analysis architecture for simulation of sub-region 

tomSolver objects instances contained in the Analysis object to identify and communicate 

with the appropriate processes for them to solve the equations for each dof they hold. 

This communication is done via MPI calls rather than using a variation of the OpenSees 

Channel object because it reduces the number of required function calls and since only 

distributed memory parallel computing is used. The design is shown in Fig. 2.11. 

2.3.7 Analysis classes 

2.3.7.1 C u s t o m D O F N u m b e r e r 

The numbering of the DOF, is the assignment of unique identification numbers to each 

DOF. The implementation of a custom degree of freedom numberer class is essential for 

speedup and performance. In a general distributed finite element analysis, it is necessary 

to number consistently a partitioned graph with unknown total number of edges and 

vertices, unknown and non constant in/out degree of its vertices. In this case, the parallel 

DOF graphs that are created, are just a set of vertices for an explicit solver, since there is 

no coupling in the equations and the set of edges is empty. While this does not affect the 

generality of the numberer, it reduces the amount of memory required for the storage of the 
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N U M B E R - D O F 

1 O executed by all ranks in parallel 

2 max <— 0 

3 for each vertex u in my^dof _group graph 

4 do if u.dofptr.dof jid.SizeQ > max 

5 max <— u.dofptr.dof J,d.Size() 

6 all_gather max, tmp_array 

7 max <— max[tmp_array] 

8 for each vertex u in my-dof_group graph 

9 d o ptr <— u.dofptr 

10 tmpsz <— ptr.dof'_id.Size() 

11 tag <— ptr.getTagQ 

12 for j <— 0 t o (tmpsz — 1) 

13 do ptr.setDofID(j, (tag - 1) max + j ) 

Figure 2.12. Parallel DOF numbering method 

involved graphs. Within the OpenSees framework the DOF are grouped in DOF_Group 

objects tha t correspond to mesh nodes. An efficient algorithm, resulting in a nearly 

embarrassingly parallel way of performing this task is shown in Fig. 2.12. The key idea 

is that each process identifies the maximal number of degrees of freedom associated per 

DOF_Group, and upon a comparison among all the PEs, the global maximum is obtained 

on all processors. After this step each P E proceeds independent of the others. Upon the 

completion of the numbering phase, each domain object is populated with an array of 

integers containing the unique id for each DOF. 

2.3.7.2 C u s t o m S O E 

The customSOE begins by implementing the int set Size (Graph&: t h e G r a p h ) 

method which identifies the size of system of equations that the processor is solving, 

numbers the degrees of freedom, and sets up the communication graph required for the 

solution in parallel. For that each process needs to figure out the subset of processes from 
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the MPI communicator that it needs to communicate with. Each P E identifies the subset 

of PEs it needs to communicate with during the solution phase, by sending to all the others 

the set of DOF it owns. The receiving P E performs a set intersection between its DsOF 

and the received ones of the potential neighbor. Should the intersection be non-empty, it 

identifies the sending P E as a neighbor. The receiving P E identifies during the intersection 

operation the locations of the local arrays that need to be stored. These are used when 

the associated data is sent/received to/from the corresponding neighbor. The pseudocode 

for this procedure is shown in Fig. 2.13. Two implementations are provided: one using an 

all-to-all multicast (which is the primitive MPI_Allgather) and another using a one-to-all 

multicast (MPLBroadcast primitive). Fig. 2.13 shows the former, which is the default. 

The latter is useful because the space complexity of the all-to-all multicast is 0(nm), where 

n is the total number of P E and m is the number of DOF per PE. For problems with large 

sets of DOFs and limited memory, a one step at a time broadcast implementation reduces 

the space complexity to about twice the size of the local DOFs 0(m) and this is the 

scalable version of the algorithm since it has a fixed memory requirement independent of 

the size of the communicator. 

That the set of DOFs of each process is sorted using the quicksort algorithm that 

takes 0(nlog(n)) time and is considered ideal for sorting arrays in place. Quicksort is a 

recursive divide-and-conquer algorithm and in practice is the fastest known comparison-

based sort method for arrays even though it has worst-case running time 0 ( n 2 ) . When 

properly implemented it does run though in 0(nlogn). This sorting allows for 0(logn) 

search time in the data structures that contain the dofs and also 0(n + m) intersection 

time between two sets of dofs. For algorithms and analysis of their running time the reader 

is referred to the standard reference Cormen et al. (2001). 

Each process assembles the total vector of its shared dofs tha t it shares with the entire 

list of vertices in its edge list, and broadcasts it to them. These mappings are stored at 

each process to allow for minimal size of required communicated messages. Since solution 
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is done using explicit integration in time and the left hand side is mass dependent and 

constant Eq. (2.17), at each time step only the right hand side needs assembly Eq. 

(2.30). The left hand side assembly is performed once at the first time step and no further 

communication takes place for it. Aside from the previously mentioned characteristics, the 

customSOE class provides the exact same method calls that any SOE class is required to 

implement within the OpenSees architecture customized for an explicit, diagonal system 

of equations. 

2.3.7.3 Cus tomSo lver 

The purpose of the customSolver class is to solve the Eq. (2.31). At each time step 

it loops through the edge list of the process (communication graph) to assemble the right 

hand side, and after assembly it solves the equations for the total dofs. The customSolver 

class provides the required method implementations customized for an explicit system of 

equations and parallel processing using MPI. The pseudocode for the solution phase is 

given in Fig. 2.14. The key steps are the local computations on each PE , where according 

to the integration algorithm the A and b components are assembled. Using the cached 

sizes that correspond to the per P E communication requirements the send and receive 

buffers are allocated. This operation is only performed once. Each rank populates the 

send buffers that correspond to each neighbor P E with the required subset of the local 

b . A, depending on the problem and algorithm, is only communicated at the first step 

if it is fixed, otherwise on each time increment. The generic communication algorithm 

is shown in Fig. 2.15. The placeholders comm_op_l and comm_op_2 can each call 

either MPLIrecv or MPLisend and MPLSend or MPLIsend or MPI_Recv or MPLIrecv 

correspondingly. Clearly comm_op_l can only be non-blocking. An implementation for a 

fully non-blocking version with receives posted first is shown in Fig. 2.16. Par t of the local 

computation is interleaved with the communication calls. The benefit is minimal for linear 

problems with explicit time integration in homogeneous clusters, as the work of Danielson 
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SET-UP-CoMMUNiCATlON-GRAPH(rm/_do/s_army) 

1 > executed by all ranks in parallel 

2 List adj, adj_sizes, adj-arrays 

3 quicksort (my_dofs_array) 

4 locaLsize <— length[myjio{S-array] 

5 tmp_array[size..of-Comm] 

6 alLgather local^size, tmp^array 

7 maxsize <— max[tmp_array] 

8 num_neighbors <— 0 

9 recvj>uj [sum of sizes] 

10 allgather my_dofs, maxsize, recv^buf, trnp-array 

11 for j <— 0 t o (size_of_comm —1) 

12 do 

13 l> Intersect my local dofs with each received 

14 t> dofs to figure out possible neighbors, 

15 t> the size of the intersection and the 

16 D> locations in my array 

17 if myjrank ! = j 

18 thcin tmp_dofs <— recvj}uf\j • maxsize] 

19 trap <— intersect (my-dofs, tmp_dofs) 

20 if imp empty continue 

21 adj[num_neighbors] <— j 

22 adj _sizes[num_neighbors] <— length[tmp] 

23 adj-.arrays[num_neighbors] <— imp 

24 numjneighbors <— numjneighbors + 1 

25 > Finally perform local renumbering of dofs 

26 > according to the sorted locations 

27 > (preserves location in local arrays) 

Figure 2.13. Algorithm for setting up the communication graph 
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and Namburu (1998) demonstrated, but it is still recommended. The decision of the 

realization of the placeholders comm_op_l and comm_op_2, depends on the platform, 

problem and hence message sizes. This is done as is part of the tuning of the code prior 

to porting to a new machine. 

2.3.8 Comparison of the two architectures 

An example that illustrates the difference between the two architectures is presented 

in this section. Consider a 2D domain partitioned into 64 partitions as shown in Fig. 

2.17. The dashed lines represent the limits of the partitions, thus refer to shared degrees 

of freedom. 

The OpenSees architecture communication graph for the analysis of this problem is 

shown in Fig. 2.18. An additional process used, i.e. a total of 65 processes, for the role 

of the master process. Alternatively one could use 63 partitions of the initial domain 

and one for the role of the master process. Even if a partition were allowed on PE 0 

too, that would create immediately a large imbalance since PE 0 is responsible for both 

coordination of the entire analysis and local computation. For the purpose of having 

equally size partitions in both codes 64 processes plus one master process where used for 

OpenSees. The communication graph for this architecture is shown in Fig. 2.19. 

Graph theory terminology is introduced to facilitate the comparison. A graph is a set 

of vertices connected by edges. For the purposes of this work all edges are bidirectional, 

which means that reference is made to undirected graphs only, since they represent com­

munication between two processes. Graphs can be represented via matrices or lists. Here 

the matrix representation is used. Adjacency matrix A = a(i,j) of an undirected graph 

G = (V,E) having \E\ edges and \V\ vertices is a |V| x \V\ matrix such that: 

A(i,j) = A(j,i) = { 
1 if (i,j)eE 

(2.80) 
0 otherwise 
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DIAGONAL-SOLVE 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

t> Set according to time integration algorithm 

my A ,myB, myX 

List adj,adjsizes, adj_arrays 

O Send and Recv buffers 

List adj_As} adjjs, adj^Ar, adj_Br 

t> Each rank populates its send buffers 

for j <— 0 t o (length[myjneighbors\ — 1) 

do tmpsize <— length[adj-arrays\j]] 

if A^notset 

then for i <— 0 t o (trapsize —1) 

do trap <— adj_arrays[j][i] 

adj_As\j][i] *— myA[tmp] 

adj_Bs\j][i] <— myB[tmp] 

else for i <— 0 t o (tmpsize —1) 

do imp <— adj_aTraj/a[j'][i] 

adj-Bs[?][»] <— myB[tmp] 

> Perform the communication steps according to Fig. 2.15 

for j «— 0 t o (length[my_neighbors] — 1) 

d o tmpsize <— Zengt/i[ac(j_arra2/s[j]] 

if /l_no£_set 

then for i <— 0 t o (tmpsize —1) 

do trap <— acij_arraj/s[j][i] 

myA[tmp] + <— adj_j4r[j][i] 

myB[tmp] + <— ad7_Br[7][i] 

else for i <— 0 t o (tmpsize —1) 

do imp <— adj_arroi/s[j][i] 

myB[tmp] + <— adj_Br[j][i] 

> If A is constant during all the steps 

for j <— 0 to (local_size —1) 

j / i r - i l 
d o myA[j\ <- m j / A [ j ] 

j4_noi_5ei <— false 

E> Solve 

for j <— 0 to (local_size —1) 

do myX\j] <— myA[j] • myB[j] 

Figure 2.14. Algorithm for solution phase 
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COMMUNICATION 

1 for j: <— 0 t o (length[my-neighbors] — 1) 

2 do comm_op_type_l j , adjsizes[j], 

3 for j <— 0 t o (length[my-neighbors] — 1) 

4 do comm_op_type_2 j , adj sizes [j], 

5 Wait_All 

fcu/-iS/pe[j] 

6«/_type[j] 

Figure 2.15. Generalized communication structure 

NON-BLOCKING 

1 if A-notset 

2 then for j <— 0 t o (length[my_neighbors] — 1) 

3 do Irecv j , adj sizes [j], adj_Ar[j] 

4 Irecv j , adjsizes[j], adj_Br\j] 

5 for j <— 0 to (length[my_neighbors] — 1) 

6 do Isend j , adj—sizes^'], od7_/4s[j] 

7 Isend j , adj_«izes[j], adj_Bs[j] 

8 else for j <~ 0 to (length[my_neighbors] — 1) 

9 do Irecv j , adjsizes[j], adj_i?r[j] 

10 for j <— 0 to (length[myjneighbors] — 1) 

11 do Isend j , adjsizes[j], adj_Bs[j] 

12 > Overlap Computation by solving on all non-shared dofs 

13 for j <— 0 to (localsize —localshared) 

14 do myX\j] <- mj/yl[j] • TO2/B[J] 

15 Wait_AIl 

Figure 2.16. Non blocking communication with receives first 
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Figure 2.17. Partitioned 2D domain 
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Figure 2.18. Resulting communication graph for OpenSees 
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Figure 2.19. Resulting communication graph for this application 
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20 40 60 
nz = 128 

Figure 2.20. Sparsity of adjacency matrix for OpenSees, dots representing non-zero entries 

The adjacency matrix representing the graph shown in Fig. 2.18 describing commu­

nication during parallel analysis in OpenSees for the domain shown in Fig. 2.17 is shown 

in Fig. 2.20. The adjacency matrix representing the graph shown in Fig. 2.19 describing 

communication during parallel analysis in this application for the domain shown in Fig. 

2.17 is shown in Fig. 2.21. 

The general OpenSees method of parallel processing does not allow for scalability 

to a large number of processors, because of four bottlenecks in the pipeline. First, the 

size of the total PartitionedDomain object is limited to the memory capacity of process 

PE 0. Second, the number of total interface dofs, is also limited by the memory capacity 

of process PE 0. Third, while PE 0 solves the interface problem all the other processes 

remain idle waiting for the broadcasting of the interface dofs. Lastly, the fact that the 

communication is taking place between PE 0 and all the other processes P E i creates a 

significant unbalance in the communication graph. Essentially the architecture in Fig. 

2.18 for a communicator of size n requires a bus n — 1 times as fast for node with rank 

0, compared to the buses of the other nodes. In the architecture developed herein, the 

10j 

20 j 

301 

40 j 

50 { 

60 ] 

0 
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20 40 
nz = 420 

Figure 2.21. Sparsity of adjacency matrix for this application, dots representing non-zero 
entries 

goal was to eliminate the bottlenecks and produce an application that can. scale to very 

large numbers of processors. Note that the in/out degree of any vertex in Fig. 2.19 is 

significantly smaller than the resulting from the architecture of Fig. 2.10 where the degree 

of the vertex that corresponds to processor 0 is n — 1, where n is the number of processes 

that participate in the communicator, and every other vertex has in/out degree of 1. For 

the application of Fig. 2.19 the max in/out degree is 8 or 26 for a regular 2 or 3 dimensional 

grid and this presents a great advantage. A communication graph such that of Fig. ?? is 

better balanced and therefore the application is very scalable. 

2.4 Analysis of scalability and performance 

The strong and weak scalability of the explicit finite element platform that was pre­

sented in the previous section, is studied. A benchmark problem with a simple loading is 

modeled and is used to assess the performance. 
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forcing load 

3 dimensional absorbing boundaries 

Figure 2.22. Three dimensional benchmark problem used for scalability measurements 

2.4.1 Benchmark model description 

A semi-infinite half-space is modeled using hexahedral isoparametric elements for the 

soil and absorbing boundaries to account for the energy absorption at infinity. Graphically 

the problem is shown in Fig. 2.22. The volume of the model is a 1400 m x 900m x 300 

m region meshed using 20 m, 10 m, 5 m and 2.5 m cubical elements. In all cases the 

model was analyzed for 20000 time steps so that the initialization costs become amortized 

and also in order to have as good as possible estimates of the time per element-per time 

step-per P E metric. The loading for the testbed example was a simple forcing bi-couple in 

the center of the domain at the free surface. The details of each model that was analyzed 

are presented in Table 2.1. 
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Table 2.1. Benchmark run data 

Run A 
R u n B 
R u n C 
RunD 

element size (m) 
20 
10 
5 

2.5 

# elements 
54026 

404751 
3130301 
24615801 

# nodes 
59032 

424512 
3208822 

24928842 

# D O F s 
156768 
1193283 
9307563 
73515123 

PE range 
2-32 

16-256 
128-2048 

1024-2048 

2.4.2 Strong and weak scalability analysis 

Strong or fixed-size scalability and weak or isogranular scalability for this application 

is examined for the benchmark problem. Strong scalability refers to the case when the 

problem size is fixed and by increasing the number of processors used for parallel com­

putation the goal is to proportionally decrease the time required for the solution. Strong 

scalability is measured using two standard metrics, the speedup and the parallel efficiency 

metric. Assume a fixed size problem analyzed with k PE's and then with n PE's, and also 

assume k<n. The speedup for the case of n PE's is defined as S(n) = ^&A- For the same 

example the parallel efficiency is defined as E(n) = nT\A • 

Weak scalability refers to the fact that ideally and as long as the number of elements 

per processor remain constant the analysis time, regardless of the size of the model, will 

remain constant. That of course is impossible given that it implies a zero cost of commu­

nication among processing units as well as other idealizations. Weak scalability is shown 

via the time/element/step metric. 

The detailed results for each run shown in Table 2.1, are shown in Table 2.2 through 

Table 2.5. Strong scalability is plotted in Fig. 2.23 and weak scalability is plotted in Fig. 

2.24. 

2.4.3 Analysis of the performance results 

Scalability is achieved for all ranges of processing unit numbers, up to 2048 processors, 

almost linearly, as the speedup row shows in all the tabulated results. In some cases it 
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Table 2.2. Run A, detailed performance data 
PEs 

Elements/PE 
EToE time (sec) 

speedup 
relative speedup 
parallel efficiency 

comm time (% EToE time) 
EToE time/elem/step (//sec) 

2 
23625 

11847.19 
1 
1 
1 

1.05 
25.1 

4 
11812 

5569.78 
2.127 
2.127 
1.06 
2.31 
23.6 

8 
5906 

3052.76 
3.881 
1.82 
0.97 
4.98 
25.8 

16 
2953 

1414.22 
8.377 
2.16 
1.04 

10.909 
23.9 

32 
1467 

846.85 
13.99 
1.67 
0.87 
13.91 
28.9 

Table 2.3. Run B, detailed performance data 
PEs 

Elements/PE 
EToE time (sec) 

speedup 
relative speedup 
parallel efficiency 

comm time (% EToE time) 
EToE time/elem/step (//sec) 

16 
23625 

13621.23 
1 
1 
1 

6.83 
28.8 

32 
11812 

7229.51 
1.884 
1.884 
0.94 
5.79 
30.6 

64 
5906 

3188.34 
4.272 
2.27 
1.06 

12.33 
26.9 

128 
2953 

1411.45 
9.651 
2.26 
1.20 
12.26 
23.9 

256 
1467 

793.38 
17.169 

1.78 
1.07 

20.38 
27 

Table 2.4. Run C, detailed performance data 
PEs 

Elements/PE 
EToE time (sec) 

speedup 
relative speedup 
parallel efficiency 

comm time (% EToE time) 
EToE time/elem/step (//sec) 

128 
23625 

15232.92 
1 
1 
1 

8.70 
32.2 

256 
11812 

7616.11 
2.0 
2.0 
1 

9.92 
32.2 

512 
5906 

3633.15 
4.19 
2.10 
1.04 
14.86 
30.8 

1024 
2953 

1762.89 
8.64 
2.06 
1.08 

22.56 
29.8 

2048 
1467 

981.90 
15.52 
1.79 
0.97 
27.31 
33.4 

Table 2.5. Run D, detailed performance data 
PEs 

Elements/PE 
EToE time (sec) 

speedup 
relative speedup 
parallel efficiency 

comm time (% EToE time) 
EToE time/elem/step (//sec) 

1024 
23625 

15863.45 
1 
1 
1 

14.07 
33.6 

2048 
11812 

7996.29 
1.98 
1.98 
0.99 
18.66 
33.8 
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appears to even be superlinear. This indicates that the selected problem sizes might be 

small enough sometimes, and thus fits the processor's cache. Yet even so, the relative 

speedup is very good also. Ideally it should always be 2 and is in the worse case, for the 

large problems 1.78. Communication time appears to be at the most 27% as shown in 

Table 2.4 which is considered satisfactory given that most finite element codes have about 

25% communication cost. 

The communication costs indicate that even for this simple mesh because the parti­

tioning is only hexahedral element based, there exists an unbalance in the computational 

units among different processes of the same communicator. Even though processors have 

the same number of hexahedral elements some of them that contain near boundary re­

gions also have absorbing boundary elements whose computational load results in this 

unbalance. This is also an issue for when analyzing a model using the DRM load pattern. 

The elements that participate in the DRM load pat tern have a significantly higher com­

putational load compared to the hexahedral elements and thus constitute an additional 

imbalance reason. This indicates that a dynamic load balancing strategy may be needed 

especially if nonlinear soils will be considered. This remains a future goal outside the 

scope of this work. 

The computational costs can be split in two components; one is the element state 

determination, which consists of the time the finite element objects spend to compute 

their internal state, thus using the computed displacements from the previously converged 

state to evaluate the resisting forces for the right hand side of the current time step, and 

second the time spent for the solution of the equation of motion for the current time step. 

Ideally both of these steps need be balanced for a minimal communication. Since the 

model contains boundary elements of different type from the regular hexahedrals, that 

is not possible. A weighted partition of the element graph would succeed in balancing 

the state determination part of the computation resulting in a more unbalanced solution 

phase. The solution phase was found to be more important to maintain balanced and 
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thus the partitioning is based only on the hexahedrals. It is a partitioning that achieves 

minimal communication costs and leaves some unbalance in the computational loads and 

in particular in the element state determinations. 

As for the weak scalability results, the time per element/step metric results are con­

sidered high. An improvement of about three times is desired. The case of 11812 elements 

per processor shows the best balance. This metric indicates that it is needed to perform 

core optimizations for the way the code allocates and handles memory for the objects and 

that some improvement in the data structures is needed. This is not considered within 

the scope of this work but is a task for the future. 

2.4.4 Analysis of communicat ion cost for the solver 

In this section detailed results are presented for the communication costs of each run 

and how these are distributed among the main MPI calls that the code does. The results 

presented in Table 2.6 through Table 2.9 show that in the case of Run A, the communica­

tion time is mainly spent in the MPI_Waitall( . . . ) function where as for Runs B,C,D 

the governing function is MPI_Send(. . . ) and secondarily MPL_Waitall(...) . 

Table 2.6. Run A, detailed communication time data 
PEs 

Elements /PE 
EToE time (sec) 

comm time (% EToE) 

MPI_Send (% EToE) 
MPLirecv (% EToE) 

MPLWaital l (% EToE) 

MPLBcast (% EToE) 

MPLBarr ier (% EToE) 
MPI-Allgather (% EToE) 

2 

23625 
11847.19 

1.05 

0.007 
0.0048 
1.032 

0.00014 

0 
0.00499 

4 
11812 

5569.78 
2.31 

0.03 
0.012 

2.248 
0.00034 

0 
0.024 

8 
5906 

3052.76 
4.98 
0.07 

0.024 

4.818 

0.00057 

0 
0.0598 

16 
2953 

1414.22 
10.909 

3.013 
0.038 

7.8 

0.013 
0.000248 

0.0469 

32 

1467 
846.85 
13.91 

5.45 
0.058 

8.37 

0.003933 

0.00011 
0.026 
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Table 2.7. Run B, detailed communication time data 
PEs 

Elements/PE 
EToE time (sec) 

comm time (% EToE) 
MPLSend (% EToE) 
MPLirecv (% EToE) 

MPLWaitall (% EToE) 
MPLBcast (% EToE) 

MPLBarrier (% EToE) 
MPLAllgather (% EToE) 

16 
23625 

13621.23 
6.83 

5.2083 
0.00966 

1.355 
0.00864 

0.00001284 
0.26 

32 
11812 

7229.51 
5.79 
4.31 

0.01632 
1.312 

0.001902 
0.00005857 

0.152 

64 
5906 

3188.34 
12.33 
8.313 

0.03714 
3.863 

0.000455 
0.0000838 

0.11263 

128 
2953 

1411.45 
12.26 
9.036 

0.04321 
0.03117 
0.03607 
0.0135 
0.0472 

256 
1467 

793.38 
20.38 
12.044 
0.0738 
8.175 

0.03607 
0.01352 
0.0341 

Table 2.8. Run C, detailed communication time data 
PEs 

Elements/PE 
EToE time (sec) 

comm time (% EToE) 
MPLSend (% EToE) 
MPLirecv (% EToE) 

MPLWaitall (% EToE) 
MPLBcast (% EToE) 

MPLBarrier (% EToE) 
MPLAllgather (% EToE) 

128 
23625 

15232.92 
8.70 
6.69 

0.02973 
1.625 

0.00795 
0.00104 
0.3380 

256 
11812 

7616.11 
9.92 
7.925 

0.03731 
1.673 

0.01922 
0.002945 

0.2658 

512 
5906 

3633.15 
14.86 
10.63 

0.05238 
3.6835 
0.050 
0.0159 
0.1528 

1024 
2953 

1762.89 
22.56 
16.80 
0.067 
5.384 

0.1486 
0.09349 
0.06206 

2048 
1467 

981.90 
27.31 
18.851 
0.09 

7.1033 
0.489 
0.074 

0.0408 

Table 2.9. Run D, detailed communication time data 
PEs 

Elements/PE 
EToE time (sec) 

comm time (% EToE) 
MPLSend (% EToE) 
MPLirecv (% EToE) 

MPLWaitall (% EToE) 
MPLBcast (% EToE) 

MPLBarrier (% EToE) 
MPLAllgather (% EToE) 

1024 
23625 

15863.45 
14.07 
10.28 

0.04486 
3.172 
0.075 

0.02826 
0.047 

2048 
11812 

7996.29 
18.66 
13.86 

0.05374 
3.81 

0.193 
0.4675 
0.2722 
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Chapter 3 

Analysis of soil subdomains for 

near-fault ground motion 

This chapter presents a one dimensional wave propagation example to verify the 

correctness of the solver and the FE code in general. The results are compared against 

closed form solution. Next, a near fault region in Downtown Los Angeles, adjacent to the 

Puente Hills fault is analyzed, serving as the first application example. The analyses use 

low frequency and broadband input. Two soil types are considered for the low frequency 

input, the original one as well as a softer soil. The Domain Reduction Method (DRM) 

is applied in order to provide for the effective seismic input in the soil subdomain. The 

DRM method is validated for the soil profile used to generate the input motion. 

3.1 A one dimensional wave propagation example 

Suppose a one dimensional half-space of an elastic material that is initially undis­

turbed. That is u(x,t) = 0 for t < 0 and subjected to the normal-stress boundary 
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condition crn(0,£) = p(t). We know from elasticity that 

du 
<7n = (A + 2/i)en = (A + 2At)— (3.1) 

This allows us to rewrite the boundary condition as 

Pm = J^- (3.2) 
dxy ' ' A + 2/z v 7 

Since we are solving in a half-space we can assume the solution to only contain a forward 

propagation wave u(x,t) = /(£) = /(£ — ^) where c is the wave propagation speed of 

the material. By simple differentiation and setting x = 0 for the boundary condition we 

obtain that 

dt A + 2/x v ; 

and then solving for /(£) we have 

u(x, t) = / ( 0 = /(0) - - ^ ^ jT C p(r)dr (3.4) 

Now for the initial condition to verify, it follows that /(0) = 0 and thus finally we have 

for the solution 

uM =-xhn P piT)dT (3-5) 
A unit area bar of length 400 m with Vs = 50 m/sec and Vp — 100 m/sec is modeled 

with 400 FLBrick elements (Section 2.3.3.4), and solved numerically. We apply the normal 

stress as a forcing input in the four nodes of the first element and use absorbing boundary 

elements to account for the energy absorption at infinity. To simulate the one dimensional 

effect the degrees of freedom that are perpendicular to the axis of the model are fixed. 

The input is a sinusoidal force F(0,t) = sin(2irfot) (\ of F(0,t) per node). The time 

integration is performed using all three schemes discussed in the previous chapter. 

The comparison of the closed form solution from Eq. (3.5) and the numerical solution 

is shown in Fig. 3.1. The results present excellent agreement, and validate the solution 

method and parallel numerical procedure. 
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Figure 3.1. Comparison of closed form solution and numerical solution using our custom 
code for a simple one dimensional wave propagation problem 

3.2 Analysis of soil subdomain near the Puente Hills fault 

A near fault region of size 1000 m by 500 m by 100 m is analyzed for low frequency and 

broadband input using the original soil profile as well as a modified softer one. The lower 

left corner of the region or DRM box, has latitude 34.0922695 and longitude -118.328208. 

The DRM input was provided by a large scale simulation that was conducted under the 

supervision of Professor Jacobo Bielak of Carnegie Mellon University. The position of the 

region of interest for our problem with respect to the fault projection is shown in Fig. 3.2. 

The soil profile of the model is given in Table 3.1. 

Layer 
1 
2 
3 
4 
5 

Table 3.1. Material properties for actual, simplified, layered soil profile 
Density (t/m3) 

1.5 
1.5 
1.5 

1.714 
2.054 

Vp (m/sec) 
404.7 
1163.5 
1337.3 
1622.4 
2372.9 

Qp 
8.094 
23.27 
26.74 
243.36 
355.80 

Vs (m/sec) 
164.9 
385.4 
482.2 
584.3 
651.3 

Qs 
4.047 
11.63 
13.37 

121.68 
177.9 

Thickness (m) 
5.0 
10.0 
40.0 
50.0 
50.0 
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10 JO SO » 55 50 oo m 103 

Figure 3.2. In red is the approximate location of the region of interest. Also shown is the 
Puente Hills fault with the slip distribution for this scenario 

Mass proportional Rayleigh damping was used to represent energy dissipation in the 

soil. It is based on the available geological data for the region by Olsen et al. (2003), with 

the following assumption for the damping ratio: 

(=< (3.6) 
25/Vs (m/sec) if Vs < 1500 m/sec 

5/Vs (m/sec) otherwise 

The coefficient for the Rayleigh damping a as defined in Chopra (2001) is computed by 

least squares minimization using Qs as a target: 

a = 7.2492C 

and finally the damping matrix is computed as: 

C = aM 

(3.7) 

(3.8) 

The scenario for which the simulation was conducted has the following properties: 
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• Hypocenter global coordinates (X,Y,Z) : 

10580.420445) 

• Type of source : plane 

• Moment magnitude : 7.109162 

• Extended hypocenter along strike (m) : 11500 

• Extended hypocenter down dip (m) : 18900 

• Extended strike angle (deg) : 289 

• Extended dip angle (deg) : 27 

• Extended average rupture velocity (m/sec) : 2800 

• Source function type : quadratic 

• Average rise time (sec) : 0.5 

The DRM box that models the ROI is shown in Fig. 3.3. The input motion at the 

boundaries, was provided at the exterior surfaces of the box shown in Fig. 3.3, which 

essentially is the Te bounding surface of Fig. 2.2. It was assumed that along the interface 

Te - T there was no spatial variation of the motion. The input was provided in 6 ASCII files 

containing velocities, one file for each face for faces 1 to 4 and 2 files for face 5 due to size 

limitations of the file. There where 70080 nodal locations, each with 3001 time steps with 3 

entries per time step which are the velocities in X,Y and Z directions. The file sizes sum 

to approximately 6.7Gb. The critical importance of the PlaneDRMInputHandler class, 

and the necessity for very efficient resource management becomes immediately evident 

due to the need to handle a massive amount of data just to generate the effective seismic 

input for each time step of the dynamic analysis. 

The goal in the initial analysis with the DRM is to match the wavefield within the 

region of interest (ROI) with the one from the regional analysis tha t generated the input 
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D R M box 

Dimensions: 1000m x 500m x 100m 

Face 2 

Face 1 

ure 3.3. DRM box for region of interest, and local element numbering. The origin 
m below (along the Z axis) the left right point of the red box shown in Fig. 3.2 
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for the box. next, a comparison between response due to low frequency pulse type input 

versus a broadband input is performed. Finally, the same type of comparison is done 

with a modified soil profile that has roughly 50% of the V530 of the original soil profile, to 

examine site response effects. 

3.2.1 Buffer zone effect 

Prior to discussing the simulation results it is necessary to examine the use of buffer 

zone for this type of simulation. The DRM theory states that if the mesh used for the 

generation of the input (i.e Step I) is identical to that used for the analysis of the subdomain 

(i.e Step II) and the materials are linear elastic, then the wave field within the ROI is 

replicated exactly. This means that the scattered wave w e in Eq. (2.6) is zero. In this 

analysis the meshes differ because of the way they were generated and the assumptions 

about the soil profile, and also the assumption of no spatial variation within the T — Te 

layer. Each of these differences, although small, contribute to the fact tha t the scattered 

wave field is non-zero. To dissipate the scattered wave field, a buffer zone and absorbing 

boundary conditions are used, as discussed in Section 2.1.3. To improve the efficacy of the 

absorbing boundary conditions it is advised to place them at a certain distance away from 

the domain of interest. While there is no closed form solution for the size of the region that 

needs to be added as a buffer zone, the issue can be addressed by performing numerical 

simulations with increasing buffer zone sizes until the model performance is satisfactory. 

Three cases were studied with increasing buffer zone sizes. A 0 m a 200 m and a 

400 m buffer zone per side per direction were considered. Fig. 3.4 shows a comparison 

between the cases studied. As the buffer zone size increases the solution converges to 

the one generated by the analysis providing the DRM input as expected. Based on this 

comparison, the 400 m buffer zone per side of the ROI was considered satisfactory. The 

buffer zone improves resolution but at a significant computational cost. Note that for the 
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Figure 3.4. Buffer zone size effect on X(left) and Y(right) component of displacement on 
top surface centernode of ROI 

ROI itself with a 20 m element mesh a total of 6250 FLBricks are needed. The same model 

with the buffer zone goes to 146250 FLBricks a 22 times increase in the model size. 

3.2.2 Verification of simulation via comparison at centernode 

The comparison between the simulation results at the centernode for the low fre­

quency input simulation against the original the provided the input is described. The 

results Fig. 3.5 through Fig. 3.8 present a very satisfactory agreement given the com­

plexity of the problem and the differences previously mentioned. These results validate 

the consistence and stability of the solutions from the developed software. Next, results 

from the study of the seismic response of the ROI are presented. The differences in the 

spectral content in the Y component of the centernode can partially be attributed to: as 

Fig. 3.7 shows there is a 17.5% difference in the input accelerations which would certainly 

reduce the difference between the two spectral curves and also the differences in damping 

and mesh are also contributing to the observed difference. 
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top surface centernode 

3.2.3 Simulation results for original soil profile using low frequency in­

put 

The properties of the soil in the region of interest are given in Table 3.1. The results 

are given in two centerlines along x and y on the top surface of the ROI in Fig. 3.9 through 

Fig. 3.12. An observation that assists in comprehending the surface centerline plots is 

relates to the end points. Where as in every point the quantity plotted is total wave field, 

at the end points which belong to Fe the quantity plotted is the scattered wave field w e 

according to Eq. (2.6). This is a property of the method and not a choice. In order to 

obtain the total wave field in the end points it is necessary to add the input wave field to it 

according to Eq. (2.6). An additional means of establishing the correctness of the analysis 

is that the w e wave field is zero or relatively smaller compared to the total wave field. In 

the results presented is comparatively small, it is not zero because of the differences in the 

meshes and the assumption of no variation between Te and T. 

3.2.4 Simulation results for original soil profile using broadband input 

The properties of the soil in the region of interest are given in Table 3.1. First a 

comparison of the wave field at the centernode of the surface of the ROI between the low 
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of surface of ROI, for original soil profile with low frequency input 
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Figure 3.13. Damping ratios for original soil profile 

frequency and the broadband is presented. Fig. 3.13 presents the damping ratios used on 

the 4 layers of the mesh. The results are given in two centerlines along x and y on the top 

surface of the ROI in Fig. 3.18 through Fig. 3.21. An immediate observation following 

from Fig. 3.19 and Fig. 3.21 is that the spectra appears to contain to distinct sets of 

peaks the low and high frequency ones. The two sets of peaks seem to lack continuity 

though and this is a result of the superposition of the low frequency wave held generated 

deterministically and the high frequency one generated stochastically. This is a deficiency 

of the methodology which was inevitable at the time. Eventually the computational ca­

pabilities will allow sufficient fidelity simulations at the scale required for the proper wave 

field generation. 

3.2.5 Simulation results for soft soil profile using low frequency input 

The soft soil profile has a modified layer profile. The top 30 m are a uniform layer of 

Vs — 160 m/sec. This is effectively a Vs one half of the Vs of the regular soil profile. The 

remaining 70 m have one half the properties of the corresponding layer of the regular soil 
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Figure 3.20. X(left) and Y(right) component of ground displacement along Y centerline 
of surface of ROI, for original soil profile with broadband input 
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Figure 3.21. X(left) and Y(right) components of 5% damped spectra along Y centerline 
of surface of ROI, for original soil profile with broadband input 

profile. The results on the surface centernode comparing the regular soil response to the 

soft soil response are shown in Fig. 3.22 through Fig. 3.25. The surface centerline plots 

are shown in Fig. 3.26 through Fig. 3.29. By comparing the latter plots to the regular 

soil profile and especially the spectral plots it can be seen that an increase in the spatial 

variability is shown. The breadth of the spectral plots is wider for the soft soil case. 
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Figure 3.27. X(left) and Y(right) components of 5% damped spectra along X centerline 
of surface of ROI, for soft soil profile with low frequency input 
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Figure 3.28. X(left) and Y(right) component of ground displacement along Y centerline 
of surface of ROI, for softsoil soil profile with low frequency input 
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Figure 3.29. X(left) and Y(right) components of 5% damped spectra along Y centerline 
of surface of ROI, for soft soil profile with low frequency input 
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Chapter 4 

Mixed implicit-explicit t ime 

integration of domains 

This chapter presents extensions of a mixed explicit-implicit time integration algo­

rithm that allows for non-linear systems in the implicit partition. An efficient software 

design is presented for introducing mixed integration in the explicit code previously pre­

sented. The chapter concludes with verification examples of the parallel implicit-explicit 

time integration method. 

4.1 Background and previous work 

The focus of this research so far has been the analysis of linear semi-infinite soil 

subdomains for which explicit time integration suffices. The analysis of structural models 

and their foundations coupled with three dimensional soil requires implicit time integration 

in the solution procedure. The necessity of implicit time integration is dictated from the 

fact that explicit solution for structures requires very small time steps given the frequencies 

involved mainly in the axial direction of the beam elements due to their very high stiffness. 

These frequencies are much higher compared to those of the soil elements and render the 

87 



Courant condition for the beam elements hard to satisfy. In addition, beam elements 

contain rotational degrees of freedom, and assigning masses to those degrees of freedom is a 

non trivial task. The second reason could be bypassed if one introduces static condensation 

in the structural model and solves only for the translational degrees of freedom during the 

analysis. This procedure is cumbersome and would only work for linear structural models. 

All of the above reasons support the use of implicit time integration. 

Introducing implicit integration for the entire coupled model, results in a very large 

system of equations. Its solution via factorization of the left hand side operator A implies 

large memory requirements, increased floating point operations and significant interpro-

cessor communication if a direct solver is to be used and the size of the problem, presently 

in the order of hundreds of millions of DOFs, renders this approach infeasible. Iterative 

solvers on the other hand scale well but still contain more floating point operations than 

an explicit scheme would require. It is exactly these very high computational requirements 

and cost of finite element methods that is one of the primary arguments against their use 

for SFSI problems that has led in the development and use of more simplified methods. For 

detailed discussion of methods for direct and iterative linear solvers see Demmel (1997); 

Golub and Van Loan (1996). 

In this problem the largest part of the domain is wave propagation through the 

soil for which explicit time integration works very well. Consequently and in order to 

maintain reasonable solution times, scalability, efficiency and high performance for the 

custom application, mixed implicit-explicit time integration is selected for the coupled 

structure-soil system respectively. 

The two classes of time integration algorithms for transient analysis are implicit and 

explicit. Methods have been developed to achieve a simultaneous combination of the 

attr ibutes of both classes. Among those, Hughes and Liu (1978a,b) developed an implicit-

explicit partition scheme where both partitions are integrated using the same time-step. 

An approach similar to the previous one was presented by Liu and Belytschko (1982) 
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and introduced a general mixed time implicit-explicit partition procedure that allows for 

different time steps and different integration methods to be used in different parts of the 

finite element mesh. An mE — I partition where m explicit steps are used for each implicit 

step was presented. The mesh is divided into two groups. The explicit group is integrated 

with a time-step At and the implicit group with a time-step mAt. The implicit partition 

is integrated using the Newmark algorithm (Newmark, 1959), and the explicit partition is 

integrated using an explicit method based on the Newmark algorithm. An introduction to 

this explicit method was given in Section 2.2.3. Another work on mixed time integration, 

using Lagrange multipliers to represent the forces along the interface of the explicit and 

implicit partition is by Gravouil and Combescure (2001). 

4.2 mE — I time integration scheme for linear systems 

The algorithmic aspects of the mixed time integration method as given in Liu and 

Belytschko (1982) are presented here. The elements are partitioned in the E and I groups 

and consequently the matrices obtained by assembly on each group are denoted using the 

same superscripts. Thus any global matrix is the sum of the explicit and implicit matrices. 

M = ME + M7 , C = CE + C1, K = KE + K1. Correspondingly, the degrees of freedom 

are partitioned in E,I and B sets where the latter denotes the interface degrees of freedom; 

also B d I. Finally all vectors are assembled as the summation of two vectors, one from 

the explicit and one from the implicit set of dofs. The solution algorithm is given in Fig. 

4.1 and Fig. 4.2. 

4.3 mE — I time integration scheme for nonlinear systems 

This section generalizes standard mixed time integration procedure defined in the 

previous section to handle nonlinear material laws for the elements of the implicit parti­

tion. For the explicit partition it is obvious that there can always be found a time step 
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1. Initialization. Set n = 0, uo, uo-

2. Determine a0 = M - 1 ( p o — Clio — Kuo) 

3. Form and factorize H . 

H = H B + H 7 

H 7 = M 7 + -fmAtC1 + firn? At 2 K 7 

4. for j = l , . . . , m repeat: 

5. Define 

6. Define 

< + i = " n + j - l + (X - T) A t u n + i _ ! 

fli+J- = < + iAtu7, + ( | - /%-2 Ai2u7 

in+j = "n + C1 ~ Tb'Atii7 

On the subset "B" for 1 < j < m and on " J " for j = m. 

7. Form: 

g £ + . = M £ u n + i + / 3At 2 W(p£ + J - C B 6 n + i - K J u n + j ) 

| g 7
+ m = / 3 m 2 A t 2 p 7

+ m + M 7 Q n + m - / 3 m 2 A t 2 C 7 a n + m + -fmAtC1un+v 

Where: u n + m = u ^ + m + u 7
+ m and u n + m = u n + m + u n + m and also 

W = 
m 2 I 0 

0 I 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

The first | / | columns and rows of W are diagonal and equal to m 2 and the subsequent \E\ is an identity 

matrix. Here E, I refer to the nodal partitions. 

Figure 4.1. mE — I pseudocode for linear systems by Liu and Belytschko (1982), part A 
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8. 

9. 

10. 

11. 

12. 

Solve for: 

1 H u „ + m = g „ + m i f j = m 

Where u n + m = u f + m + uI
n+m and g n + m = g f + m + g £ + m . 

Determine: 

• 

If j = m determine: 

• 
< + m = « + m - u ^ + m ) / ( / ? m 2 A i 2 ) 

and form i i n + m , u n + m . 

If j < m set 3=3 + 1 and go t o 4. 

Check for terminat ion of analysis or increment n = n + m and go to 4. 

(4.6) 

(4.7) 

(4.8) 

Figure 4.2. mE1 — / pseudocode for linear systems by Liu and Belytschko (1982), Part B 

At for which the method will converge in one step. In the implicit partition nonlinear 

elements are present and thus a root-finding method such as the Newton-Raphson will 

be used. Since the iterations these algorithms perform are incremental it is worth refor­

mulating the equations of the previous section. For computational efficiency the elements 

are repartitioned and a third subset EB C E is created. The elements that belong to the 

subset EB are explicit elements that contain dofs that belong to the subset B which is 

the set of interface degrees of freedom. These elements even though they are integrated 

explicitly will need to perform more than one pass per time step to compute the element 

forces for the iterative solution of the total equation of motion on the interface degrees of 

freedom. The solution algorithm is presented in Fig. 4.3 and Fig. 4.4. 
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1. 

2. 

3. 

4. 

5. 

6. 

7. 

Initialization. Set n = 0, uo, uo. 

Determine ao = M — 1(po — Clio — Kuo) 

Form: 

HE = ME (4.9) 

for j = l , . . . , m repeat: 

Define 

< 

uE
+j = uE

+]^ + AtuE
+j_, + ( | - /3)A t2uf+ ._., 

C ^ ^ + i - i + d - r J A t u ^ . , (4.io) 

i\E — i—i'i-E j - fl M i i E 

Define 

• 

"n+ j = «n + (1 - 7 ) i Atii£ 

U"+J = —/3jAtUi + (l — 2f3>Un 

On the subset "B" for 1 < j < m and on "I" for j = m. 

Also on the subset B define: 

<+j = " n + jAtiii + ( i - 0)j2At2u'n (4.12) 

The above equation is to be used by the elements belonging in the Eg subset. For the solution on the 

/ elements there is no displacement predictor, as is the case for the classical Newmark algorithm. 

Form: 

< 
gE

+ . = f3At2W(pE - KEiin+j - CEiin+j - ME~un+i) 
(4.13) 

si+m = / 3 m 2 A t 2 ( p £ + m - K / u n + m - C / i i n + m - M ' t i n + m ) 

Where: u n + m = uE
+m + uI

n+m and i n + m = i^+m + i j 1 + m . 

The matrix W is defined as in the previous case. 

Figure 4.3. Incremental mE — I formulation pseudocode for nonlinear systems, Part A 
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8. Solve for: 

Update 

+J 

u f L , = tif^ + ^ X T T A U . xn+j T" ^ A i 2 

,J5 - „ B = < + , - ! + Aur +J 

If j = m and while (convergence criterion unsatisfied ) 

H 7 = M1 + (7mAt)C 7 + ( /3m2At2)K^ 

gn+m = 0m2At2(pI
n+m - K ' u „ + m - M ' u n + m ) 

gf+m = / 3 A t 2 W ( p ^ m - K £ * u n + m - C B " i „ + r a - ME^n+m) 

(W +nEB)AuI
n+m=Sn+n 

• A u i 

( u ^ - u ^ V C / W A t 2 ) 

u n + m + 7mAt i i /
1 + 

(4.14) 

(4.15) 

(4.16) 

W h e r e : U n + m = U n + m + u i + m , U n + m = U n + m + " n + m a n d « n + m = U „ + m + i i„ The implicit 

predictors are to be recomputed at each iteration using the equations of step 6. The unbalanced forces 

do not need to be computed for the first iteration due to step 7. The superscript Eg emphasizes that 

the explicit unbalanced computations need to be performed only on the Eg elements. 

9. If j < m set j = j + 1 and go t o 4. 

10. Check for terminat ion of analysis or increment n = n + m and go t o 4. 

Figure 4.4. Incremental mE — I formulation pseudocode for nonlinear systems, Part B 
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contains I Elements contains E Elements 

Domain Object 

Analysis 

m E U 

Subdomain Object 

Analysis 

raELE 

contains B Nodes 

Subdomain Object 

mEOintfc 

Figure 4.5. Schematic design for serial processing of the implementation of the mE — / 
scheme (arrow indicates communication of information) 

4.4 Stability of the mE — I method 

The stability of the scheme is presented in a numerical fashion in Liu and Belytschko 

(1982). Hughes and Liu (1978a) present a stability analysis of the E — I method i.e. 

for m=l. Their proof uses the energy method. For a discussion of the energy method 

the reader is referred to Richtmyer and Morton (1957). Hughes et al. (1979) discuss 

stability related to mixed integration methods. Hughes (2000) also discusses the stability 

derivations of the Newmark algorithm, predictor-corrector algorithms and the explicit-

implicit scheme for m = 1. 

4.5 Implementation of the mE — I scheme for nonlinear sys­

tems 

This section describes the design and implementation of the mE — I scheme. The 

design fully utilizes the explicit code developed in Chapter 2. The essential design concept 

is that the explicit part of the mesh is partitioned among several processors and then in 

each processor analyze several structures that are to be integrated implicitly, and which 
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are to communicate with the explicit partition of the same process via a unified interface. 

This communication between the explicit and implicit partition is within the same address 

space or over distributed address spaces. For the purposes of this work both objects 

will be residing in the same address space. The design allows for subclassing and thus 

various implementations of the virtual method that handles the communication scheme 

and hence allow for various communication schemes. Finally, an important goal is for all 

the communication needed for the parallel computation for the wave propagation in the 

soil to be with respect to the explicit part of the mesh only. This will preserve the balance 

in the communication graph which is essential for scalability, and will allow for utilization 

of the components designed and implemented in Chapter 2. This means that no implicit 

explicit interface dof will coincide with interface nodes with respect to the partition of the 

soil. This approach will lead to maintaining the scalability we demonstrated previously 

even though there will be increased load imbalance since not all processors are to have 

implicit partitions as well. 

Fig. 4.5 shows the objects resident in memory for the case of one processor where 

we analyze a domain using mixed mE — / integration, one Domain and two Subdomain 

objects. The choice of having the implicit elements / in the Domain object, and the 

explicit elements E in a Subdomain object ( I , E are with respect to the solution algorithm 

presented previously) is dictated by the order in which a Domain object that is undergoing 

analysis is integrated. In a Domain object, the FE elements of the object are integrated 

after any Subdomains objects have completed their integration. The mth step of the 

loop in the implicit elements, requires the mth step solution of the explicit elements, to 

assemble the unbalanced forces on the interface degrees of freedom via accounting for 

the contribution of the EB elements according to Eq. (4.16). Consequently the ordering 

selected is unique and follows the algorithmic order. 

The creation of an additional Subdomain object that contains the interface degrees of 

freedom is dictated by the fact that the E elements require the computation of predictor 
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values on the interface degrees of freedom B, used to assemble the unbalanced forces on 

the E elements. These predictors at step n + j at the interface B, require the converged 

step n at the / elements. It may seem as unnecessary to duplicate the interface nodes 

B across the two Subdomains, but the duplication allows for copying the n step values 

from the implicit interface once at the beginning of the loop of the j steps to the interface 

Subdomain object, and from there on computation of the predictors for each of the j 

steps. The explicit elements contain pointers to the nodes of the interface Subdomain, 

which allow for the breaking of the cyclic dependancies that arise. Otherwise the implicit 

integrator would have to be declared containing the explicit and vice versa, a technique 

termed forward declaration in C + + , a not good programming practice. 

Each of the three arrows in Fig. 4.5 indicate transfer of information between the two 

objects. The methods that correspond to the I and III arrows are declared virtual in 

the design so that subclassing is permitted in order for various communication schemes 

to be implementable. For the scope of this work, note that all three calls are in the same 

address space. In a more general parallel computation setting the implicit integrator would 

be residing to a different processor or even be handled by a different MPI communicator, 

in which case the corresponding methods would be wrapping MPI calls or some other form 

of communication mechanism. 

Given the sequence of execution in the computations, there exists an ordering for 

the completion of one step in the mE — I algorithm. The implicit integrator at each of 

the Newton Raphson iterations it performs, pulls essentially from the EB elements an 

updated gn+m- Also the mELI integrator pulls the HEB entries that correspond to the 

B degrees of freedom. This operation is not possible to be performed using the interface 

offered from OpenSees. While there exists a method to access the right hand side (RHS) 

of the system of equations there are no access methods for the LHS. The modification 

of the customSOE class was necessary in order to be able to "extract" components of 

one system of equations A x — b , both from the matrix A and the vector b and add 
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them to the implicit system object. The addition in the implicit system object is done 

inside the in the int m E I _ I : : f o r m T a n g e n t ( ) , int m E I J [ : : f o r m U n b a l a n c e ( ) methods 

using the v irtual Vector& mEI_E::getA() and v irtual Vector& mEI_E::getb() 

calls. The latter uses the Vectorfe SOE::getB() call, but to implement the for­

mer, the method V e c t o r & c u s t o m S O E : : g e t P a r t o f A ( d o u b l e * A , I D & interface) 

was developed. Similar methods can easily be derived for all the SOE classes in 

OpenSces if needed. They are custom for each class given the different storage 

schemes used. Note that these two methods: v irtual Vector&; mEI_E::getA() and 

virtual Vector& mEI_E::getb() can be subclassed depending on the communication 

requirement between the mEI_E and mEI_I classes. In the case of Fig. 4.5 the imple­

mentation is for a common address space. Another detail tha t was handled carefully with 

performance in mind is the addition of the components of HEB to the implicit system. 

Upon completion of the v irtual Vector& mEI_E::getA() call there is a vector con­

taining the values needed to be added along the diagonal of the implicit A. OpenSees 

only allows for entire matrices to be added in the void SOE::addA(Matrix&; , I D & ) 

and in order to efficiently add elements along the diagonal only a matrix of size one is 

created and each element of the received vector is added individually for a total cost of 

0(d) where d is the number of entries needed to be added. That is as opposed to creating 

an entire matrix that would have non zeros only on the diagonal and add all of its elements 

for a total cost of 0(d2). Upon completion and convergence, the mEI_I pushes the newly 

computed values to the mELiintfc and then the mEI_E proceeds with computing m steps 

prior to the next mEI_I step. 

Finally Fig. 4.5 shows how does the previously present design generalize for parallel 

processing. More specifically it shows a four processor MPI communicator which is parti­

tioned into two sub communicators, one for the implicit partition of the domain and one 

for the explicit. Three types of lines can be seen: Dashed lines indicate interprocess com­

munication but also inter sub-communicator communication. Dashed-dotted lines indicate 

interprocess intra sub-communicator and finally solid lines are within the same address 

97 



space. For example the Vector&: mEI_E::getA() and Vector&; mEI_E::getb() should 

be re implemented to account for the use of MPI. 

4.6 Verification of the implementation 

4 . 6 . 1 S i n g l e p r o c e s s o r e x a m p l e 

For verification of the algorithm and implementation, a simple one dimensional ex­

ample is examined using the mE — I scheme compared against the Newmark solution 

for both a linear and a nonlinear system. The benchmark problem is a one dimensional 

structure of five truss elements with one degree of freedom per node. The structure is 

fixed at the left end. At the free end a forcing function R(t) = (1 — n2/o£2)e~w ^o* is 

applied for /o — 0.4 Hz. The duration of the loading is 601 steps with a time increment 

of A t = 0.01 sec, and past 6 sec vibrates freely. The properties of the elements are shown 

in Table 4.1. 

Table 4.1. Element properties for simple linear verification example 
element 

1,2,3 
4,5 

length 
10.0 
30.0 

young's modulus 
104 

10a 

density 
1.0 
1.0 

area 
1.0 
1.0 

The first analyzes the five truss structure for the linear material case. In a second 

step the material of elements 4 and 5 is switched to an elastic perfectly plastic material 

with the same as before Young's modulus and a yield strain ey = 1 0 - 6 . The results from 

both analyses are presented in Fig. 4.7 and Fig. 4.8. The results present very good 

agreement and thus the correctness of the implementations is established. It can be seen 

from both plots that as m, the integer ratio of the implicit to explicit time step increases 

the method starts less accurate and unstable. From preliminary studies ratios of up to 50 

are recommended, but this is also a function of the complexity of the problem. 
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4.6.2 One dimensional wave propagation verification example 

This section contains the same example that was presented in Section 3.1. The 

domain is analyzed using Newmark's method, the two variants of central difference and 

the explicit Newmark based method presented in Chapter 2 and finally the domain is 

also analyzed using mixed integration having half of the 400 elements explicit and the 

other half implicit. The problem is analyzed for both an absorbing and a fixed boundary 

condition in the right end. The results are shown in Fig. 4.9. 

4.6.3 D R M regular soil verification example 

The last test presented is using the entire set of developed code, the solver, soe, 

dof numberer, integrator classes and element. First the original soil profile presented in 

Section 3.2 is analyzed using a coarse 20 m element mesh. The center node displacements 

are recorded. In a second analysis the 4 FLBrick elements around the centernode are 

analyzed implicitly using mixed integration. The remaining domain is analyzed explicitly. 

The comparisons present full agreement and are shown in Fig. 4.10. 

Several verification tests that assess the correctness of the implementations of the 

various components of mixed integration have been presented. 
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Chapter 5 

Soil-foundation-structure 

interaction analysis of urban 

regions under near-fault excitation 

This chapter presents high fidelity, three-dimensional, soi-foundation-structure in­

teraction (SFSI) analyses, using the DRM and simulated input wavefield the 7.1 Mw 

earthquake from the Puente Hills fault. The structural models used are simplified 6 

degree-of-freedom, lumped mass oscillators, with an embedded foundation. The struc­

tural characteristics are selected such that they are consistent with the frequency contents 

of the input, the low frequency simulations on the soft soil described in Section 3.2.5. The 

goals of this study are to examine the inertial interaction effects and building to building 

interaction. 
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5.1 Seismic performance of buildings in a region 

Most structural performance simulations to date, are either fixed base analyses or 

if they account for SFSI they resort to the frequency domain analysis or in the time 

domain at an individual structure state. The problem of three-dimensional SFSI at a 

larger regional scale, including local site effects, building to building interaction and with 

three-dimensional input as opposed to vertically propagating shear waves originating from 

bedrock upon deconvolution has not been at tempted yet. 

Park et al. (2004) examined the distribution of damage and inelastic response of 

building frames for two idealized fault scenarios. In particular it examined the effect of 

the building location and orientation on the structural damage as well as its vertical distri­

bution over the height of the building. The results were also examined under a seismic code 

provision perspective and it was concluded that standard design procedures for near-fault 

ground motions do not prevent soft story formations in the forward directivity zone for tall 

buildings. Olsen et al. (2008) studied the performance of long-period buildings (twenty 

story welded moment resisting nonlinear frames) under various earthquake scenarios. The 

study used ground motions with very high peak ground velocities, in the order of 3 m/sec. 

It examined differences in the performance of various assumptions about structural de­

sign, such as ductile welds versus brittle welds in the frames, with not surprising results. 

Significant collapse percentiles were shown for the San Francisco Bay Area based on the 

simulations with the very strong ground motion. The study also examined base isolated 

buildings. 

To examine SFSI of a large bridge, Elgamal et al. (2008) used three-dimensional 

finite elements with implicit t ime integration to analyze a long-span bridge with pile and 

shaft foundations, including a liquefiable soil region. The seismic input was vertically 

propagating shear waves to analyze a nonlinear model of the bridge structure. The authors 

identified the need for using more insightful type of inputs such as the one provided by 

the DRM. Also the implicit integration requires a factorization of the resulting linear form 
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and this quickly leads to saturation of the computational capabilities, at least when direct 

solvers are employed. 

Detailed discussions and literature review about the characteristics of near-fault 

ground motion, and the fixed base structural response subjected to it can be found in Park 

(2004). A comparison of the response of SDOF systems to recorded near and far-fault wave 

fields was presented in Chopra and Chintanapakdee (2001). The authors concluded that 

for many near-fault ground motions, the fault normal component imposes higher defor­

mation and strength demands compared to the fault parallel. Also for the same ductility 

factor the strength demand in the acceleration sensitive period was higher for near-fault 

motions versus far-fault motions. 

5.2 Analysis of representative simplified systems 

In order to perform a preliminary study of the structural response subjected to the 

near-fault wave fields using the DRM, representative systems need to be selected, designed 

and analyzed. For the purposes of this work structural systems will be represented using 

simplified models which capture fairly accurately the roof drift and first vibration mode 

behavior. The focus of this study is on global response. The representative simplified 

system used is shown in Fig. 5.1. A three-dimensional beam column element, with two 

nodes and six degrees-of-freedom per node is used (Neuenhofer and Filippou, 1998). The 

beam element is connected to a rigid column of height equal to the foundation depth. The 

rigid column's nodal displacements are constraint to be equal to those of the surrounding 

brick elements that model the foundation. The structural mass m, as a function of the 

structure's height H, width b and material mass density p is calculated according to: 

m = 0.08Hb2p 

The system's height is chosen to be | i J where H is the height of the building. This 

choice is done in order to represent the first effective modal height for the system. The 
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definition of the latter is given in Chopra (2001). The selection of properties and design of 

the representative simplified systems is based on the seismic demands at the top surface 

centernode wave field for the soft soil case. The pseudo-acceleration and displacement 

spectra corresponding to the center node are shown in Fig. 5.2 and Fig. 5.3 respectively. 

Given that the input wavefield contains frequencies up to 0.5 Hz the systems selected need 

to have a vibration period of at least 2 sec. Two representative periods are selected: T = 2 

sec and T = 4 sec. The first for it is close to the peaks of the pseudo-acceleration spectrum 

and the second one because it is located at the peak of the displacement spectrum for the 

X direction. For these two categories of systems various designs are selected. The design 
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procedure is strength based, meaning that the yield reduction factor Ry is varied. The 

definition of Ry is: 

D So u0 
Ky — ~~f — — 

Jy Uy 

The quantities with y subscript represent yield quantities and the quantities with o sub­

script represent peak elastic response quantities. For a linear elastic system Ry = 1 and 

as Ry increases beyond one the system experiences increased yielding since the maximum 

elastic force it can withstand is a reduced fraction of its elastic base shear. This design 

refers to an idealized elastoplastic system. For the purposes of this study the material 

law selected is a bilinear hardening material with ratio of post yield to elastic stiffness 

a = 0.001. The choice of this material law over an elastic-perfectly-plastic is for numerical 

convergence reasons. The foundation elements are modeled using FLBrick elements whose 

density is adjusted to maintain a structural to foundation mass ratio of five: ^p- = 5. 

Finally other quantities that will be used throughout are: ductility which is defined 

as: 

V"max 
fj,= 

U0 

where quantities with max subscript indicate the maximum for an inelastic analysis; a 

quantity related to simplified soil-foundation-structure interaction a tha t relates the soil 

to the structural stiffness: 
VST 

and the seismic coefficient Cmax which is defined as the ratio of the maximum base shear 

the system experience over its weight: 

f~t Jmax 

5.2.1 T w o second period sys tems 

Three different, two second period systems are examined. Table 5.1 contains the 

properties of the T — 2 sec systems. Fig. 5.4 shows the ground displacement comparison 
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between free field and SFSI due to T2M4. Fig. 5.5 through Fig. 5.6 show results for 

T2M1. Fig. 5.7 through Fig. 5.8 show results for T2M3. Fig. 5.9 through Fig. 5.10 

contains certain plots of interest for the T2M4 system. The comparison of the ground 

motion at the top surface center node due to free field versus the wave field containing 

the SFSI effects shows no significant alteration. This essentially means very small inertial 

interaction effects, which is expected given the foundation width which is b = 20 m and 

the wavelengths involved that are at least 80 m and thus the base slab averaging is not 

significant. The comparison for the ground motion due to SFSI from T2M1 and T2M3 is 

similar to the T2M4 case. 

Fig. 5.5 shows period lengthening ^ « 1.11 — 1.16 for T2M1. Fig. 5.7 shows period 

lengthening ^ *=s 1.07 - 1.17 for T2M3. Fig. 5.9 shows period lengthening ^ PS 1.1 — 1.25 

for T2M4 where T is the period of the flexible base system. These values are computed by 

looking at the first four peaks of the deformation plots. As expected the period lengthening 

effect is more noticeable for the system that yields more, the T2M4. The concept of 

period for a yielding system with flexible base is hard to define concretely. The reported 

numbers refer to the ratios of time required between successive peaks with the same sign 

of velocity before them, i.e. two peaks on the positive or negative displacement. These 

ratios if compared to the solutions by (Bielak, 1975; Veletsos and Nair, 1975) which are 

also reported in Stewart et al. (1999a) indicate that the simplified closed form solutions 

can be overestimating some of these effects. For example for £ = y%^ = 0.25 as is the case 

for T2M3 and T2M4, for an aspect ratio f = 5, Bielak (1975); Veletsos and Nair (1975) 

estimate ^ to « 1.35 and « 1.18 respectively. No significant alterations are observed as 

far as the damping for the T = 2 sec systems. 

The effect of the yielding material law results in the structure experiencing permanent 

deformations. This is reflected in the design via the increasing Ry factor. For the T2M1 

there is no significant permanent offset as expected. Interestingly while in the T2M4 case 

the permanent offsets are reduced, for the T2M3 case the permanent deformations are 
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matic and 

Comparison of top surface centernode displacements for free field versus kine-
inertial interaction due to T2M4, X(left) and Y(right) 

increased in the SFSI case versus the fixed base case. This shows the plethora of studies 

and results that can be generated. Great variability in results is observed for a single 

system for varying the Ry strength design parameter. In the T2M4 system, in the Y 

direction an increased structural deformation occurs and in all other cases the structural 

deformations are reduced. Table 5.2 contains the ductility and seismic coefficient demands 

for the T = 2 sec systems analyzed using SFSI. 

H (m) 

T2M1 80 
T2M3 80 
T2M4 80 

Table 5.1. T = 2 sec properties 
b (m) 

20 
20 
20 

H* C (%) u0 (m) Ry 

j:H 5 0.448 1 
'hi 5 0.448 3 
\H 5 0.448 4 

m 
mf 
5 
5 
5 

a 

0.001 
0.001 
0.001 

a 

0.25 
0.25 
0.25 

Table 5.2. T = 2 sec results 
u 

T2M1 
T2M3 
T2M4 

xmax l m / 
0.351 
0.23 

0.181 

% « , ( m ) Umax (m) 
0.283 0.3976 
0.37 0.396 

0.4435 0.4778 

^max 

0.39 
0.152 
0.119 

n 
0.888 
2.651 
4.266 
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5.2.2 Four second period systems 

Table 5.3 contains the properties of the T = 4 sec systems. Fig. 5.11 shows the 

ground displacement comparison between free field and SFSI due to T4M2. Fig. 5.12 

through Fig. 5.13 contains certain plots of interest for the T4M1 system, and Fig. 5.14 

through Fig. 5.15 for the T4M2. As expected for the T = 4 sec systems the ground motion 

alteration due to the wider foundation and increased mass is more noticeable compared to 

the lighter systems with narrower foundations. Base slab averaging is observable in this 

case. 

As expected for the 4 sec systems the period lengthening is higher compared to 

the 2 sec ones since the former have a higher ^. ^ f» 1.3 both for the T4M1 and the 

T4M2. Again the simplified closed form solutions appear to be overestimating the period 

lengthening effect to about 1.5. An effect that was not present in the T = 2 sec and is 

observed in the T = 4 sec case is a reduction in the effective damping. The damping 

for both systems is reduced, mainly in the X direction. The effective damping ( from 

Eq. (1.2) has two components: one due to the radiation and hysteretic damping in the 

foundation and one due to viscous damping in the structure respectively (Stewart et al., 

1999a). The first term is estimated in the literature (Veletsos and Nair, 1975) to be about 

2-3 %. The second term comes to about 2.3 % and thus the reduction observed verifies the 

simplified solutions (Stewart et al., 1999a). It appears that the results in Bielak (1975) 

overestimated Co and that Veletsos and Nair (1975) provided more realistic estimates for 

the effective damping. In order to better understand the damping ratio reduction, the 

contribution of rocking to the structural deformation is examined in Fig. 5.16 and Fig. 

5.17. Rocking is significant for the T = 4 sec systems and also appears to have a reduced 

damping factor compared to the rest of the structural deformation (resulting from the 

displacement difference of the top versus the base). 

The permanent offset is reduced for T4M2 under SFSI and in both systems the 

structural deformation demands are reduced compared to the fixed base results. Table 
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5.4 contains the seismic coefficient and ductility demands for the T = 4 sec systems when 

analyzed using SFSI. 

Table 5.3. T = 4 sec properties 
H(m) 

T4M1 180 
T4M2 180 

b (m) 

40 
40 

H* ( (%) u0 (m) Ry 

*H 5 0.751 1 
\H 5 0.751 2 

m 
rrif 

5 
5 

a 

0.001 
0.001 

a 

0.281 
0.281 

Table 5.4. T = 4 sec results 
u 

T4M1 
T4M2 

'X max ( m ) UVmax ( m ) Umax ( m ) 

0.24 
0.276 

0.509 0.521 
0.576 0.6187 

^max 

1.184 
0.866 

M 
0694 
1.649 

5.3 Response of two second vibration period system for two 

different meshes 

Regional simulations that involve more than one structural model require higher res­

olution meshes in order to resolve the presence of higher frequencies due to the interaction 

between the foundations of neighboring buildings. This section discusses the differences 

in the soil response including SFSI due to T2M3 and the differences in the structural de­

formations including SFSI of the system T2M3 when simulated with a 10 m versus a 5 m 
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element mesh. The soil response due to SFSI from the T2M3 structure is plotted in Fig. 

5.18 and the structural deformations of T2M3 due to SFSI are plotted in Fig. 5.19. Both 

figures show that the refined mesh has negligible effect on the simulated response. Peak 

responses for the structural system are presented in Table 5.5, showing that the response 

does not differ significantly with the two meshes. In the remaining of this chapter, the 

T2M3 responses computed for the multiple building analyses are compared against the 

response of the T2M3 system for the 5 m mesh. 
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Table 5.5. T2M3 results for 10 m and 5 m mesh 

T2M3 (10 m mesh) 
T2M3 (5 m mesh) 

V>xmax (.m) 

0.23 
0.223 

UVmax ( m ) 
0.37 

0.379 

Umax ( m ) 

0.396 
0.405 

^max 

0.152 
0.152 

M 
2.651 
2.713 

5.4 Simulation with five, spatially distributed structural 

systems 

This section presents the coupled analysis of five neighboring buildings, each with a 

two second vibration period and strength reduction factor of three (T2M3). The buildings 

are spaced at 100 m in two directions. The clear separation between the foundations is 80 

m. The soil conditions are the same soft soil profile previously discussed and the input is 

the low frequency wavefield discussed in Chapter 3. The mesh size is a uniform 5 m mesh 

for a total of 9.36 million FLBrick elements analyzed on 1024 processors at Abe in NCSA 

(2008). 

Fig. 5.20 through Fig. 5.22 show the spatial distribution of the foundation displace­

ments, velocities and accelerations respectively. Overall, the variability of the foundation 

motion is small, but is most noticeable in the velocity histories because of the predominant 

period of free-field ground motion. The structural deformations of the T2M3 system due 

to SFSI are shown in Fig. 5.23. The centernode system's response along the X and Y axes 

differs little compared to the data in Table 5.2, the maximum displacement on the X direc­

tion changes from 0.23 m to 0.223 m and for the Y direction from 0.37 m to 0.378 m. The 

structural deformations between the T2M3 at the center of the multiple building analysis 

and the case of one system are very similar. The ductility demand for the buildings, plot­

ted in Fig. 5.24, is slightly increased for the centernode system {Xcenternode,Ycentemode) 

= (500 m, 250 m), when compared with a value of 2.651 for the single T2M3 case. The 

seismic coefficient shown in Fig. 5.24 for the centernode system is unchanged compared 

again with the single T2M3 case that had a value of 0.152 as shown in Table 5.2. From 

Fig. 5.24 that the highest demands are for the system with the lowest Y coordinate. The 
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Figure 5.20. Spatial variation in foundation displacement history, including SFSI due 
to T2M3, X-component of displacement (left) and Y-component of displacement (right). 
Circles indicate the location of the foundation and the structure with respect to Fig. 3.3. 
The value of peak displacement (m) is indicated in the plots 

results indicate that the 80 m clear distance at which the structural systems are located 

from each other is sufficiently large to limit building to building interaction effects for this 

range of parameters and the low-frequency ground motion. 

5.5 Simulation with six, spatially concentrated structural 

systems 

This section presents the coupled analysis of six neighboring buildings, each with a 

two second vibration period and strength reduction factor of three (T2M3). The buildings 

are spaced at 20m in two directions. The clear separation between the foundations is 10 

m. The soil profile and the mesh are identical to the previous section. The focus is on the 

response of the centernode system and how it is affected by the neighboring structures. 

The spatial variation of the foundation displacements, velocities and accelerations is shown 

in Fig. 5.25 through Fig. 5.27. 

The structural deformation time histories for the centernode T2M3 system and their 
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Figure 5.21. Spatial variation in foundation velocity history, including SFSI due to T2M3, 
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Figure 5.22. Spatial variation in foundation acceleration history, including SFSI due to 
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comparison with the case when T2M3 is analyzed alone are shown in Fig. 5.28. A small 

increase in the permanent deformation is observed in the X direction for the six buildings 

case. The differences appear to be small, which given the close proximity of the structures, 

indicates that the kinematic interaction between the foundations is small. The mass of 

the T2M3 (6,400 ton) system is roughly one half of the mass of a soil volume (12,000 ton) 

equal to its foundation volume (8,000 m3) and the foundation mass is one fifth of tha t . 

Inertial interaction is therefore not significant in this case. 

Within this small region almost no spatial variation is observed. The structural 

deformation time histories are plotted in Fig. 5.30 and the amplitudes are approximately 

equal to those of the individual T2M3: 0.23 m on the X direction and 0.37 m on the Y 

direction, with the exception of the system on the lower right corner of the figure. This 

system's response is the highest of all six in the X direction and the lowest of all six in 

the Y direction. The peak structural deformation on the X direction, of this system is 

50% higher of all the other and the peak structural deformation on the Y direction is 

roughly 50% lower from the other five systems. This does not closely follow the pat tern 

of the spatial distribution of the foundation displacement or its derivatives. Accelerations 

show the same trend in terms of the location of the peak values but not with the same 

percentile differences. The response of the T2M3 at the location of (520 m, 230 m) is 

examined more closely in Fig. 5.29. A significant increase in the permanent deformation 

on the X direction is observed, in addition to the increased peak deformation in the same 

direction. This shows that within a distance of 28 m from the centernode site the structural 

response is very different and shows why detailed regional analyses are a very useful tool. 

This diverse response at such a close distance would not be possible to be predicted via 

means of simplified analyses, or just by looking at the wavefield. The regional simulations 

of this type incorporates the effects of the fault rupture, wave propagation path, and 

basin effects through the DRM, and also incorporates: the local site effects, building 

to building interaction and individual structural and foundation characteristics in one 
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Figure 5.25. Spatial variation in foundation displacement history, including SFSI due 
to T2M3, X-component of displacement (left) and Y-component of displacement (right). 
Circles indicate the location of the foundation and the structure with respect to Fig. 3.3. 
The value of peak displacement (m) is indicated in the plots 

analysis. Finally, the ductility and seismic coefficient demands are shown in Fig. 5.31 and 

also are very close to 2.651 and 0.152 for the individual system respectively. 

5.6 Performance and scalability of the regional simulations 

The simulations that are presented herein are performed at NCSA (2008) Abe. Details 

about the architecture, the interconnect and the file system can be found online1. These 

simulations are conducted using the 5 m element mesh, 9.36 million elements on 128 nodes 

with 8 cores per node, for a total of 1024 cores. The runs are wave propagation only on 1024 

PEs, wave propagation only on 1023 PEs and 1 PE with mixed integration with a T2M3 

system, 1019 PEs with wave propagation only and 5 PEs with mixed integration each 

with a T2M3, and finally one run with a large mixed integration problem on one PE and 

1023 PEs with wave propagation only. Due to technical reasons the results are presented 

in two batches: one refers to a software stack containing MVAPICH2 0.9.8 (MVAPICH:, 

2008), MKL 9, and Intel compiler 10.0 and the second batch is with MVAPICH2 1.2, 

1http://www.ncsa.uiuc.edu/UserInfo/Resources/Hardware/Intel64Cluster 
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MKL 10. and Intel compiler 10.1. The first batch is used for characterizing the scalability 

of mixed integration with respect to the wave propagation problem only. The second 

batch compares various analyses that all perform in one or more ranks mixed integration. 

The conclusions drawn by the first batch can carry to the discussion for the second since 

the only difference between common types of runs is the software stack. Differences due 

to network traffic and congestion and task placement on the supercomputer cannot be 

accounted for since exclusive usage of the machine is not an option. The performance 

characteristics are based on the PAPI (2008) counters and are collected with PerfSuite 

(2008). 

The first two runs, presented in Table 5.6, compare the effect on the performance 

of the software, of a small implicit subpartition on one of the ranks to tha t of a pure 

wave propagation problem, in which all the PEs solve an explicit problem. The implicit 

part is relatively small, one 6 degree-of-freedom per node beam-column element with 

five fiber sections, one elastic beam-column element with six degrees-of-freedom and 32 

brick elements for the foundation. While small, this implicit component increases the 

computational unbalance in the entire communicator. While the rank that owns this 

implicit domain performs the LU factorization and solution of the system of equations 

that correspond to it, the neighboring ranks may have to wait in a barrier call longer than 

the wait time for a pure explicit solution and so do their neighbors and so on. The usage 

of asynchronous communication in the solver assists in hiding some of this unbalance. The 

end-to-end time effect is 1.15% which is an encouraging result as far the efficiency of the 

implementation of the mixed integration and the overhead it adds. It appears tha t as 

long as the ratio of sizes of the implicit over the explicit partit ion in a processor remains 

small the mixed integration implementation scales fine. Note that the computational 

complexity of the explicit diagonal solve is linear in the size of the unknowns O(N), while 

that of the implicit partition is 0 ( | i V 3 ) (Demmel, 1997). Also the effect of nonlinear 

constitutive materials for the structure is hidden by the size of the time step used. The 
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explicit integration time step is 0.00025 sec and the m of the mE — I is 10, so there are 

almost no Newton-Raphson iterations required on the implicit subpartition. 

Table 5.6. T2M3 simulation performance results using MPVAPICH2 0.9.8, Intel 10.0.026, 
and MKL 9.1.023 

# mixed PEs 
# explicit PEs 

mtil-J • 
mFA.E felZe 

EtoE time (sec) 
EtoE time/elem/step (//sec) 

Mflops/PE 
LI cache BW (Mb/sec) 
L2 cache BW (Mb/sec) 

1 
1023 

32 
9(182 

40723.16 
18.68 
254 

1911.64 
500.29 

0 
1024 

0 
40255.53 

18.47 
284.2 

2362.14 
511.38 

The next three runs, presented in Table 5.7, compare mixed integration cases: one 

is the same case as the run in the previous batch with 1 PE executing mixed integration 

on one T2M3 system and 1023 PEs being purely explicit, second is with 5 PEs executing 

mixed integration of a single T2M3 and is foundation and 1019 PEs being explicit only 

and third is a case were one PE executes a large mixed integration and 1023 PEs being 

purely explicit. The first column of Table 5.7 when contrasted with the first column of 

Table 5.6 is the same type of run only using a different software stack. The performance 

is slightly better and this can be attributed to the MKL optimizations, the MVAPICH2 

1.2 improved performance over MVAPICH 0.9.8 and the newer Intel compiler version. 

Also part of this is the fact that the simulations were conducted at different times on the 

supercomputer where the overall network traffic and task placement was different. The 

latter two effects can only be accounted for statistically by collecting a large number of 

data points regarding the performance of each run type. Regardless, the point is that the 

mixed integration performance has minimal software and communication (when within 

the same address space) overhead and is only as slow as the cost of the LU imposed on 

one or more PEs performing it. The time per element per time step per PE increase for 

the five versus the one PEs executing mixed integration of the same size is only 0.95% 

which shows that the mixed integration implementation scales well for the case of it being 
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limited within one PE per implicit domain and all of the implicit partitions being similar. 

The third case presented is one where the implicit partition on the PE is 10 times larger 

than the previous case, therefore a 1000 times slower in execution and hence the significant 

increase in the time per element per step per PE. 

Table 5.7. T2M3 simulation performance results using MPVAPICH2 1.2, Intel 10.1.017, 
and MKL 10.0.3.020 

# mixed PEs 
# explicit PEs 

mtil-l „:„„ 
mEI E h l Z e 

EtoE time (sec) 
EtoE time/elem/step (//sec) 

Mfiops/PE 
LI cache BW (Mb/sec) 
L2 cache BW (Mb/sec) 

1 
1023 

32 
9082 

38655.23 
17.73 
287.9 

1913.57 
537.65 

5 
1019 

32 
9082 

39024.61 
17.9 

293.4 
2106.55 
528.33 

1 
1023 

320 
9082 

67629.84 
31.03 
207.1 

2748.19 
326.13 

In conclusion, the scalability is satisfactory with minimal performance overhead, and 

thus it allows for increasing the problem size and the number of PEs for a mixed integration 

problem. 
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Chapter 6 

Conclusions and future directions 

This final chapter summarizes the results and states the conclusions of the research. 

The conclusions are presented for both the computational and algorithmic and software 

design as well as on the engineering modeling and analysis of soil-foundation-structure 

interaction. Finally, future directions for research are outlined. 

6.1 Summary and conclusions 

The goal of this research was to develop a methodology and scalable software to 

simulate soil-foundation-structure interaction on a regional scale and investigate the local 

site effects, and the effect of near fault ground motion. To achieve these scientific goals 

the need to develop a high performance and scalability distributed memory software was 

identified and addressed. 

The first step was to provide an improved seismic input over the traditional convolu­

tion to bedrock method and subsequently vertically propagating seismic waves. Software 

was developed for incorporation of the Domain Reduction Method in a finite element 

simulation. The DRM allows for three-dimensional input, consistent with boundary con­

ditions, that allows for a subdomain to be analyzed as a body in equilibrium extracted 
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from a larger domain. The effects of the fault rupture, wave propagation path and basin 

effects are transfered and accounted for via the input wavefields. 

To provide high fidelity simulation for soil domains using the domain reduction 

method a very scalable explicit linear finite element application was developed by de­

veloping loading pattern, system of equations, solver and degree-of-freedom numbering 

classes and also using components of the OpenSees framework. The software design and 

data structures allow for very high efficiency and to reach thousands of core counts in 

the MPI communicators while maintaining parallel efficiency of 95% for 4096 PEs. The 

communication model, used in a new solver class can be tuned depending on the problem 

size, hardware platform and MPI library. Several new classes were developed and existing 

ones from the framework were substantially modified in order to achieve the desirable per­

formance levels. Emphasis was placed in both the numerical aspects and efficient memory 

management for the cache hierarchy. 

Using the simulation tools, a site response analysis was performed for a 1 km by 0.5 km 

by 0.1 km region adjacent to the projection of the Puente Hills fault at a site in downtown 

Los Angeles, U.S.A. A scenario of a simulated M=7.1 earthquake was examined, which 

contained a large pulse shaking with low frequency (< 0.5 Hz) spectral content. The input 

was generated by a collaborating group at Carnegie Mellon University. The simulations 

were carried out for the original soil profile (simplified as layered) and for a modified soft 

soil profile. Increased spatial variability was observed in the soft soil profile. In addition a 

high frequency component was generated stochastically by the same group and was used 

to enhance the low frequency deterministic input to a broadband one. The soil model was 

calibrated for the damping to be realistic and the output in terms of its spectral contents. 

More intense shaking was observed in the high frequency regions of the spectra for the 

broadband motion. 

To enable the analysis of structures and their foundations, embedded in the soil 

domain, a mixed explicit-implicit integration algorithm was developed and implemented 
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based on an existing one, including extensions to allow for nonlinear systems in the im­

plicit partition. The software design allows for use of the explicit components previously 

developed and thus incorporate, to a very high degree, their scalability and performance 

characteristics. The framework's architecture had to be bypassed or enhanced in order to 

allow for a more efficient implementation. A main conclusion is that the most computa­

tionally efficient approach was to implement the necessary synchronization/communica­

tion/exchange between the explicit and implicit partitions at the level of the systems of 

equations. This resulted in an economical implementation that avoided overheads from 

additional function calls and the creation of extra classes. The approach used is directly 

implementable in a non object oriented based code, such as a procedural based (FOR­

TRAN) code. 

Finally in the last chapter the tools and methodologies developed are used to an­

alyze the same soil region enhanced with simplified models for the superstructure and 

foundation. Two types of simulation were performed: individual systems with two or four 

second vibration periods and varying yielding characteristics were examined, and also two 

regional simulations with five and six buildings were conducted to examine the spatial 

variability and building to building interactions. As far as the individual systems the re­

sults showed that the simplified solutions for SFSI tend to overestimate slightly the period 

lengthening as well as the damping reduction due to rocking. In most cases the structural 

deformations were reduced compared to the fixed base analyses and in few cases the per­

manent offsets were increased. The permanent deformation characteristics showed large 

variability for systems with the same fundamental period of vibration and varying yield 

strength. For the regional simulations with multiple buildings the two cases focused: one 

on the spatial variability of the response with buildings placed at 100 m apart and the 

other analysis examined the effects of the building to building interaction. For the input 

wavefield used and the structural properties selected the findings were that the differences 

between the individual system's response and the response due to multiple buildings were 

small. An overview of the scalability and performance characteristics of the analysis of 
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domains using mixed integration, utilizing data collected from the above analyses, shows 

that the design successfully maintained, to large extent, the performance characteristics 

of the pure explicit solution. 

6.2 Future directions 

This work has achieved the main objectives which were to develop efficient software 

that will enable the computational study of soil-foundation-structure interaction and to 

initiate the study of an entire urban region including near fault wave field effects as well 

as local site effects. Several future extensions and research directions related to both the 

software component as well as the engineering analysis have been identified. 

The first point is related to software optimizations and tuning. While the algorithms 

designed and used have been carefully implemented, and standard programming tech­

niques have been applied to render them efficient, there exists a plethora of optimizations 

that can be still applied such as: array padding, multilevel blocking, prefetching (software 

and hardware), SIMDization, and use of cache bypass by instruction which can potentially 

increase the arithmetic intensity and many more, other than just relying on the sophistica­

tion of the compilers. Some of these optimizations help reduce the memory traffic. Some 

of these are included as part of the SSE2 instruction set and on. More details can be found 

in Datta et al. (2008); Williams et al. (2008). It is expected that working towards this 

direction will improve the performance of the software. It is work that can easily be done 

on one processor, optimizing the serial performance, and the gains will be immediately 

transferable to the large scale runs. 

The next point has to do with the size of the models considered in the simulations. 

While the solvers and performance will not be affected by increasing the total number of 

elements and PEs used, the need to produce very large meshes will render modifications 

to the meshing class for the subdomains necessary. More specifically, the interface to 
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the graph partitioning software will need to be augmented by interfacing to ParMetis 

in a distributed way, i.e. providing more than one submesh, the union of which will be 

partitioned in N subdomains. There exist other graph partitioning tools in the literature 

that have not been investigated as alternatives in this study such as SCOTCH (2007); 

Chaco (2007). The efficacy of these different graph partitioners has not been assessed 

as far as establishing whether they yield better balanced communication graphs with 

smaller number of crossing edges. Also a detailed study for selection of more advanced 

existing hexahedral meshing tools will be required instead of using the methods of the 

M e s h 3 D S u b d o m a i n class. 

Studying linear soils begins to show the effect of site response but it does not reveal 

the entire range of possibilities. The next step is to extend the simulation methodology 

and software to nonlinear soil constitutive models. While the solution strategy can remain 

explicit for the soil, it is worthwhile examining an iterative implicit strategy for the entire 

domain. The conjugate gradient method is the obvious candidate for this problem and 

the effort should be focused on the preconditioning aspects of it. 

The next research direction is to perform representative studies using wide ranges of 

parameters for the structural and foundation characteristics and focus on understanding 

the building to building interaction and when it is necessary to be accounted for. Most 

simulations to date are two-dimensional and the energy radiation in a three-dimensional 

analysis is different and needs to be understood together with its effect on the surface 

motion and structural responses. 

134 



Bibliography 

Aagard, B. T., J. F. Hall, and T. Heaton (2001), Characterization of near-source ground 

motions with earthquake simulations, Earthquake Spectra, 17, 177-207, article. 

Bao, H., J. Bielak, O. Ghattas, L. F. Kallivokas, D. R. O'Hallaron, J. Schewchuk, and 

J. Xu (2001), Large-scale simulation of elastic wave propagation in heterogeneous media 

on parallel computers, Comput. Methods Appl. Mech. Eng., 152, 85-102, article. 

Bathe, K.-J. (1996), Finite Element Procedures, Prentice Hall, Upper Saddle River, New 

Jersey, U.S.A. 

Belytschko, T., W. K. Liu, and B. Moran (2000), Nonlinear Finite Elements for Continua 

and Structures, Wiley. 

Bielak, J. (1975), Dynamic behavior of structures with embedded foundations., J. Earth­

quake Engrg. Struct. Dyn., 3(3), 259-274, article. 

Bielak, J., K. Loukakis, Y. Hisada, and C. Yoshimura (2003a), Domain reduction method 

for three-dimensional earthquake modeling in localized regions, part i: Theory, Bull. 

Seism. Soc. Am., 93(2), 817-824, article. 

Bielak, J., K. Loukakis, Y. Hisada, and C. Yoshimura (2003b), Domain reduction method 

for three-dimensional earthquake modeling in localized regions, part ii: Verification and 

applications, Bull. Seism. Soc. Am., 93(2), 825-840, article. 

135 



Chaco (2007), Chaco: Software for partitioning graphs, http:/ /www.cs.sandia.gov/ ba-

hendr/chaco.html. 

Chopra, A. K. (2001), Dynamics of Structures: Theory and Applications to Earthquake 

Engineering, Prentice Hall, Englewood Cliffs, New Jersey, U.S.A. 

Chopra, A. K., and C. Chintanapakdee (2001), Comparing response of sdf systems to near-

fault and far-fault earthquake motions in the context of spectral regions, Earthquake 

Engineering and Structural Dynamics, 30, 1769-1789. 

Cook, R. D., D. S. Malkus, and M. E. Plesha (1988), Concepts and Applications of Finite 

Element Analysis, John Wiley & Sons. 

Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein (2001), Introduction to algo­

rithms, MIT Press, Cambridge, MA, USA. 

Courant, R., K. Friedrichs, and H. Lewy (1967), On the partial difference equations of 

mathematical physics, IBM Journal, pp. 215-234. 

Danielson, K. T., and R. R. Namburu (1998), Nonlinear dynamic finite element analysis 

on parallel computers using FORTRAN 90 and MPI, Advances in Engineering Software, 

29(3-6), 179-186. 

Dat ta , K., M. Murphy, V. Volkov, S. Williams, J. Carter, L. Oliker, D. Patterson, J. Shalf, 

and K. Yelick (2008), Stencil Computation Optimization and Auto-tuning on State-of-

the-Art Multicore Architectures, Proceedings of Supercomputing (SC). 

Davis, P. M., J. L. Rubenstein, K. H. Liu, S. S. Gao, and L. Knopoff (2000), Northridge 

earthquake damage caused by geologic focusing of seismic waves, Science, 289, 1746-

1750, article. 

Demmel, J. W. (1997), Applied Numerical Linear Algebra, SIAM. 

136 

http://www.cs.sandia.gov/


Elgamal, A., L. Yan, Y. Zhang, and J. P. Conte (2008), Three-dimensional seismic re­

sponse analysis of humbolt bay bridge-foundation-ground system, Journal of Structural 

Engineering, 134(7), 1165-1176, article. 

FEMA (2008), FEMA's Software Program for Estimating Potential Losses from Disasters, 

ht tp: / /www.fema.gov/plan/prevent/hazus. 

Fenves, G. L. (1990), Object-oriented programming for engineering software development, 

Engineering With Computers, 6(1), 1-15. 

Forum, M. P. I. (1994), MPI: A Message-Passing Interface Standard, h t tp : / /www.mpi-

forum.org/. 

Gamma, E., R. Helm, R. Johnson, and J. Vlissides (1995), Design Patterns: Elements of 

Reusable Object-Oriented Software, Addison-Wesley Professional Computing Series. 

Golub, G. H., and C. F. Van Loan (1996), Matrix Computations, Johns Hopkins. 

Graves, R. W. (1993), Modeling three-dimensional site response effects in the marina 

district basin, san franncisco, California, Bull. Seism. Soc. Am., 83, 1042-1063, article. 

Graves, R. W., A. Pitarka, and P. G. Somerville (1998), Ground motion amplification in 

the santa monica area: effects of shallow basin edge structure, Bull. Seism. Soc. Am., 

88, 1224-1242, article. 

Gravouil, A., and A. Combescure (2001), Multi-time-step explicit-implicit method for non­

linear structural dynamics, International Journal for Numerical Methods in Engineering, 

50, 199-225, article. 

Hairer, E., S. N0rsett, and G. Wanner (1993), Solving Ordinary Differential Equations I. 

Nonstiff Problems, Springer-Verlag. 

Hairer, E., S. N0rsett, and G. Wanner (2004), Solving Ordinary Differential Equations II. 

Stiff and Differential-Algebraic Problems, Springer-Verlag. 

137 

http://www.fema.gov/plan/prevent/hazus
http://www.mpi-
http://forum.org/


Hughes, T. J. R. (2000), Linear Static and Dynamic Finite Element Analysis, Dover 

Publications, Mineola NY. 

Hughes, T. J. R., and W. K. Liu (1978a), Implicit-explicit finite elements in transient 

analysis: Stability theory, Journal of Applied Mechanics, 45, 371-374, article. 

Hughes, T. J. R., and W. K. Liu (1978b), Implicit-explicit finite elements in transient 

analysis: Implementation and numerical examples, Journal of Applied Mechanics, 45, 

375-378, article. 

Hughes, T. J. R., K. S. Pister, and R. L. Taylor (1979), Implicit-explicit finite elements in 

nonlinear transient analysis, Computer Methods in Applied Mechanics and Engineering, 

17(18), 159-182, article. 

IBM (2006), Engineering Scientific Subroutine Library, h t tp : / /www-

O3.ibm.com/systems/p/software/essl.html. 

Ichimura, T., and M. Hori (2000), Macro-micro analysis for prediction of strong motion 

distribution in metropolis, J. Struct. Eng./Earthquake Eng., JSCE, 1-52(654), 51-62, 

article. 

Idriss, I. M., and J. I. Sun (1992), SHAKE91: A computer program for conducting equiv­

alent linear seismic response analyses of horizontally layered soil deposits, Center for 

Geotechnical Modeling, U.C. Davis. 

INTEL (2008), Intel Math Kernel Library, ht tp: / /www.intel .com/cd/software/products/asmo-

na/eng/307757.htm. 

Karypis, G. (1998), METIS - serial graph partitioning and fill-reducing matrix ordering,. 

Liu, W. K., and T. Belytschko (1982), Mixed-time implicit-explicit finite elements for 

transient analysis, Computers and Structures, 15(4), 445-450, article. 

138 

http://www-
http://www.intel.com/cd/software/products/asmo-


Luco, J. E. (1980), Linear soil-structure interaction, soil-structure interaction: The sta­

tus of current analysis methods and research, Rep. No. NUREG/CR-1780 and UCRL-

53011, U.S. Nuclear Regulatory Commission, Washington, D.C. and Lawrence Liver-

more Laboratory, Livermore, Calif., report. 

Lysmer, J., and R. L. Kuhlemeyer (1969), Finite dynamic model for infinite media., Jour­

nal of the Engineering Mechanics Division, ASCE, 95(3), 859-877, article. 

McKenna, F. T. (1997), Object oriented finite element programming: Framework for anal­

ysis, algorithm and parallel computing, Ph.D. thesis, University of California, Berkeley. 

McKenna, F. T., and G. L. Fenves (2004), Opensees: Open system for earthquake engi­

neering simulation, http://opensees.berkeley.edu. 

MVAPICH: (2008), MPI over Infiniband and iWARP http://mvapich.cse.ohio-state.edu/. 

NCSA (2008), National Center for Supercomputing Applications at the University of Illi­

nois, http://www.ncsa.uiuc.edu/index.html. 

Neuenhofer, A., and F. C. Filippou (1998), Geometrically nonlinear flexibility-based frame 

finite element, ASCE Journal of Structural Engineering, 124(6), 704-711. 

Newmark, N. M. (1959), A method of computation for structural dynamics, Journal of 

the Engineering Mechanics Division, 85, 67-94, article. 

Olsen, A. H., B. T. Aagaard, and T. H. Heaton (2008), Long-period building response to 

earthquakes in the san francisco bay area, Bull. Seism. Soc. of Am., 98(2), 1047-1065. 

Olsen, K. B. (2001), Three-dimensional ground motion simulations for large earthquakes 

on the san andreas fault with dynamic and observational constraints., Journal Comp. 

Acoust., 9(3), 1203-1215, article. 

Olsen, K. B., S. M. Day, and C. R. Bradley (2003), Estimation of q for long-period (>2 

sec) waves in the los angeles basin, Bull. Seism. Soc. Am., 93(2), 627-638, article. 

139 

http://opensees.berkeley.edu
http://mvapich.cse.ohio-state.edu/
http://www.ncsa.uiuc.edu/index.html


PAPI (2008), Performance Application Programming Interface http://icl.cs.utk.edu/papi. 

Park, J. S. (2004), Parallel simulation of structural performance in earthquakes, Ph.D. 

thesis, University of California, Berkeley. 

Park, J. S., G. L. Fenves, and B. Stojadinovic (2004), Spatial distribution of response of 

multi-story structures for simulated ground motions, Proceedings of 13th World Con­

ference on Earthquake Engineering, pp. 13wcee-001,545, article. 

PerfSuite (2008), http://perfsuite.ncsa.uiuc.edu. 

Richtmyer, R. D., and K. W. Morton (1957), Difference methods for initial-value problems, 

krieger Publishing company, Krieger Drive, Malabar Florida. 

Roeset, J. M. (1980), A review of soil-structure interaction, soil-structure interaction: 

The status of current analysis methods and research, Rep. No. NUREG/CR-1780 and 

UCRL-53011, U.S. Nuclear Regulatory Commission, Washington, D.C. and Lawrence 

Livermore Laboratory, Livermore, Calif., report. 

SCOTCH (2007), Software package and libraries for graph, mesh and hypergraph par­

titioning, static mapping, and parallel and sequential sparse matrix block ordering 

http://www.labri.fr/perso/pelegrin/scotch/. 

SDSC (2006), San Diego SuperComputing Center at U.C.S.D., http://www.sdsc.edu/ . 

Semblat, J. F., M. Kham, P.-Y. Bard, and P. Gueguen (2004), Could "site-city interaction" 

modify site effects in urban areas?, 13th World Conference on Earthquake Engineering, 

Conference Proceedings(1978), paper. 

Stewart, J. P., G. L. Fenves, and R. B. Seed (1999a), Seismic soil-structure interaction in 

buildings, i: Analytical methods, Journal of Geotechnical and Geoenvironmental Engi­

neering, 125(1), 26-37, article. 

140 

http://icl.cs.utk.edu/papi
http://perfsuite.ncsa.uiuc.edu
http://www.labri.fr/perso/pelegrin/scotch/
http://www.sdsc.edu/


Stewart, J. P., G. L. Fenves, and R. B. Seed (1999b), Seismic soil-structure interaction 

in buildings, ii: Experimental methods, Journal of Geotechnical and Geoenvironmental 

Engineering, 125(1), 38-48, article. 

Stewart, J. P., J. D. Bray, S.-J. Chiou, R. W. Graves, P. G. Somerville, and N. A. Abra-

hamson (2001), Ground motion evaluation procedures for performance-based design, 

Tech. rep., Pacific Earthquake Engineering Research Center. 

Toselli, A., and O. Widlund (2005), Domain Decomposition Methods - Algorithms and 

Theory, Springer. 

Veletsos, A. S., and J. W. Meek (1974), Dynamic behavior of building-foundation systems, 

J. Earthquake Engrg. Struct. Dyn., 3(2), 121-138, article. 

Veletsos, A. S., and V. V. Nair (1975), Seismic interaction of structures on hysteretic 

foundations, J. Struct. Engrg., 101(1), 109-129, article. 

Williams, S., J. Carter, L. Oliker, J. Shalf, and K. Yelick (2008), Lattice Boltzmann Simu­

lation Optimization on Leading Multicore Platforms, International Parallel & Dstributed 

Processing Symposium (IPDPS). 

Zhang, Y., J. P. Conte, A. Elgamal, Bielak, and G. Acero (2008), Two-dimensional non­

linear earthquake response analysis of a bridge- foundation-ground system, Earthquake 

Spectra, 24(2), 343-386, article. 

141 



Appendix A 

C + + Header Files 

A.l Public Members of Mesh3DSubdomain Class 

Listing A.l. Mesh3DSubdomain Class 

c l a s s Mesh3DSubdomain { 
publ i c 
//'general constructor 
Mesh3DSubdomain( Domain * inpDomain) ; 
Mesh3DSubdomain () ; 
//destructor 
v i r t u a l ~Mesh3DSubdomain ( ) ; 
void make3DUniformMesh( int firstNewNodeNumber , int f irstNewEleNum , 

double s t a r t X , double s t a r t Y , double s t a r t Z 
int nx , in t ny, int nz , 
double Lx, double Ly, double Lz , 
i n t * e lmnts , i n t * ew, double* nds , i n t * nw) 

void wr i te3DUniformMeshToIFi le ( i n t * e l m n t s , in t s i z e _ e l m n t s , 
i n t * epa r t , in t met is_ne , 
double* n d s , in t s i ze_nds , 
int metis_nn , int who_am_I, 
double* Vsl , double* nu_so i l , 
double* s o i l _ d e n s i t y , 
double* alphaM , double* betaK , 
double* betaKO , double* betaKc , 
in t numLayers , double* l a y e r s , 
i n t * n e , i n t * nn , i n t * n l , 
double xMin, double xMax, 
double yMin, double yMax, 
double zMin, double zMax, 
double Lx, double Ly, double Lz); 

void wri te3DUniformMeshForAll ( i n t * e l m n t s , in t s i z e _ e l m n t s , 
i n t * epa r t , int met is_ne , 
double* n d s , int s i ze_nds , 
int metis_nn , int numProcesses , 
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}; 

double* V s l , double* nu_soi l , 
double* s o i l _ d e n s i t y , 
double* alphaM , double* betaK , 
double* betaKO , double* betaKc , 
int numLayers , double* l a y e r s , 
double xMin, double xMax, 
double yMin, double yMax, 
double zMin, double zMax, 
double Lx, double Ly, double Lz); 

void read3DUniformMeshFromIFile ( i n t who_am_I , 
int numProcs , bool makeLysmers) ; 

void a l l o c a t e _ e _ N o d e s (double xMin, double xMax, 
double yMin, double yMax, 
double zMin, double zMax, 
s td : : map<int , in t>& eNodes ) ; 

void a l l o c a t e B o u n d a r y L a y e r E l e m e n t s (double xMin, double xMax, 
double yMin, double yMax, 
double zMin, double zMax, 
s td : :map<int , Element*>& e l emen t s ) ; 
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A. 2 Public Members of PlaneDRMInputHandler Class 

Listing A.2. PlaneDMRInputHandler Class 

c l a s s PlaneDRMInputHandler : pub l i c DRMInputHandler { 

pub l i c : 

PlaneDRMInputHandler ( i n t t a g , cha r** i n _ f i l e s , int f i l e s , 
double dt , double* t i m e _ a r r a y , int num_steps , 
i n t * f i l e _ d a t a , int f i l e D a t a _ s i z e , 
double* domain_crds , double* drm_box_crds , 
double* eleD , Mesh3DSubdomain* my_mesher, 
int s t e p s _ t o _ c a c h e , Domain* domain) ; 

v i r t u a l "PlaneDRMInputHandler ( ) ; 

void 
void 

void 

void 

void 

void 

)id 

void 

void 
int 
void 
void 
void 
void 
void 
void 
void 

p o p u l a t e B u f f e r s ( ) ; 
ge tMot ions (Element* e l e t a g , double t i m e , 

Vectorfe U, Vector& Ud, V e c t o r & U d d ) ; 
computeHis to ry (Element* e l e t a g , double t i m e , 

Vectorfe U, Vectorfe Ud, Vector& Udd, 
boo l upda t eDml ) ; 

hand l e_e l emen t At face5 (Element* e l e t a g , double t i m e , 
Vector& U, Vectorfe Ud, Vectorfe Udd 

hand le_e l emen t A t f a c e l (Element* e l e t a g , double t i m e , 
Vectorfe U, Vectorfe Ud, Vectorfe Udd 

h a n d l e _ e l e m e n t Atface2 (Element* e l e t a g , double t i m e , 
Vectorfc U, Vector& Ud, Vector& Udd 

h a n d l e _ e l e m e n t A t f a c e 3 (Element* e l e t a g , double t i m e , 
Vectorfe U, Vectorfe Ud, Vectorfe Udd 

hand le_e l emen t Atface4 ( Element* e l e t a g , double t i m e , 
Vector& U, Vector& Ud, Vector& Udd 

g e t L o c a t i o n s (double x, double y, 
double dx, double dy , i n t * xloc , i n t * y loc ) 

ge tTempora l (double t i m e , i n t * t l o c ) ; 
; e t l n d e x (doub le t i m e ) ; 

}; 
# e n d i f 

g e t f 5 p o i n t e r (Node* node_tag 
g e t f l p o i n t e r (Node* node_tag 
g e t f 2 p o i n t e r (Node* node_tag 
g e t f 3 p o i n t e r (Node* node_tag 
g e t f 4 p o i n t e r (Node* node_tag 
po in te rCopy ( i n t node_from , int node_to ) ; 
popula teTempBuffe rs ( i n t i n d e x , int f i l e p t r , 

double ksi , double e t a ) 

int l o c a l _ t a g 
int l o c a l _ t a g 
int l o c a l _ t a g 
int l o c a l _ t a g 
int l o c a l _ t a g 

int index) 
int index) 
int index) 
int index ) 
int index ) 
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A. 3 Public Members of GeometricBrickDecorator Class 

c l a s s ( 
publ 

Listing A.3. GeometricBrickDecorator Class 

Gleometr icBr ickDecora tor { 
c : 

G e o m e t r i c B r i c k D e c o r a t o r ( ) ; 
v i r t u a l " G e o m e t r i c B r i c k D e c o r a t o r ( ) ; 
void 
void 
void 
void 
void 
bool 
bool 
bool 
bool 

s e t B r i c k (Element* elem ) ; 
setDomain (Domain * theDomain ) ; 
c l e a r B r i c k ( ) ; 
c learDomain ( ) ; 
c l e a r All () ; 
i s C l e a r ( ) ; 
isEmpty ( ) ; 
i sZe ro (double a, double b ) ; 
i s P o i n t l n V o l u m e ( const Vector &pP ) ; 

double eva lS ignedVol ( c o n s t Vector &pA, 
c o n s t Vector &pB, 
c o n s t Vector &pC, 
c o n s t Vector &pP ) ; 

double e v a l 3 0 r d e r D e t ( c o n s t Vector &pA, 

void 

c o n s t Vector &pB, 
c o n s t Vector &pC); 

g e t F a c e ( i n t which, ID& f a c e , ID& facelD ) ; 
double getMinMaxCrds( int which, int w h i c h t o r e t ) ; 
bool 
bool 
bool 

bool 

bool 

bool 

bool 

bool 

bool 

} 

compareFaceToFace( int which , ID fefaceOther ) ; 
i s F a c e i n P l a n e ( i n t which , c o n s t Vector &pP ) ; 
i s F a c e i n V e r t P l a n e ( i n t which, double xy , 

double zmin, double zmax, 
in t wh ichCrd) ; 

i sLe f tBounda ry (double xMin , double xMax, 
double yMin, double yMax, 
double zMin, double zMax); 

i s R i g h t B o u n d a r y (double xMin , double xMax, 
double yMin, double yMax, 
double zMin, double zMax); 

i s F r o n t B o u n d a r y (double xMin , double xMax, 
double yMin, double yMax, 
double zMin, double zMax); 

i s R e a r B o u n d a r y ( d o u b l e xMin, double xMax, 
double yMin, double yMax, 
double zMin, double zMax); 

i sBot tomBoundary (double xMin , double xMax, 
double yMin, double yMax, 
double zMin, double zMax); 

i sBounda ryLaye rE le (double xMin , double xMax, 
double yMin, double yMax, 
double zMin, double zMax); 
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A.4 Public Members of DRMBoundaryLayerDecorator 
Class 

Listing A.4. DRMBoundaryLayerDecorator Class 

c l a s s DRMBoundaryLayerDecorator { 
f r i end c l a s s E lement ; 

publ i c 
DRMBoundaryLayerDecorator ( ) ; 
v i r t u a l ""DRMBoundaryLayerDecorator ( ) ; 
void setMap ( s td : : map<int , i n t > &eNodes ) ; 
void s e t S e t ( s t d : : s e t < i n t , s t d : : l e s s < i n t > > feeNodes ) ; 
void setDomain (Domain * theDomain) ; 
void c learDomain () ; 
void s e t B r i c k (Element* b r i c k T a g ) ; 
void c l e a r B r i c k ( ) ; 
void c l e a r ( ) ; 
void computeDRMLoad (Vector fedrmLoad , 

const Vector &disp l , 
const Vector &veloc , 
const Vector & a c c e l ) ; 

void applyDRMLoad( Vector &drmLoad , 
const Vector fedispl , 
const Vector &veloc , 
const Vector & a c c e l ) ; 

void get_E_B_Nodes(ID he, ID &b, s td :: map<int , i n t > &eNodes ) ; 

}; 
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