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1 Plate Assumptions

The first two general assumptions of plate theory are:

e The domain 2 has the following special form :

h h
Q= {(a:l,wz,z) € R® such that z € [—5, 5] and (z1,z2) € A C ]R2}. 1)

e The plane stress hypothesis: o33 = 0.

The kinematic assumptions follow in the next section. In all future discussions, any Greek indices a, £, ...
range from 1 to 2 only.

2 Kinematics

2.1 Displacement Field

The three dimensional displacement field w; is assumed to be defined by

up = —201(1'1,1'2) +ﬂ1(1’1,$2)
U2 = —202(.'[:1,1:2) +ﬂ2(SL‘1,.’L'2) ? (2)
uz = a3(z1,T2)

where u; is the translation of the plate mid-surface and 6; are rotations of fibers initially normal to the
mid-surface of the plate.

2.2 Right-Hand Rule
“Right-hand-rule” rotations {91, é2} are defined by

0.1 [0 =176
R ®
In most structural analysis codes, including OpenSees, the right-hand-rule convention is adopted. For actual

numerical implementations, {é1,92} are used as the primary solution variables. However, it is preferable to
develop the theory in terms of {6;,6-}, as the algebra is much simpler.



2.3 Strains

Define the curvature tensor as

1
kap := 5(0ap +b,a),
the membrane strain tensor as

(4)
Eaﬁ = 2(1_104,5 + ﬁB,a)a (5)
and the transverse shear strains as
Yo 1= —ba + U3, o- (6)
Then, the physical strains are
1 _
€ap = §(ua”6 +ug,a) = —2Kag + €ap (7
and 1
€a3 = €30 = 5(”(1,3 + u3,a) = 5’704- (8)

3 Stress Resultants
3.1 Membrane
Definte the membrane stress resultant tensor as

h

2

paﬁ :Z/ Uaﬁ dz. (9)
-4
3.2 Bending
Define the moment tensor as .
2
Map :=/ 2048 dz. (10)
%
3.3 Shear

Define the transverse shear forces as

[V

Qo = / _ Oa3 dz.
-2

4 Constitutive Relationships
4.1

(11)

Continuum Plane Stress

Assume a linear elastic three-dimensional continuum constitutive response is given by

05 = Cijrt - €xt,

(12)
where € is the symmetric (major and minor) rank-four elasticity tensor. Enforcement of the plane stress
condition o33 = 0 yields a condensed elasticity tensor C such that

Oij =
Cijri

Cijrt - €rt

Cijrr — Cz’j33(€3333)71¢33kl } '
The modified tensor C is now appropriate for plate analysis.

(13)



4.2 Stress Resultants

Integration through the thickness yields the stress resultant constitutive response parameters.

Pap = /h OapB dz (14)
= / . (Caﬁkl * €kl dz (15)
= / X [(Caﬂth c €5y Tt (Cag53 . 2653] dz (16)
= /  [Capsry - (=2Ksy +€,) + Capes - 2€53] dz (17)

h
2

/ h (CO‘B‘S’Y dz] “€5y T

h
2

/ . Capss dzl Vs (18)

h
l/ X —2CuBsy dz] ‘Ksy +

Mg = /Eh 2048 dz (19)
A
= /1 2Capri - €r1 dz (20)
o
- / " 2[Capoy oy + Copss - 2655 dz (21)
2
= /1 2 [Capsy - (—2Ksy + Es5) + Copes - 2€53] dz (22)
g h
= [/ 2h —22Capsy dz] “Ksy + /1 2Capsy dz] €5y + /1 2Caps3 dz] s (23)
h
4o = /i Oq3 dz (24)
= Zh Coski - €x1 dz (25)
A
= /i [Cassy - €5y + Casss - 2€53] dz (26)
o
= / " [Cass - (=2hay + &) + Caas - 2e55] d (27)
)

3
l/ . —2Cq36+ dz] - Ky +

4.3 Isotropic Linear Elasticity

h

2
/h Cassy dz] €5y +
-2

%
/ . Casss dz] Vs (28)

It is often convenient to use a condensed vector notation for the equations of structural mechanics. Towards
that end, let

P11 mi1 @
P:=| P2 |,m:=| ma |,q:= [ s ] (29)
D12 mi2



and

€11 K11
€= €99 , K= K22 ,")/:|:’yl:|. (30)
2€12 2K12 7
.— _Eh .— _Ehn . __ER® :
Let M := 777 be the membrane modulus, G := SF7) be the shear modulus, D := 2(1-7) be the bending

modulus and & := % be the shear correction factor. The constitutive response of a linear elastic isotropic
plate is

M vM 0 0 0 0 0 0
vM M 0 0 0 0 0 0
0 0 G 0 0 0 0 0 c
Pl1_[ o o 0o -D —wp 0 0 0 . (31)
- 0 0 0 —-vD -D 0 0 0
4 0 0 0 0 0 -i1-»p 0 o0 v
0 0 0 0 0 0 kG 0
| O 0 0 0 0 0 0 kG |
D
General elastic constitutive models have the form
P €
m|=D| & |, (32)
q Y

where D is a symmetric positive-definite 8 x 8 matrix.

5 Principle of Virtual Work

Let {61;,80;} be kinematically admissable variations of mid-surface displacment and rotation, repectively.
Corresponding to these are the variations {0€,dk,d~v} :

1
0€ap := 5(&Lm +04g,0), (33)
1
0Kap 1= 5(5004,6 +6035,4), (34)
o = =004 + 0U3 4. (35)

Assume the plate is loaded by external forces F; acting per unit area. For simplicity, boundary loading terms
and distributed external moments are omitted. Starting from the basic equation

oIl := / (56,']' -0 dQ — / ou; - F; dA = 0 \7’{(5111,50,}, (36)
Q A



the weak form of equilibrium for a plate can be derived. Substituting the plate kinematics and stress resultant
definitions produces

/&U-gﬁ = /l " Gej - oiy dz] dn (37)
Q A —

/ l/ (—z&liag + (56(16) - 0ap + 20€43 - 0a3 dz
AlJ-

h
P)

RIS

dA (38)

S - [ [ o az|as + [ gy [ [ s az] aa
A —n A _n
+/ 0 - l/Z 0q3 dz| dA (39)
A -4
= /A(—dfcag “Mas + Vo Ga + 0€as - Pap) dA. (40)
Thus
o1l = /A(_(S,‘gaﬁ'maﬂ + Y0 *qa + 0Fap - Pag) dA — /A&ai FidA =0 v{ou;,00:}. (41)
This may also be written in vector notation as
oIl = /A (—okTm + dv'q + delp) dA — /A salFdA = 0 V{u,d6)}. (42)

6 “Drilling” Degree-of-Freedom

Let 5 be the “drilling” rotation, a degree-of-freedom representing rotations in the mid-surface plane of the
plate. Let kgg > 0 be the “drilling stiffness” (penalty parameter). Define

Q(n) := %(—Tn,z + Us2,1) (43)
as the in-plane rotation of the plate. The goal here is to weakly enforce the condition
b5 — Q(a) = 0. (44)
Define the “drilling energy” as
Harin = %/Akaa [éz - Q(fl)]2 dA (45)

6.1 Weak Form

Let 605 be a kinematically adimissable variation of 63 . To 811 is added
ST griu = / (605 — 2(0W)] - ko [ — Q(w)] d4 =0 V{61,063 (46)
A

An appropriate choice for kgg is

h
kgp := min eigenvalue l / Capoy dz] . (47)
_n

For isotropic linear elasticity typically kg9 = G as previously defined. It is not necessary for kgg to be taken
to infinity. Notice that one of the Euler equations of 6I14,.;; above is

/ 803 - ko [é3 - Q(ﬁ)] dA =0 Vs < kg [é3 - Q(ﬁ)] =0 <= 6; — Q(a) = 0. (48)
A

The weak form is variationally consistent independent of the choice of kgg > 0 .



7 Standard Plate Finite Element

Consistent with vector notation, define

a:= | 4 (49)

and
o:=1| 6 |. (50)
03

Now, consider a standard four-node plate finite element. The domain of this element shall be denoted
by A, C A. The displacement and rotation interpolations are given by

'S

a(¢,n) =Y _ Nr(&n)a' (51)
I=1
and A
Ben) =S Nien)d'. (52)
I=1

In this setting @! and éI, I = {1,2,3,4}, are the nodal values of the mid-surface displacement and the
rotation, respectively. The functions N(&, ) are the standard bilinear isoparametric shape functions, defined
in terms of the natural coordinates (§,n) € [-1,1] x [-1,1].

These equations produce, in standard fashion, “strain-displacement” matrices. These are constructed
such that

4
e=>Y By (&, (53)
I=1
4 AT
k=Y BP0, (54)
I=1
and
4 T
y=Y BiEn|al 8" ] (55)
I=1

The admissible variations {d€,dk,dv} are interpolated in the same manner. The details of constructing
these matrices are well known and are omitted here.
A combined “strain-displacement” matrix may be defined such that

BY o l

€ 4
kl=> 0 BP
Y I=1

=T
o ] (56)
BY o

v

By
At the element level, the principle of virtual work (weak form) can be written as
4 Toal |7 p
STMe=>"| .1 / BY | m | dA.|. (57)
=1 | 00 Ae q

The element “stiffness” matrix linking nodes I and J is

K;;= / BIDB; dA.. (58)
A,



Note also that a “drilling strain-displacement” matrix is defined such that

4
b-o@=YB¢[a o' ] (59)

I=1

This produces an additional “drilling stiffness” matrix

K = / B ke BY dA,. (60)

e

8 “B-Bar” Plate Element Formulation

It is well known that the standard plate element formulation performs poorly within the context of thin
plates. The element exhibits an overly “stiff” behavior commonly referred to as “shear locking.”

As an example, consider a simply supported plate where A = [0,1] x [0,1]. Assume this domain is
discretized by standard quadrilateral plate finite elements. The plate is centrally loaded by a point load F'
at the center point (x1,22) = (0.5,0.5) of the plate. Let A be the displacement of the node under the point
load at the point (0.5,0.5). Then, as the thickness h goes to zero,

lim A(h) = 0. (61)
h—0
This is of course a completely nonphysical result. As the plate becomes thin, the shear strains vanish but the
plate should still respond in bending when loaded. From a finite element perspective, one possible solution
to this problem is a re-definition of the shear “strain-displacement” matrices B7.
Define the Jacobian matrix of the isoparametric map as

[ Oz Oz
9 o
I m) = ; (62)
Oxy Oy
| 9§ On
and let Jo := J(0,0). Additionally, define
1] 0
e 1= [0 , ep 1= [1] . (63)

The modified “B-bar” shear strain 4 is computed by the following steps:

1. Compute the four parent element natural coordinate shear strain parameters:

o= ngg ~(0,-1)
WP o= ngg ~(0,1)
(64)
’754 = ngg ’7(_1’0)
7§ = el 4(1,0) )
In the above, (&, ) is computed using the standard BY matrices. For example,
4 LT
70,-1) =Y Bf0,-)[ al o' | . (65)

I=1



L
o
@ w

Figure 1: Transverse Shear Strain Collocation Points

2. Interpolate to define the parent element shear strain distribution:

. [75] _1 [(1 =+ (L] (66)
Tl 2 [(1=8&y +(1+ 8%
3. Transform the shear strain back to the physical coordinates to define a shear strain ~,:
Vo= Jg Yo (67)
4. Apply an integral average to define ¥:
¥i= 7. + @/A (v = 7.) d4e. (68)

If the Jacobian is constant (J(£,7n) = Jo) then 4 = ~,. For non-constant Jacobian element configura-
tions, in general ¥ # «,.

Modified shear “strain-displacement” matrices B7 are computed such that

4 T
y=YBien|u 8] . (69)
I=1

These modified “B-bar” matrices are used in all element computations, including residual and tangent

calculations. For example, a combined “B-bar strain-displacement” matrix B; may be constructed such
that

€ BM o &l
k=) 0 B? [ 1 ] , (70)
= — RS 0
¥ I=1 By
f



producing the element “stiffness” matrix

K= / BIDB; dA.. (71)
A.

Some important observations must be made about this formulation:

In almost all cases this element is free of “shear locking” and performs well in both thick and thin
plate analysis.

Only the shear interpolation is modified. The membrane, bending and drilling interpolations remain
unchanged.

The presence of the Jacobian matrix Jy in the shear strain transformations ensures invariance of
the formulation with respect to stretch and rotation of the element relative to the parent domain
[_17 1] X [_1a 1]

If the shear strain 4 computed from nodal parameters is spatially constant, then 4 and 4, are also
constant and 4 = «, = . Thus constant shear deformation modes are exactly representable in this
formulation. This is a consistency requirement and is necessary for the element to pass the patch test.

The integral average of step four(4) ensures that
/ (Bf —B7) d4. =0 (72)
Ae

for both constant Jacobian (J(£,7) = Jo) and non-constant Jacobian element configurations. This
condition is sufficient to guarantee both variational consistency of the formulation and satisfaction of
additional patch test requirements.

The element is applicable, without modifications, to non-linear material response. In addition, this
modified shear strain interpolation can be extended to properly invariant geometrically exact shell
theory. However, such a theory is beyond the scope of this report.
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A Shell Modifications

Consider a single flat shell finite element. Let {g1, g2, g3} be basis vectors for the element such that ||g;|| = 1,
gi-g; = 0;; and g1 X g2 = gs. Thus these three vectors form a right-handed, orthonormal basis for R?.
Assume that g3 is normal to the shell mid-surface so that g1 and g» lie in the tangent plane of the shell
mid-surface.

In this setting any vector v € R® (position, displacement, ... ) can be written as

v =(v-gi)8i (73)

The scalars (v-g;) are the components of v relative to the{g;, g2, g3} coordinate system. For example, when
considering the plate kinematics, the components of the mid-surface displacement vector i are

U = u-gi
Uy = 1u- g2 y (74)
uz = u-gs
and the components of the rotation vector 0 are
i = 0,
b = 0-g2 . (75)
0 = 0-g3
Additionally, any symmetric rank-two tensor T (strain, curvature, ...) can be written as
T = (gi- Tg;) 8 ® &;> (76)

where (g; - Tg;) are the components of T. Expressions for higher rank tensors can also be defined. Spatial
partial derivatives may be calculated relative to this coordinate system.

Thus all the equations for the plate element hold in the {g;,g2,g3} coordinate system. By performing
all calculations relative to this system, and without any additional modifications to the theory, the plate
element becomes a flat shell element.

10



B Kinetic Energy

Let p > 0 be the mass density per unit volume of the plate material. Ignoring rotational inertia terms, the
kinetic energy T of the plate is

T = / pit @ dQ (77)
” B
2 T
= // pu udz dA (78)
Ad-3
% LTL
= / / pdz|u udd (79)
A /-5
= / pi i dA, (80)
A
where
%
p::/ pdz (81)

2
is the mass per unit area of the plate. If p is constant through the cross-section z of the plate then p = ph.
To 411 is added
MLinertia = / 6ﬁTﬁﬁ dA. (82)
A
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