Object-Oriented Finite Element Programming:
Frameworks for Analysis, Algorithms and Parallel
Computing

by

Francis Thomas McKenna

B.A. (Trinity College Dublin, Ireland) 1990
B.A.I. (Trinity College Dublin, Ireland) 1990
M.Sc. (Trinity College Dublin, Ireland) 1990

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy

in
Engineering—Civil Engineering

in the

GRADUATE DIVISION
of the
UNIVERSITY of CALIFORNIA, BERKELEY

Committee in charge:

Professor Gregory L. Fenves, Chair
Professor Stephen A. Mahin
Professor James W. Demmel

Fall 1997

The dissertation of Francis Thomas McKenna is approved:

Chair Date

Date

Date

University of California, Berkeley

Fall 1997

Object-Oriented Finite Element Programming:
Frameworks for Analysis, Algorithms and Parallel

Computing

Copyright (¢) Fall 1997

by

Francis Thomas McKenna

Abstract

Object-Oriented Finite Element Programming:
Frameworks for Analysis, Algorithms and Parallel
Computing
by
Francis Thomas McKenna
Doctor of Philosophy in
Engineering—Civil Engineering
University of California, Berkeley

Professor Gregory L. Fenves, Chair

This dissertation presents a new design for object-oriented finite element software.
The design provides for a variety of structural analysis methods to be performed on
finite element models in both sequential and parallel computing environments.

In the first part of the dissertation a new design is presented for finite element
analysis. In a traditional object-oriented design, an analyst constructs a single ob-
ject, the analysis object, to perform the analysis. In the new design, the analy-
sis class is broken into separate component classes: Integrator, ConstraintHandler,
DOF Numberer, AnalysisAlgorithm, AnalysisModel, FE_Element, DOF _Group, Sys-
temOfEqn, and Solver. Using this design, an analyst creates an analysis procedure
by providing objects of the component classes to the analysis object’s constructor;
the type of objects depending on the type of analysis the analyst wishes to perform.
This approach offers great flexibility, because the analysis can be varied by changing
the types of objects passed to the constructor, and extensibility, because the types of
analysis procedures that can be performed is greatly increased by the introduction of
a new component subclass. The functionality of the classes used in the new design

are presented for an incremental displacement solution of the equilibrium equations.

2
Extensions to the design are then presented for modal analysis and modal transient
analysis.

The design is evaluated by comparing an implementation using the object-oriented
language C++ with a procedural program. The results show that the number of CPU
cycles excluding disk i/o required by both programs are similar but that the object-
oriented program uses more of the virtual address space.

The second part of the dissertation focuses on extending the design to allow non-
overlapping domain decomposition methods to be used during the analysis. Two
new classes, GraphPartitioner and DomainPartitioner, are introduced for partitioning
the domain. New subclasses are introduced for the domain decomposition, includ-
ing Subdomain, PartitionedDomain, DomainDecompAnalysis, DomainDecompAlgo-
rithm and DomainSolver.

The third part of the dissertation focuses on parallel finite element solution pro-
cedures. New classes are introduced for parallel programming based on the actor
programming model: Actor, Channel, Message, MovableObject, MachineBroker, Ob-
jectBroker, and Shadow. The Shadow class is particularly important to the design,
as it allows parallel processing to be introduced in a transparent manner. Shadow
also permit non-computationally demanding methods, invoked on an object residing
in a remote process, to be performed locally. Two subclasses, ShadowSubdomain and
ActorSubdomain, are introduced for use in parallel finite element analysis.

A number of analyses using the substructuring domain-decomposition method are
performed on two networks of workstations. The results show that the time taken to
perform the analysis in parallel using multiple workstations can be faster than that
required to perform the analysis using a single workstation, for certain examples the
parallel program is over twenty times faster than the sequential program. This is due
to the reduction in memory requirements on the workstations and the fact that large
portions of the computation can be done concurrently.

The fourth part of the dissertation focuses on obtaining better performance on
a parallel machine when performing finite element analysis by using dynamic load
balancing. A new approach to dynamic load balancing for finite element analysis is

presented in which elements migrate between subdomains to reduce the number of

3

wasted CPU cycles on the parallel machine. A new class, LoadBalancer, is introduced
and existing classes are modified to allow for this new approach. Results are presented
which show that the time taken to perform the analysis in a parallel environment can
be reduced when using this approach to dynamic load balancing, the time being more

than halved for certain examples.

Professor Gregory L. Fenves
Dissertation Committee Chair

iii

To my parents

Contents

List of Figures

List of Tables

Acknowledgements

1 Introduction

2

1.1
1.2
1.3
1.4

Problem Statement
Object Oriented Programming
Objective of the Research
Overview of Dissertation.........

Fundamental Object-Oriented Finite Element Design

2.1
2.2
2.3

24
2.5

2.6

Introduction e
Modeling Classest
Finite Element Model Classes
2.3 1 Node Class ... vv i
2.3.2 Element Classouiii e
2.3.3 Constraint Classes.t e
2.3.4 Load Classesoii e
2.3.5 Domain Class. . ..ottt e
Analysis Classesot
Numerical Classesii i e e
2.5.1 Matrix and Vector Classest ...
2.5.2 Tensor Classesoii i e
2.5.3 Linear System of Equation Classes.
SUMMATY . .« ettt e et e e e e e e e e e e

Object-Oriented Analysis Algorithms

3.1
3.2
3.3

3.4

Introduction e
The Incremental Solution of Nonlinear Finite Element Equations.
Existing Object-Oriented Approaches for

Finite Element Analysis i
A New Object-Oriented Approach for the

Analysis Algorithm
3.4.1 Analysis Classot

v

viii

xii

xiv

SR Qo =

10
12
14
17
18
22
25
25
26
27
27
27

3.4.2 SolutionAlgorithm Class
3.4.3 Integrator Class...........ouiiniiin i
3.4.4 AnalysisModel Class i
3.45 DOF_Group Classot e
3.46 FEElement Classt
3.4.7 ConstraintHandler Class
3.4.8 DOF Numberer Class
3.4.9 SystemOfEqn and Solver Classes
3.5 Example Programs
3.5.1 Flexibilityo
3.5.2 Extensibility
3.6 Extension of Framework to Other Types of Analysis Procedures
3.6.1 Extensions for Eigenvalue Analysis
3.6.2 Extensions for Modal Transient Analysis
Object-Oriented Domain Decomposition
4.1 Introduction e
4.2 Domain Decomposition Methods for Finite
Element Analysis
4.2.1 Non-overlapping Domain Decomposition Methods
4.2.2 Domain Partitioning
4.3 Existing Object-Oriented Approaches to
Domain Decomposition.......... i
4.4 A New Object-Oriented Approach to Domain Decomposition
4.4.1 PartitionedDomain Class
4.4.2 DomainPartitioner Class
4.4.3 GraphPartitioner Class
4.4.4 Subdomain Class..........coiiii i
4.4.5 DomainDecompAnalysis Class
4.4.6 DomainDecompAlgo Class.c.oiiiiiiiinnnn...
4.4.7 DomainSolver Classooitiiii ..
4.5 Modifications to Classes for Domain
Decomposition
4.6 Example Programs using Domain
Decomposition

Parallel Object-Oriented Finite Element Programming
5.1 Introduction

5.2 Summary of Parallel Computing
5.2.1 Parallel Architectures i
5.2.2 Parallel Programming Models
5.2.3 Parallel Programming...........

5.2.4 Parallel Object-Oriented Computing

90
92
o8
61
63
65
66
67
71
71
73
76
76
82

88
89

89
90
95

97
100
101
103
103
104
107
109
109

112

6

5.3 Existing Approaches to Parallelizing the

Finite Element Method
5.3.1 The use of Domain Decomposition Methods in Parallel Finite
Element Analysis. i
5.3.2 Existing Approaches to the Parallel Solution of Linear System
Of Equations
5.3.3 Existing use of Parallel Object-Oriented Programming in Finite
Element Analysis......... i

5.4 A Parallel Object-Oriented Programming
Model for the Finite Element Method

5.5 A Framework for Parallel Object-Oriented
Finite Element Analysis i
5.5.1 Shadow Classo it i i e e
5.5.2 Actor Class. ..o vi i
5.5.3 Channel Class i
5.5.4 Address Class.iuiie i e
5.5.5 Message Class
5.5.6 MovableObject Class
5.5.7 MachineBroker Class i
5.5.8 ObjectBroker Class,
5.6 Modification of Classes for Parallelism............................
5.6.1 Modification to Class Interfaces
5.6.2 Modification to Class Methods
5.7 Example Parallel Programs

Example Structural Analysis and Performance Evaluation
6.1 Introduction e

6.2 Example Structural Models
6.3 Evaluation of the Object-Oriented Design on Uniprocessor Machines .
6.3.1 Introduction.......
6.3.2 Procedural Program
6.3.3 Results
6.4 Evaluation of the Object-Oriented Design on Parallel Machines
6.4.1 Introduction......... i
6.4.2 Results
6.5 SUMMATYot

Dynamic Load Balancing for Finite Element Analysis
7.1 Introduction
7.2 Existing Approaches to Dynamic Load

Balancing the Finite Element Analysis
7.3 New Approaches for Dynamic Load Balancing

vi

7.4 Extension of Framework for Dynamic Load

Balancing
7.4.1 Modification to the PartitionedDomain Class
7.4.2 Extension to the Subdomain Class.........................
7.4.3 Extension to the DomainPartitioner Class
7.4.4 LoadBalancer Class.t
7.5 Evaluation of the Effect of Dynamic Load
Balancing on Performance o il
7.5.1 IntroduCtiont
7.5.2 Results ... e
7.6 SUMINATY . . .ottt e e e e
Conclusions and Future Directions
8.1 SUMMATY . . .o
8.2 Future Directions e
Bibliography
A Matrix, Vector and ID Classes
A1 Matrix Class . . oo oot e e
A2 Vector Class . ..ot e e
A3 ID Class. ..ot

Detailed Performance Measurements
B.1 Sequential Performance........
B.2 Parallel Performance

vii

198
198
201

203

216
216
218
218

viii

List of Figures

2.1 Interface of the ModelBuilder Class 10
2.2 Class Diagram for the Finite Element Method.................... 11
2.3 Interface for the Node Class 13
2.4 Interface for the Element Class............. 16
2.5 Interface for the SP_ Constraint Class......................... 18
2.6 Interface for the MP _Constraint Class...................... ... 19
2.7 Interface for the LoadCase Class 20
2.8 Interface for the NodalLoad Class 21
2.9 Interface for the ElementalLoad Class 21
2.10 Interface for the Domain Class 24
3.1 Class Diagram for Existing Analysis Frameworks 36
3.2 Class Diagram for Algorithmic Hierarchy in Miller and Rucki (1995) 41
3.3 Class Diagram for New Analysis Framework 45
3.4 Interface for the Analysis Class 46
3.5 Class Diagram for a Static Analysis.............. 46
3.6 Pseudo-Code for Selected Methods for the StaticAnalysis Class ... 48
3.7 Class Diagram for a Transient Analysis using a DirectIntegration

SCheme 49
3.8 Interface for the DirectIntegrationAnalysis Class 49
3.9 Pseudo-Code for the DirectIntegration Analysis Classes Interface

and analyze Method 50
3.10 Interface for the SolutionAlgorithm Class 50
3.11 Interface for the EquiSolnAlgo Class 51
3.12 Pseudo-Code for the Linear Classes solveCurrentStep Method 52
3.13 Pseudo-Code for the NewtonRaphson Classes solveCurrentStep Method 53
3.14 Interface for the IncrementalIntegrator Class o4
3.15 Pseudo-Code for Selected Methods for the IncrementalIntegrator

a8 .« oot e 55
3.16 Interface for the StaticIntegrator Class 56

3.17 Pseudo-Code for Selected Methods for the StaticIntegrator Class . 57
3.18 Interface for the DirectTransientIntegrator Class 57

X

3.19 Pseudo-Code for the Methods of the DirectTransientIntegrator

ClaSS . e e 58
3.20 Interface and Pseudo-Code for Selected Methods of the Newmark

ClaSS e 59
3.21 Interface for the AnalysisModel Class 60
3.22 Interface for the DOF _Group Class., 62
3.23 Interface for the FE_Element Class 64
3.24 Interface for the ConstraintHandler Class 66
3.25 Interface for the DOF _Numberer Class 67
3.26 Interface for the LinearSOE Class 69
3.27 Interface for the LinearSolver Class 70
3.28 Pseudo-Code for the DirectBandSPDLinSOESolver classes solve

Method e 71
3.29 An Element By Element Solvers Interface and solve Method. 72
3.30 Class Diagram for Eigenvalue Analysis 7
3.31 Interface for the EigenvalueAnalysis Class 78

3.32 Pseudo-Code for Selected Methods for the EigenvalueAnalysis Class 79
3.33 Pseudo-Code for the Buckling and Frequency Classes solveCur-

rentStep Method 79
3.34 Interface for the EigenvalueIntegrator Class 80
3.35 Pseudo-Code for Selected Methods of the Eigenvaluelntegrator

ClaSS v et et 81
3.36 Interface for the EigenvalueSOE Class......................... 81
3.37 Class Diagram for Modal Transient Analysis 83
3.38 Interface for the ModalTransient Analysis Class................ 84

3.39 Pseudo-Code for the ModalTransient Analysis Classes analyze Method 84
3.40 Pseudo-Code for the ModalTransientIntegrator Classes update

Method e 84
3.41 Pseudo-Code for the LinearModal Classes solveCurrentStep Method 85
3.42 Pseudo-Code for the NewtonRaphsonModal Classes solveCurrentStep

Method e e 86
4.1 Domain split into Two Subdomains............................. 90
4.2 Class Diagram for Existing Domain Decomposition Frameworks 97
4.3 Class Diagram for New Domain Decomposition Framework 101
4.4 Interface for the PartitionedDomain Class..................... 102
4.5 Pseudo-Code for the PartitionedDomain Classes partition Method 102
4.6 Interface for the DomainPartitioner Class 103
4.7 Interface for the GraphPartitioner Class 104
4.8 Interface for the Subdomain Class............................. 105
4.9 Psuedo-Code for Selected Methods of the Subdomain Class. 107

4.10 Interface for the DomainDecompAnalysis Class................ 108

4.11

4.12
4.13

4.14
4.15
4.16

5.1
5.2
9.3
0.4

3.5

2.6

5.7

5.8

2.9

5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21

5.22
5.23

6.1
6.2
6.3
6.4
6.5
6.6

7.1
7.2

Pseudo-Code for Selected Methods for the DomainDecomp Anal-

ysis Class .. oo 109
Interface for the DomainDecompAlgo Class 110
Pseudo-Code for the DomainDecompAlgo Classes solveCurrentStep

Method e e 110
Interface for the DomainSolver Class 111
Revised Interface for the Element Class 113
Pseudo-Code for the FE_Element Classes formTangent Method 113
Computer Architecture for Parallel Computers 120
Flow of Data using Shadow and Actor Objects 135
Flow of Data when making a Callin RPC 136
Class Diagram for Actor/Aggregate Framework for Parallel Finite

Element Analysis. i 138
Interface for the Shadow Class 140
Pseudo-Code for Selected Methods for the Shadow Class 141
Interface for the ShadowSubdomain Class 141
Pseudo-Code for Selected Methods for the ShadowSubdomain Class 142
Pseudo-Code for an Actor Program 144
Interface for the Actor Class 145
Interface for the ActorSubdomain Class 145
Pseudo-Code for the ActorSubdomain Classes run Method 146
Interface for the Channel Class................................ 148
Interface for the Address Class............, 149
Interface for the Message Class i, 150
Interface for the MovableObject Class......................... 151
Interface for the MachineBroker Class......................... 152
Interface for the ObjectBroker Class 154
Revised Interface for the NodalLoad Class...................... 155

Pseudo-Code for the Intcrementallntegrators formTangent Method 156
Revised Pseudo-Code for the Incrementallntegrators formTangent

Method e 156
Time Line for Original formTangent Method 157
Time Line for Revised formTangent Method 158
Two and Three Dimensional Test Models........................ 163
Profile of CPU Time for C++ Program on ALPHA 169
Profile of Page Faults for C++4 Program on ALPHA 172
Parallel Performance on ALPHA 178
Parallel Performance on DEC 179
Parallel Performance on ALPHA for 25 Iterations 182
Revised Interface for the DomainPartitioner Class.............. 190

Interface for the LoadBalancer Class 191

The HeavierToLighterNeighbours Class...................... 193
Interface of the Matrix Class. i, 217
Interface of the Vector Class 219

Interface of the ID Class i, 220

xii

List of Tables

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

7.1

B.1
B.2
B.3
B.4
B.5
B.6
B.7
B.8
B.9
B.10
B.11
B.12
B.13
B.14
B.15
B.16
B.17
B.18
B.19
B.20

Two Dimensional Frame Examples 164
Three Dimensional Frame Examples 164
Hardware Environments for Performance Measurements 165
Performance Results on HOLDEN 167
Performance Results on ALPHA 168
Performance Results on DEC 168
Performance Results on ALPHA Cluster 176
Performance Results on DEC Cluster 177

Effect of Dynamic Load Balancing on the Real Time using ALPHA
for 25 Analysis Steps with the HeavierToLighterNeighbours al-

gorithmo 195
% CPU time on HOLDEN for C++ Program 223
% CPU time on ALPHA for C++ Program...................... 224
% CPU time on DEC for C++ Program 225
% Page Faults on ALPHA for C++ Program 226
% Page Faults on DEC for C++ Program 227
Results for 2dF1 on ALPHA Network 228
Results for 2dF2 on ALPHA Network 229
Results for 2dF3 on ALPHA Network 230
Results for 2dF4 on ALPHA Network 231
Results for 2dF5 on ALPHA Network 232
Results for 2dF6 on ALPHA Network 233
Results for 3dF3 on ALPHA Network 234
Results for 3dF4 on ALPHA Network 235
Results for 3dF5 on ALPHA Network 236
Results for 3dF6 on ALPHA Network 237
Results for 2dF1 on DEC Network. 238
Results for 2dF2 on DEC Network. 239
Results for 2dF3 on DEC Network. 240
Results for 2dF4 on DEC Network. 241

Results for 2dF5 on DEC Network. 242

B.21
B.22
B.23
B.24
B.25

Results for 2dF6 on DEC Network. 243
Results for 3dF3 on DEC Network. 244
Results for 3dF4 on DEC Network. 245
Results for 3dF5 on DEC Network. 246

Results for 3dF6 on DEC Network. 247

Xiv

Acknowledgements

I would like to thank my parents for their help, encouragement and prayers through

all these years.

I would also like to thank Professor Gregory Fenves for his help and guidance over
the many years I have been at Cal.

I would like to extend my thanks to my dissertation committee: Professor Steve
Mahin and Professor James Demmel.

I would also like to thank my fellow graduate students, especially: Reginald de-
Roches, Dawn Lehman, Laura Lowes, Silvia Mazzoni, Abe Lynn, Garret Hall, and

Edward Love.

Chapter 1
Introduction

The finite element method is a numerical procedure used in engineering analysis
for computing the approximate response of a system, whose response is given by the
solution of an initial boundary value problem. It is the most popular tool used by
engineers to analyze problems in structural and continuum mechanics (Hughes, 1987;
Zienkiewicz and Taylor, 1989; Bathe, 1996). The reason for the popularity of the
finite element method over the other analysis methods has been the digital computer,

for which the formulation of the finite element method is particularly suited.

1.1 Problem Statement

At the present time a wide gap exists between state of the art computing ca-
pabilities and the computing performed by practicing engineers. Advances in both
hardware (particularly parallel and distributed computing) and software (particularly
the plug-and-play object-oriented paradigm) are not reflected in the programs used
by engineers. Practicing engineers today are typically forced to perform finite element
analysis on single processor machines, using the elements and analysis algorithms that
are provided by a finite element analysis package.

The reason for this is that typical finite element packages consist of several hun-
dred thousand lines of procedural code, typically Fortran, for execution on a single
processor. The codes are not designed to allow the analysts to experiment with their

own elements and analysis algorithms. Neither are the codes designed in a manner

Chapter 1 Introduction 2

which will allow extensions for parallel and distributed environments.

The ability to modify and extend any finite element software package is essential
for packages to keep current with finite element technology and computing systems,
both of which are advancing rapidly. The problems with modifying and extending

existing codes are the following:

1. To modify and extend the code requires users with an intimate knowledge of
the data structures and what procedures affect what portions of the data struc-
tures. For programs consisting of several hundred thousand lines of code, this
effectively limits the numbers of users who can modify and extend the code. To
allow naive analysts to extend and modify the code can lead to the introduction
of bugs into the program, and can lead to multiple and uncontrolled versions of

the program.

2. The ability to reuse code from other sources is limited. This is because data
structures vary wildly between programs. As a consequence, to introduce code
from other sources often requires that the code be modified to suit the data

structures used in the current program.

3. When performing non-linear analysis, history variables are often required for
each element and material point in the model. The management of these history
variables is typically provided by the base program in common finite element
analysis codes. For this reason a limit is placed on the number of history
variables that each element and material point may use. This limit may be
insufficient for certain types of elements and material formulations an analyst

may wish to use.

4. The existing codes are typically designed and written for execution on a unipro-
cessor machine. Those programs which have been written for execution an par-
allel machines have the same limitations as existing codes. This is because the
programs use the same design as for uniprocessor machines and as a consequence

they inherit the problems identified above.

Chapter 1 Introduction 3

1.2 Object Oriented Programming

Object-oriented programming forms the basis for a very large part of the soft-
ware development industry, particularly in the area of computer graphics, databases,
graphical interfaces and operating system development. Object-oriented finite ele-
ment packages, particularly those written in C++, have been shown (Dubois-Pelerin
and Zimmermann, 1993; Rucki and Miller, 1996) to have comparable performance
to their Fortran counterparts and still provide for the maintainability and extensi-
bility essential of modern day software packages. This is due to their support of
abstraction (which separates behavior from implementation), encapsulation (which
keeps the essential aspects of the data hidden from the user of the data), modularity
(decomposition of the system into a set of loosely coupled objects) and code reuse.

An object-oriented program is composed of objects, each with a number of at-
tributes, that define the state of the object. The behavior of an object is defined
by methods, which are procedures for changing or returning the state of the object.
An object’s method is invoked when another object sends a message to that object.
The function of an object-oriented program can be viewed as the interaction between
the program’s objects by the sending of messages. To aid in program development,
objects with similar attributes and behavior are grouped into classes. The classes are
implemented in a programming language. For an implementation the following are
provided for each class: a class interface (defining the methods that can be invoked
on each object of the class), private data (defining the attributes held privately by
each object), and method implementations (code defining the sequence of operations
that objects of the class perform in order to complete the method invoked on the
object). To promote code reuse, object-oriented programming languages support the
notion of class hierarchies, with data and methods of an ancestor class being inherited
by descendent classes. This inheritance feature allows the programmer to define the
common function and data used by several classes at the highest possible level in the
hierarchy, which avoids the duplication of code at the lower levels. The descendent
classes may add additional attributes and methods, and can redefine the methods of
an ancestor class, termed operator overloading. Inheritance allows an object of the

descendent class to be treated as an object of an ancestor class.

Chapter 1 Introduction 4

A well designed object-oriented programming system enables programmers to in-
dependently develop and validate new code, to maintain and revise existing code,
and to be able to introduce new code into existing programs. A poorly designed
system will not. Fenves (1990) identifies the three essential steps in the development
of a object-oriented system as: identification of the classes, specification of the class

interfaces, and implementation.

1.3 Objective of the Research

The work to date in applying object-oriented programming techniques to the finite
element method has largely concentrated on identifying the main class abstractions,
i.e. elements, nodes, loads, constraints, matrix, vector, and some analysis classes.

The existing object-oriented work is weak in two areas:

1. The interface to the analysis class, and the classes that the analysis class uses
to perform its work, limits the flexibility, extensibility and code reuse that
object-oriented programming can provide. This is because, as in traditional
programming, the analysis class is treated as a black box, an irreducible and
opaque operation. The analyst chooses the type of analysis to be performed by
instantiating an analysis object of the correct type. The analyst must, however,
modify existing analysis classes or provide new analysis classes to change even

the storage scheme used for the system of equations in an analysis.

2. The work to date has largely ignored discussing how the object-oriented de-
signs can be utilized in parallel and distributed computing environments. The
requirement that the design be able to encompass parallel and distributed en-
vironments, particularly networks of workstations, is essential. This is because,
as is argued by Anderson et al. (1995b), these are certain to become the primary

computing platform for engineers and scientists in the coming years.

It is these two areas that are addressed in this dissertation. The objective of the
research is to develop an object-oriented design that provides the analyst the tools to

make full use of their computing resources in a transparent manner. The interfaces to

Chapter 1 Introduction 5

the classes will allow the analysts to modify and extend the analysis algorithms, using
existing and user provided code fragments. The design recognizes the interaction
between computing environment and analysis procedures in such a way as to allow

the development of optimal solution strategies for different computing environments.

1.4 Overview of Dissertation

Chapter Two: A review is made of the existing work that has made use of object-
oriented programming principles for the finite element method. The fundamental
classes that have been used are identified and discussed. Class interfaces for those
basic classes that will be used later in the dissertation are presented.

Chapter Three: A review is made of existing object-oriented designs for the
analysis algorithms, which highlights the shortcomings of these approaches. A new
design is then presented which would provide the analyst with a flexible and extensible
environment for finite element analysis.

Chapter Four: An introduction to the common domain decomposition methods
used in finite element analysis and a review of the existing object-oriented approaches
to domain decomposition are first presented. The design presented in chapter 3 is
then extended to include domain decomposition methods.

Chapter Five: An introduction to parallel programming and a brief review of
the approaches which have been used to parallelize the finite element analysis are
given. A new design is then presented for parallel environments, which allows the
flexibility and extensibility of the design presented in chapters 2 and 3 to be retained.

Chapter Six: Results for a test implementation of the design are given for both
uniprocessor and parallel machines. The issue of performance when using the object-
oriented design is then examined.

Chapter Seven: A review is made of existing approaches to performing dynamic
load balancing during a finite element analysis on parallel machines. A new approach
is presented. Modifications to the existing framework is given. Results showing the
performance improvement that can be obtained using a simple load balancing scheme

are then presented.

Chapter 1 Introduction 6

The dissertation concludes with a summary of the development, discusses imple-

mentation, and presents directions for future research and development.

Chapter 2

Fundamental Object-Oriented

Finite Element Design

In this chapter a review is made of the existing work that has been presented on
object-oriented programming for finite element analysis. The basic classes that have
been used are identified and discussed. New class interfaces, similar to those outlined
in the literature, are provided both to demonstrate the functionality of the classes

and for use in subsequent chapters.

Chapter 2 Fundamental Object-Oriented Finite Element Design 8

2.1 Introduction

A number of object-oriented finite element design and implementations have been
presented in the literature over the past several years. In this chapter a brief review
is made of this existing work. In the work that has been presented similar class
abstractions have been identified, with different class interfaces depending on the
type of problem being solved. The classes that have been presented can be grouped

into four broad categories:

1. Modeling classes: classes used to create the finite element model for a given

problem.

2. Finite Element Model classes: classes used to describe the finite element model

and to store the results of an analysis on this model.

3. Analysis classes: classes used to perform the analysis of the finite element model,

i.e. form and solve the governing equations.

4. Numerical classes: these are classes used to handle the numerical operations in

the solution procedure.

In the following four sections the work that has been presented in the literature is
discussed. In addition, class interfaces for the basic classes that will be used in later
chapters are presented using pseudo-C++ code. The pseudo-code is similar to the
code used in the implementation, the only difference being that private data is not

shown.

2.2 Modeling Classes

The instances of modeling classes are objects used by the analyst to create the
finite element model, i.e. create the nodes, elements, loads and constraints. For large
problems, it is important that the analyst be able to create the model in a simple

and descriptive manner. A number of approaches are used:

1. In some of the work presented, the analyst creates the model in the main driver

of the program (Ross et al., 1992; Zeglinski and Han, 1994; Cardona et al., 1994;

Chapter 2 Fundamental Object-Oriented Finite Element Design 9

Archer, 1996). The analyst does this by explicitly creating each object for each
node, element, load and boundary condition in the finite element model. To
overcome the problem of having to recompile the program for each new problem,

Cardona et al. (1994) provides an interpreted environment.

2. In other work, the analyst creates an input file which is read by the object repre-
senting the finite element model (Forde et al., 1990; Dubois-Pelerin et al., 1992;
Dubois-Pelerin and Zimmermann, 1993; Menetrey and Zimmermann, 1993).
The input file is read either during the object’s construction, as in Dubois-
Pelerin and Zimmermann (1993), or by the analyst sending a message to the

object to initialize the model, as in Forde et al. (1990).

3. In some of the work, the analyst interacts with a graphical interface object
(Ostermann et al., 1995; Mackie, 1995). For example, in Mackie (1995) the an-
alyst interacts with a StructureModel object. This object allows the analyst
to create graphical objects (KeyPoints and KeyLines) and objects describing
material and geometry. The analyst creates one or more closed regions, a region
consisting a a series of KeyLine objects. Each region has a pointer to objects
representing the material and a geometry of the region. These pointers are set
by the analyst. The analyst creates point forces and restraints at KeyPoint
objects, and distributed loads along KeyLine objects. Classes for mesh gen-
eration are provided with the package, whose objects create the finite element

model components based on the regions identified by the analyst.

For the purposes of this research, a ModelBuilder object will be used to create
the finite element model in a running program. The ModelBuilder class, whose
interface is as shown in figure 2.1, is an abstract class. An abstract class is a class
for which there is no code supplied to implement some of the methods defined in the
interface and, consequently, no objects of that specific class can be created. Subclasses
are introduced to provide the implementation of these methods. The ModelBuilder
class defines one pure virtual method, buildFE_Model(), for which all subclasses must

provide an implementation.

Chapter 2 Fundamental Object-Oriented Finite Element Design 10

class ModelBuilder {
public:
ModelBuilder(Domain &theDomain);
virtual ModelBuilder();
virtual int buildFE_Model(void) =0;

Figure 2.1: Interface of the ModelBuilder Class

Each ModelBuilder object, as shown in figure 2.2, will be associated with a
single Domain object. When buildFE_Model() is invoked on a ModelBuilder ob-
ject, the object is responsible for building the components of the model and adding
them to the Domain object, which acts as a repository for these components. The
manner in which the ModelBuilder object creates the model components depends
on the subclass of the ModelBuilder class that the analyst uses to construct the
ModelBuilder object. This approach allows the analyst to build models using any
of the three approaches outlined above, by choosing an appropriate subclass of Mod-
elBuilder.

2.3 Finite Element Model Classes

In most of the work that has been presented, the main class abstractions used
to describe the finite element model are: Node, Element, Constraint, Load and
Domain (Forde et al., 1990; Zimmermann et al., 1992; Dubois-Pelerin et al., 1992;
Dubois-Pelerin and Zimmermann, 1993; Menetrey and Zimmermann, 1993; Pidaparti
and Hudl, 1993; Cardona et al., 1994; Chudoba and Bittnar, 1995; Zahlten et al., 1995;
Rucki and Miller, 1996; Archer, 1996). These are similar to the abstractions used in
traditional finite element programming.

The classes and the relationship amongst them can be graphically seen in Fig-
ure 2.2, which shows the class diagram for the analysis using Rumbaugh notation
(Rumbaugh et al., 1991). Class diagrams are used to show the existence of classes
and the relationship between classes. In Rumbaugh notation, a class is represented

by a rectangle, with the class name inside the rectangle, and the relationships be-

Chapter 2 Fundamental Object-Oriented Finite Element Design 11

ul ates isanalysed by

creates

ModelBuilder |

LoadCase MP_Constraint SP_Constraint Node H Element

Load
° l | | |
| ‘ Beam ‘ ‘ Truss ‘ ‘ ContinuumElement ‘ i
| Node —<éNoddLoad| [ElementalLoad . Bement ' |7 e Genralzation):
””” ! S Class:
Association:
o ¢ Moresubclasses

Multiplicity of Association:

g
g

Figure 2.2: Class Diagram for the Finite Element Method

tween classes are represented by lines between the classes. There are three types of

relationships in object-oriented programming:

1. knows-a: The knows-a relationship exists between classes when an object of
one class knows about an object of another class. For example, an Element
object knows about its Node objects. A knows-a relationship is represented by

a line between two rectangles.

2. is-a: The is-a relationship, termed inheritance, exists when an instance of one
class, the descendent class, can be treated as an instance of another class, the
ancestor class. For example, a Beam object can be treated as an Element
object by the Domain. The is-a relationship is represented by by a line with a

triangle between the classes. Those classes which share a common parent class

Chapter 2 Fundamental Object-Oriented Finite Element Design 12

are shown by lines connecting to the base of the triangle.

3. has-a: The has-a relationship, termed aggregation, exists when an object of
one class is made up of component objects of other classes. For example, the
Domain object is an aggregation of Element, Node, Load and Constraint
objects. The has-a relationship is represented by a diamond at the aggregate

class and a line from the diamond to the classes of the component objects.

In the following subsections, a review is made of the work presented for each of the

main abstractions used to describe the finite element model.

2.3.1 Node Class

A Node object represents a discrete point in the domain at which response quan-
tities (degrees-of-freedom) are defined. The function of a Node object is to store its
coordinates within the domain, to store its response and unbalanced load informa-
tion, and to provide methods to set and retrieve this information. In most of the work
presented in the literature, the only response quantity that can be stored at a Node
object is the displacement, though in some of the work, the velocity and acceleration
can be stored as well (Cardona et al., 1994; Archer, 1996).

In much of the work that has been presented, each Node object is associated with
a number of DOF objects. (Miller, 1991; Baugh and Rehak, 1992; Zimmermann
et al., 1992; Dubois-Pelerin et al., 1992; Menetrey and Zimmermann, 1993; Rihaczek
and Kroplin, 1993; Cardona et al., 1994; Zahlten et al., 1995; Rucki and Miller,
1996; Archer, 1996). The DOF objects are the repositories of the response and load
quantities for each degree-of-freedom at a Node object. The DOF objects provide
methods in their interface to set and retrieve these quantities. In some of the work, the
DOF objects also keep track of their local coordinate systems (Miller, 1991; Baugh
and Rehak, 1992; Miller and Rucki, 1993; Rucki and Miller, 1996; Archer, 1996).

For the purposes of this research, a Node class is introduced. The class, whose

interface is as shown in figure 2.3, provides for the following:

1. The constructors allow Node objects to be built for one-, two-, and three-

dimensional problems, with as many degrees-of-freedom associated with the

Chapter 2 Fundamental Object-Oriented Finite Element Design 13

class Node : public DomainComponent {
public:
Node(int nodeTag); // to allow subclasses to be introduced
Node(int nodeTag, int ndof, double Crd1);
Node(int nodeTag, int ndof, double Crd1, double Crd2);
Node(int nodeTag, int ndof, double Crd1, double Crd2, double Crd3);
virtual Node();

virtual const Vector &getCrds(void) const;

virtual void setDOF_GroupPtr(DOF_Group *theDOF_Grp);
virtual DOF _Group *getDOF_GroupPtr(void);

virtual int getNumberDOF(void) const;

virtual const Matrix &getMass(void) const;
virtual void setMass(const Matrix &mass);

// method to return the last committed response quantities
virtual const Vector &getCommitDisp(void) const;

virtual const Vector &getCommitVel(void) const;

virtual const Vector &getCommitAccel(void) const;

// methods to return the current trial responses
virtual const Vector &getTrialDisp(void) const;
virtual const Vector &getTrialVel(void) const;
virtual const Vector &getTrialAccel(void) const;

// methods to set the current trial response quantities
virtual void setTrialDisp(const Vector &);

virtual void setTrialVel(const Vector &);

virtual void setTrialAccel(const Vector &);

// trial response quantities equal committed plus increment
virtual void setIncrTrialDisp(const Vector &);

virtual void setIncrTrialVel(const Vector &);

virtual void setlncrTrial Accel(const Vector &);

// methods to set and retrieve the unbalanced load

virtual void addUnbalancedLoad(const Vector &, double factor = 1.0);
virtual const Vector &getUnbalancedLoad(void) const;

virtual void zeroUnbalancedLoad(void);

// method which sets current committed quantities
// equal to the current trial quantities
virtual int commitState();

Figure 2.3: Interface for the Node Class

Chapter 2 Fundamental Object-Oriented Finite Element Design 14

objects as the analyst specifies.

2. Methods are provided to retrieve the nodal coordinates and information about

the number of degrees-of-freedom at the Node object.

3. Methods are provided to set/retrieve trial response quantities at/from the nodal
degrees-of-freedom. The response quantities, which include the displacement,
velocity, and acceleration, can be set directly, e.g. setTrialDisp() or set incre-

mentally, e.g. setlncrTrialDisp().

4. Methods are provided to set/retrieve the committed response quantities at /from
the nodal degrees-of-freedom. The committed response quantities represent
points along the solution path. The commit() method is used to set the com-

mitted values to be equal to the current trial values.

5. Methods are provided to zero out, increment, and retrieve the unbalanced load

information at the Node object.

6. Methods are provided to set and retrieve the nodal mass matrix.

The Node class allows Node objects to be created that can be used in both
linear and non-linear analysis. It does this by defining two sets of response quantities,
committed and trial. The trial response quantities represent a point in the solution
space that has not yet been accepted as being on the solution path. The committed
quantities represent the last trial response that was accepted as being on the solution

path. Archer (1996) presents a similar approach.

2.3.2 Element Class

The basic functionality of an Element object is to provide the current linearized
stiffness, mass, and damping matrices, and the residual force vector due to the current
stresses and element loads. In most of the work presented, the Element class is a
abstract base class, which defines the interface that all subclasses must provide. This
approach allows new Element subclasses to be introduced without changing the

existing code in the program, as discussed in Mackie (1992). It should be noted

Chapter 2 Fundamental Object-Oriented Finite Element Design 15

that, most finite element analysis programs written in procedural languages provide
facilities for adding elements. This is because the interface is well established. An
object-oriented approach, however, better isolates the element functions from analysis
and solution algorithm functions, allows inheritance of common functions, and allows
the Element objects to store as much private data as is required by the element.

In some of the work, the Element objects keep track of their local coordinate sys-
tems and are able to provide transformations between these local coordinate systems
and the coordinate systems at their associated Node objects (Miller, 1991; Baugh
and Rehak, 1992; Miller and Rucki, 1993; Rucki, 1996). This transformation is some-
times performed by an object acting as an interface between the analysis and the
model objects (Lu et al., 1993; Chudoba and Bittnar, 1995; Archer, 1996).

For continuum elements, classes are sometimes provided to support the element
formulation (Forde et al., 1990; Zimmermann et al., 1992; Pidaparti and Hudl, 1993;
Chudoba and Bittnar, 1995; Zahlten et al., 1995). In Forde et al. (1990), where
an implementation for linear static analysis problems is presented, each continuum
Element object is associated with a ShapeFunction object, a Material object,
and a number of GaussPoint objects. For problems involving non-linear materials,
in Chudoba and Bittnar (1995) a MaterialPoint object is associated with each
GaussPoint object. In Zahlten et al. (1995) class abstractions for the following are
introduced: cross section, material point, material law, yield surface, hardening rule,
and flow rule.

For the purposes of this research, an Element class is introduced. The class is
an abstract base class. The class interface, which is as shown in figure 2.4, provides

for the following:

1. Each Element object is associated with a number of Node objects, as shown
in figure 2.2. Methods are provided to allow other objects in the program to

obtain information about the number of Nodes and the Node identifiers.

2. Methods are provided to return the current linearized mass, stiffness and damp-

ing matrices for the element given the current trial state at the Node objects.

3. Methods are provided to zero and return the current residual load information

Chapter 2 Fundamental Object-Oriented Finite Element Design 16

and to allow ElementalLoad objects, to add their load contribution to the

residual, as will be discussed in section 2.3.4

class Element: public DomainComponent {
public:
Element(int tag);
virtual Element;

// methods to get Node and DOF info

virtual int getNumExternalNodes(void) const =0;
virtual const ID &getExternalNodes(void) const =0;
virtual int getNumDOF(void) const =0;

// methods to obtain the mass, stiffness and damping matrices
virtual const Matrix &getStiff(void)=0;

virtual const Matrix &getDamp(void)=0;

virtual const Matrix &getMass(void)=0;

// methods for returning and applying loads
virtual void zeroload(void) =0;

virtual int addLoad(const Vector &load) =0;
virtual const Vector &getResistingForce(void) =0;

virtual void commitState(void) = 0;

Figure 2.4: Interface for the Element Class

4. The interface allows subclasses to be provided, which can be used by the analyst
to create Element objects for use in linear and non-linear analysis. It does
this by the provision of the commit() method. Each Element object in a
non-linear analysis can use the invocation of this method to save current state
information. Without this trial states could not be determined for certain non-

linear Element subclasses for which state is path dependent.

All the methods in the interface are declared as being pure virtual, so no implemen-
tation of the methods are provided by the Element class. The subclasses of the

Element class provide the implementation.

Chapter 2 Fundamental Object-Oriented Finite Element Design 17
2.3.3 Constraint Classes

Constraints on a finite element model can be of two types:

1. Single-Point constraints: where the prescribed values of a degrees-of-freedom

are specified.

2. Multi-Point constraints: where a relationship between the response quantities

for a number of degrees-of-freedom at two nodes is specified.

In much of the work that has been presented, a Constraint class is introduced which
is only capable of handling homogeneous single-point constraints (Forde et al., 1990;
Dubois-Pelerin et al., 1992; Dubois-Pelerin and Zimmermann, 1993; Pidaparti and
Hudl, 1993; Cardona et al., 1994). The constraint is enforced by the Constraint
objects informing the associated Node objects that a certain degree-of-freedom has
been constrained and should not be assigned an equation number in the system of
equations.

In Baugh and Rehak (1992) constraints can be enforced by the analyst who pro-
vides auxiliary procedures. These procedures are invoked before a matrix operation
is performed.

In some of the work, separate classes are introduced for single- and multi- point
constraints (Miller and Rucki, 1993; Rucki, 1996; Archer, 1996). In Archer (1996)
the Analysis object is responsible for enforcing the constraints by introducing the
constraints into the system of equations. Rucki (1996) provides a DOF _Filter class,
whose subclasses LineFilter, PlaneFilter and TotalF'ilter restrict the displacement
to a line, a plane and totally. For multi-point constraints Rucki (1996) propose that
a DOF _Connector class be developed.

For the purposes of this research, separate single and multi-point constraint classes
are provided, SP_Constraint and MP _Constraint, respectively. The constraint
objects in the system do not enforce the constraints, they merely inform the objects
used in the analysis that constraints exist on the model and what the values of these
constraints are.

Each SP_Constraint object is associated with a single Node object, as shown

in figure 2.2. The SP_Constraint class, whose interface is as shown in figure 2.5,

Chapter 2 Fundamental Object-Oriented Finite Element Design 18

provides methods to obtain the constrained node’s number, the number of the degree-
of-freedom that is constrained, and the value of the constraint for a specified time. A
further method is provided to indicate whether or not the constraint is homogeneous,
which is information needed to determine if the number of equations can be reduced.
The SP_Constraint class interface only allows for time invariant constraints, time

varying constraints can be provided by subclasses of SP_Constraint.

class SP_Constraint : public DomainComponent {
public:
SP_Constraint(); // to allow subclasses to be introduced
SP_Constraint(int node, int ndof, double value, bool isHomo);
virtual SP_Constraint();

virtual int getNodeTag(void) const;
virtual int getDOF_Number(void) const;
virtual double getValue(double timeStep =0.0);

virtual bool isHomogeneous(void);

Figure 2.5: Interface for the SP_ Constraint Class

Each MP_Constraint object is associated with two Node objects, as shown in
figure 2.2. The MP _Constraint class, whose interface is as shown in figure 2.6,
provides methods to obtain the constrained node number, the retained node number,
those degrees-of-freedom at the constrained node that have constraints imposed on
them, and the constraint matrix at a specified time. Like the SP_Constraint class
interface, the MP_Constraint class interface would only allow for time invariant con-

straints, time varying constraints can be provided by subclasses of MP_Constraint.

2.3.4 Load Classes
Loads on a finite element model can be divided into two types:
1. Nodal Loads: these are loads acting on the nodes.

2. Element Loads: these are loads acting on the elements, which can be due to

body forces, surface tractions, initial stresses, and temperature gradients. It is

Chapter 2 Fundamental Object-Oriented Finite Element Design 19

class MP_Constraint : public DomainComponent {
public:

MP_Constraint(); // to allow subclasses to be introduced

MP_Constraint(int nodeRetain,
int nodeConstr,
Matrix &constrnt,
ID &participatingDOF);

virtual MP_Constraint();

virtual int getNodeRetained(void) const;

virtual int getNodeConstrained(void) const;

virtual const ID & getConstrainedDOF (void) const;
virtual const Matrix &getConstraint(double time =0.0);

Figure 2.6: Interface for the MP _Constraint Class

important that finite element programs provide element load abstractions, as
without them the analyst is forced to determine the element load contributions

by hand and add these to the nodal loads.

In much of the previous work, only classes for nodal loads are provided (Forde
et al.; 1990; Baugh and Rehak, 1992; Miller and Rucki, 1993; Mackie, 1995; Rucki and
Miller, 1996). In other work, classes for both element and nodal loads are provided
(Dubois-Pelerin et al., 1992; Chudoba and Bittnar, 1995; Zahlten et al., 1995; Archer,
1996).

The Element and Node objects typically keep a list of the loads acting on them,
and are able to determine the loads contributions to the element residual and nodal
unbalance by looping through these lists (Baugh and Rehak, 1992; Dubois-Pelerin
et al., 1992; Dubois-Pelerin and Zimmermann, 1993). In Archer (1996), where the
LoadCase class is also introduced, each Load object in the current LoadCase makes
itself known to its corresponding component. In Rucki (1996) the Load objects add
their contributions to the Element and Node objects. In Forde et al. (1990) the
objects performing the analysis work directly with the Load objects.

For the purposes of this work, three classes are introduced, LoadCase, Nodal-
Load and ElementalLoad. The LoadCase class interface, which is as shown in

figure 2.7, provides methods in its interface to allow NodalLoad and Elemental-

Chapter 2 Fundamental Object-Oriented Finite Element Design 20

Load objects to be added to a LoadCase object, to remove these objects from the
LoadCase object, and to obtain iterators to these objects. The interface also pro-
vides the applyLoad() method, which will invoke applyLoad() on all NodalLoads and
ElementalLoads in the LoadCase object.

class LoadCase : public DomainComponent {
public:
LoadCase(int tag);
virtual LoadCase();

virtual bool addNodalLoad(NodalLoad *loadPtr);

virtual bool addElementalLoad(ElementalLoad *loadPtr);
virtual NodalLoadlter &getNodalLoads(void);

virtual ElementalLoadlter &getElementallLoads(void);
virtual NodalLoad *removeNodallLoad(int tag);

virtual ElementalLoad *removeElementalLoad(int tag);

void applyLoad(double timestep = 0.0);

Figure 2.7: Interface for the LoadCase Class

Each NodalLoad object is associated with a Node object, as shown in figure 2.2,
and is used by the analyst to apply nodal loads to that object. The NodalLoad class,
whose interface is as shown in figure 2.8, provides methods to obtain the node number
of its associated Node object and to apply the load at a specified time. When the
applyLoad() method is invoked on a NodalLoad object, it will add its contribution
to the Node objects load by invoking addUnbalancedLoad() on that Node object.

Each ElementalLoad object is associated with an Element object, as shown
in figure 2.2, and is used by the analyst to apply element loads to that object. The
ElementalLoad class, whose interface is as shown in figure 2.9, provides methods
to obtain the element number and to apply the load at a specified time. When the
applyLoad() method is invoked, the ElementLoad object will add its contribution to
the Element object’s load by invoking addLoad() on its associated Element object.
The ElementalLoad class is an abstract class. Each Element class will have its
own subclasses of ElementalLoad, which define how element loads can be added to

Element objects of that type.

Chapter 2 Fundamental Object-Oriented Finite Element Design

21

virtual class NodallLoad : public Load {
public:
NodalLoad(int nodeTag);
NodalLoad(int nodeTag, const Vector &load);
NodalLoad();

virtual int getNodeTag(void) const;
virtual void applyLoad(double timestep = 0.0);

Figure 2.8: Interface for the NodalLoad Class

virtual class ElementallLoad : public Load {
public:
ElementalLoad(int elementTag);
‘ElementalLoad();

virtual int getElementTag(void) const;
virtual void applyLoad(double timestep = 0.0) =0;

Figure 2.9: Interface for the ElementalLoad Class

Chapter 2 Fundamental Object-Oriented Finite Element Design 22
2.3.5 Domain Class

A Domain object is a container responsible for holding all the components of
the finite element model, i.e. the Node, Element, Constraint, and Load objects.
The class that is used for this purpose goes by many different names: NAP (Forde
et al., 1990), LocalDB (Miller, 1991), Assemblage (Miller and Rucki, 1993), Partition
(Rucki and Miller, 1996), FE_Model (Mackie, 1995), Model (Archer, 1996), and Do-
main (Zimmermann et al., 1992; Menetrey and Zimmermann, 1993; Cardona et al.,
1994; Chudoba and Bittnar, 1995). For the purposes of this research, the class name
Domain will be used.

The functionality of the Domain class, as presented in the literature, can be

divided into two categories:

1. The Domain class provides methods to add components to the Domain object.
This can be done by adding the components individually (Archer, 1996) or
by adding the components of similar type, e.g. the Element objects, as a
collection (Cardona et al., 1994). In some of the work, the interface does not
have to provide such methods, as the domain components are created by the
Domain object itself (Forde et al., 1990; Dubois-Pelerin and Zimmermann, 1993;

Menetrey and Zimmermann, 1993).

2. The Domain class provides methods to access the domain components. In
Archer (1996) the access is provided by iterators. In Rucki and Miller (1996)
the access is provided through manager objects, which manage the individual
collections. In those designs, where the Domain object is also responsible for
performing the analysis of the model, no such access methods are provided by
the Domain class (Forde et al., 1990; Zimmermann et al., 1992; Menetrey and

Zimmermann, 1993).

For the purposes of this research, a Domain object is associated with a Model-
Builder object and an Analysis object, as shown in figure 2.2. The Domain class

interface, which is as shown in figure 2.10, provides for the following:

1. Two constructors are provided, one of which takes hints as to the number of

Chapter 2 Fundamental Object-Oriented Finite Element Design 23

components that are to be added to the Domain. This is for efficiency reasons

in large problems.

2. Methods are provided to add and remove components to the domain. When
adding objects to the domain, the analyst can ask that checks be performed
to ensure the validity of the domain. For example, when adding an Element
object the Domain object can check to ensure that all the Element’s Node
objects exist in the Domain. This is done for efficiency reasons. It is important
that checks be provided when adding the components, as it eliminates the needs
for certain checks to be performed during the analysis algorithm, checks which

may be repeated numerous times in iterative strategies.

3. Methods are provided to access the components of the domain. The access can
be individually, e.g. getElementPtr(), or on the collection of like components, in

which case an iter is returned, e.g. getElements().

4. Methods are provided which update the state of the components of the Domain.
For example, the method commit() is provided, which when called will invoke
commit() on all the Elements and Nodes in the Domain. The method apply-
Load() will invoke applyLoad() on all Load objects in the current LoadCase.

5. Methods are provided to obtain information about the current state of the Do-
main. This includes the time, current LoadCase, and connectivity information
for the Nodes and Elements. The connectivity information is returned in the

form of Graph objects.

6. Methods are provided which allow the Domain to be modified by the analyst
between analyses, which may be required in contact problems. For example,
the method invokeChangeOnAnalysis() is a method which will invoke domain-
Changed() on its associated Analysis object, setAnalysis() is a method to set
the link to the Analysis object associated with the Domain, and hasDomain-
Changed() is a method which returns true, if new components have been added

to the Domain since the last call to this method.

Chapter 2 Fundamental Object-Oriented Finite Element Design 24

class Domain {
public:
Domain();
Domain(int numEle, int numNode, int numLC, int numSp, int numMp);
virtual Domain();

// methods to add/remove components to/from the domain

virtual bool addElement(Element *elePtr, bool check = false);

virtual bool addNode(Node *nodePtr, bool check = false);

virtual bool addSP_Constraint(SP_Constraint *spPtr, bool check = false);
virtual bool addMP _Constraint(MP_Constraint *mpPtr, bool check = false);
virtual bool addLoadCase(LoadCase *IcPtr, bool check = false);

virtual bool addNodalLoad(int IcTag, NodalLoad *IdPtr, bool check = false);
virtual bool addElementalLoad(int IcTag, ElementalLoad *IdPtr, bool chk = false);
virtual Element *removeElement(int tag);

virtual Node *removeNode(int tag);

virtual LoadCase *removelLoadCase(int tag);

virtual SP_Constraint *removeSP_Constraint(int tag);

virtual MP_Constraint *removeMP_Constraint(int tag);

virtual NodalLoad *removeNodalLoad(int Ic, int tag);

virtual NodalLoad *removeElementalLoad(int Ic, int tag);

// methods to access the components of the domain
virtual Elementlter &getElements();

virtual Nodelter &getNodes();

virtual LoadCaselter &getLoadCases();

virtual SP_Constraintlter &getSPs();

virtual MP_Constraintlter &getMPs();

virtual Element *getElementPtr(int tag) const;
virtual Node *getNodePtr(int tag) const;

virtual LoadCase *getLoadCasePtr(int tag) const;

// methods to update/query the state of the domain and its components
virtual void setCurrentLoadCase(int tag);

virtual void setCurrentTime(double newTime);

virtual void applyLoad(double timeStep = 0.0);

virtual void commit(void);

virtual Graph &getElementGraph(void);

virtual Graph &getNodeGraph(void);

virtual int getCurrentLoadCase(void) const;

virtual double getCurrentTime(void) const;

virtual bool hasDomainChanged(void);
virtual int setAnalysis(Analysis &theAnalysis);
virtual int invokeChangeOnAnalysis(void);

Figure 2.10: Interface for the Domain Class

Chapter 2 Fundamental Object-Oriented Finite Element Design 25

2.4 Analysis Classes

The Analysis object forms and solves the governing equations for the finite el-
ement model. The type of analysis that can be performed by the analyst depends
on the Analysis classes provided and the interface of the components of the finite
element model. In some of the work, only linear static analysis can be performed on
the model (Forde et al., 1990; Baugh and Rehak, 1992; Yu and Adeli, 1993). In other
work linear static and transient analysis can be performed (Zimmermann et al., 1992;
Dubois-Pelerin et al., 1992; Dubois-Pelerin and Zimmermann, 1993; Pidaparti and
Hudl, 1993; Cardona et al., 1994). In other work, both linear and non-linear static
and transient analysis can be performed (Menetrey and Zimmermann, 1993; Miller
and Rucki, 1993; Chudoba and Bittnar, 1995; Rucki and Miller, 1996; Archer, 1996).
Pidaparti and Hudl (1993) allow for an eigenvalue analysis.

The typical approach that has been taken to the Analysis class is the black box
approach of traditional finite element programming (Forde et al., 1990; Zimmermann
et al., 1992; Dubois-Pelerin et al., 1992; Dubois-Pelerin et al., 1992; Dubois-Pelerin
and Zimmermann, 1993; Pidaparti and Hudl, 1993; Rucki and Miller, 1996; Archer,
1996). With this approach, a number of subclasses of Analysis are provided. The
analyst constructs an Analysis object of the correct class to perform the analysis.
Typically the Analysis object itself instantiates other objects to help with the anal-
ysis, the analyst however has no control over the classes used to create these objects.
A more detailed review of the existing work will be presented in section 3.3, and a

new approach to the design of the analysis class will be presented in section 3.4.

2.5 Numerical Classes

The finite element method requires intense numerical computations and the sys-
tems that have been proposed in the literature provide a number of numerical classes.
These classes support numerical algorithms. In the following subsections, a review is

made of these numerical classes.

Chapter 2 Fundamental Object-Oriented Finite Element Design 26
2.5.1 Matrix and Vector Classes

In most of the work that has been presented, much use is made of Matrix and
Vector classes in the formulation of the algorithms and as data units for passing
information between the objects in the system (Forde et al., 1990; Baugh and Rehak,
1992; Mackie, 1992; Zimmermann et al., 1992; Dubois-Pelerin et al., 1992; Dubois-
Pelerin and Zimmermann, 1993; Menetrey and Zimmermann, 1993; Lu et al., 1993;
Pidaparti and Hudl, 1993; Raphael and Krishnamoorthy, 1993; Cardona et al., 1994;
Chudoba and Bittnar, 1995; Ostermann et al., 1995; Archer, 1996). For this reason,
a number of researchers have focused their attention on developing these classes for
integration into finite element analysis packages (Scholz, 1992; Zeglinski and Han,
1994; Lu et al., 1995). Scholz (1992) present the the interfaces for Matrix and
Vector classes which is similar to the ones used by subsequent researchers. In some of
the work, subclasses of Matrix for symmetric, upper, lower, sparse, band, symmetric
band and profile storage schemes are presented (Baugh and Rehak, 1992; Zeglinski
and Han, 1994; Lu et al., 1995). Dongarra et al. (1995) present the C++ version
of LAPACK (Anderson et al., 1995a), which is shown to be as fast as the Fortran
version.

Cardona et al. (1994) introduce special Matrix and Vector subclasses for use in
a finite element analysis. These are StructureMatrix and StructureVector. The
construction of a StructureMatrix object will actually perform the assembly of
the tangent stiffness matrix. Objects created from subclasses of StructureVector,
which are genDispl, genVel, genAccel, do not actually store the values, but hold
the mapping to the correct nodal degrees-of-freedom. An assignment to the Vector
object will cause the object to update the appropriate nodal response quantities at
the Node object.

For the purposes of this work, three classes are provided: Matrix, Vector, and
ID. The Matrix and Vector classes provide a similar interface to that presented in
Scholz (1992). An ID object is a special form of vector for handling integers. There
are no methods provided to add, subtract or multiply ID objects. Instead methods
are provided to check if an integer value is in the ID, to return the location in the ID

of an integer object, and to obtain the integer values held by the ID. The interfaces

Chapter 2 Fundamental Object-Oriented Finite Element Design 27

for the Matrix, Vector and ID classes are presented in more detail in appendix A.

2.5.2 Tensor Classes

In some of the work, tensor classes are presented (Baugh and Rehak, 1992;
Hoffmeister et al., 1993; Lu et al., 1993; Rucki, 1996). Tensors, unlike matrices
and vectors, are aware that the quantities contained exist in three dimensional space.
Tensor objects keep track of the current coordinate system and are able to trans-
form their quantities into other coordinate systems. Hoffmeister et al. (1993) present
classes for rank one through rank four tensors. Rucki (1996) have classes for rank one

and rank two tensors.

2.5.3 Linear System of Equation Classes

In some of the work, linear system of equation classes, LinearSOE, are used
(Zimmermann et al., 1992; Dubois-Pelerin et al., 1992; Dubois-Pelerin et al., 1992;
Dubois-Pelerin and Zimmermann, 1993). Dubois-Pelerin et al. (1992) points out that
these are classes which, in addition to having a regular matrix, have a right hand side
and a solution. Methods to assign the next equation number, to add to the matrix, to
add to the right hand side and to solve the system are supplied at the interface. For
the purposes of this work, two classes are provided: SystemOfEqn and Solver. The
SystemOfEqn object is responsible for storing the equations. The Solver object
is responsible for performing the numerical operations on the equations. These two

classes are presented in more detail in section 3.4.9.

2.6 Summary

This chapter reviewed the main class abstractions identified in the literature for
the finite element method. The classes that have been identified are: ModelBuilder,
Domain, Element, Node, Constraint, Load, Analysis, Matrix, Vector, Ten-
sor and LinearSOE. For those classes that will be used subsequently in this research,

a class interface was presented. These interfaces provide similar functionality to those

Chapter 2 Fundamental Object-Oriented Finite Element Design 28

presented in the literature. Additional features have been provided in these interfaces
for efficiency reasons, e.g. commit() in Domain.

It has been pointed out in the literature that the flexibility and extensibility of an
object-oriented design for the finite element analysis is exemplified by the ease with
which new Element subclasses can be introduced. This is due to the fact that the
Element interface is well understood. By choosing the subclass of Element to use
in an analysis, the analyst is choosing which boundary value problem is being solved
for a given geometry. The analyst can change the boundary value problem by simply
changing the type of Element subclass used to construct the Elements.

Just as important to an analyst, however, is changing the type of the analysis that
is performed on the Domain. The typical approach, as discussed in section 2.4, is the
black box approach in which the analyst creates an Analysis object which performs
the analysis. The Analysis object will typically create objects to help it perform
the analysis, e.g. LinearSOE objects. While this typical approach offers the analyst
a flexible and extensible platform (flexible in the sense that the analyst can choose
the type of analysis and extensible in the sense that the analyst can introduce a new
analysis class), it does not lead to code re-use. This is because it does not allow the
flexibility and extensibility that is inherent in a well designed object-oriented system.
In a well designed system, the analyst would be able to create an Analysis object
based on the objects the analyst supplies to this object. It is the design for such a

system that will be presented in the next chapter.

29

Chapter 3

Object-Oriented Analysis
Algorithms

In this chapter a new object-oriented design for finite element analysis is presented.
The incremental solution strategies used for solving linear and non-linear static and
transient problems are briefly introduced. A review is made of existing object-oriented
designs for the analysis algorithm. A new framework is then presented, which is
demonstrated by code examples, to provide a more flexible and extensible design
than previous approaches. Extensions to the framework for other types of analysis

are then discussed.

Chapter 3 Object-Oriented Analysis Algorithms 30

3.1 Introduction

There are three types of problems encountered in engineering analysis: steady-
state or static problems, transient problems, and eigenvalue problems. Each of these
can be further classified as being either linear or non-linear. For linear problems, the

basic steps in a finite element analysis are:
1. Discretization of the domain into elements and nodes.
2. Formulation of the element matrices and vectors.
3. Formulation of the system of equations.
4. Incorporation of the boundary conditions.
5. Solution of the system of equations for the nodal degrees-of-freedom.

6. Computation of response within each element given values for the for the

degrees-of-freedom in non-linear analysis.

The difference between the three types of problems are in the matrix system of
equations that are formed. For each type of problem, there are many ways to solve
these equations. When dealing with non-linear problems, the system of equations
are non-linear, and iterative schemes are typically employed, e.g. Newton-Raphson,
modified Newton, quasi Newton methods, to achieve a solution.

Step one of the analysis is performed by the analyst. Step two is performed by
the element. The work presented in this chapter focuses on the analysis, which is
considered to be steps three through six. In this work, particular attention is paid
to the incremental solution techniques used to solve static or transient problems, as
reviewed in section 3.2. In section 3.3 existing approaches for the analysis framework
are reviewed. In section 3.4 the design of a new analysis framework is presented. This
new approach uses object-oriented design principles to provide an analysis framework
that provides more flexibility and extensibility than the current designs. In section 3.5
example code is presented, which demonstrates the new analysis approach. In sec-
tion 3.6 a discussion is presented on how the framework can be extended to include

other types of analysis.

Chapter 3 Object-Oriented Analysis Algorithms 31

3.2 The Incremental Solution of Nonlinear Finite

Element Equations

The most general form of a non-linear equation for which a solution vector U is

sought is:

R(U)=0 (3.1)

where R(U) is a nonlinear vector function. For the finite element method, the general
form for the transient problem, of which the static problem is a special case, seeks a
solution (U, U, U) to the residual defined as:

R(U) = éxl (Pa() =M U,) = A (Fr(U0) + Fr.(U.,Uo) = Po(t)) (3.2)

subject to the homogeneous multi-point constraints

C(U,t) =0 (3.3)

where A is the assembly operator, M,, a nodal mass matrix, P,(¢) a nodal load
vector, F;_(U,) an element inertia force, Fp_(U,, U,), an element resisting load due
to internal stresses and P.(¢) an element load due to externally applied loads. The
response quantities at the nodes (U, U, Un) and elements (U, U., Ije)are given

by:

U,=T,U+T,,U, (3.4)
U,=T,U+T,,U, (3.5)
U, =T,U +R,,U, (3.6)

where (U, U,, U,) are the specified support motions and (Ts,, R,,) are transforma-
tion matrices for each node (¢ = n) and element (9 = e). This general formulation

covers the most important problems in structural engineering.

Chapter 3 Object-Oriented Analysis Algorithms 32

The most widely used technique for solving the non-linear finite element equation,
equation 3.2, is to use an incremental formulation. In an incremental formulation,
a solution to the equation is sought at successive time steps, or load increments in
a static problem. The solution at each step, ¢, is in the form of a displacement
increment AU,. Given the solution at U, satisfying R(U;) = 0, we seek AU; such
that R(Uyya) = 0 where Uy ny = Uy + AU,

Various implicit direct integration schemes are used in dynamic analysis to relate
velocities and accelerations to AU. The integration schemes provide two operators,
I: and Is, to give the velocity and displacement in terms of AU; and the response at

previous steps:

Ut—|—At =T1,(AU;, Uy, Ut, ﬂt, Ui_at, fjt—Ata ﬂt—At---,) (3.7)

Ijt+At =I,(AU;, Uy, I:Ita Ijta Ui_ats Ut—At, I“Jt—At---a) (3.8)

For example, using the Newmark (3 scheme

Upni = U, + &AUt _ %Ut At (1 - %) U, (3.9)
. 3} 1 1 . 1 .
Ut—}-At = Ut + WAU — @Ut — %Ut (310)

Using these direct integration schemes, a solution is sought for the nonlinear finite
element equation, equation 3.2. This is typically done using an iterative procedure, i.e.
making an initial prediction for Uy, o, denoted Ugi)m a sequence of approximations
Ugiz At © = 1,2, .. is obtained which converges (one hopes) to a solution U;;as. The
most frequently used iterative schemes, such as Newton-Raphson, modified Newton,

and quasi Newton schemes, are based on a Taylor expansion of equation 3.1 about

Ut+At3

oR
oU ‘vt

t+ At

R(Ua) = R(UY,,) + [] (Unrar — U4 (3.11)

which for the nonlinear finite element equation, equation 3.2, can be expressed as

Chapter 3 Object-Oriented Analysis Algorithms 33

) - Ao (U, - 08

N+ AL TLt+At)

R(Uiiat) = lek (Pn (t+ At) — M, U

Ni4At

- A (Fr. (09,,,) + Fr. (U9,,,, U,) = Pt + At))

€L+ At et AL’ et At
_ A (M.T; + CIf + Ko) (Ue,,n, - UD) (3.12)
where
OF ;.
o= —it| o (3.13)
aU UE:H-At
OF p.
o= | o (3.14)
ou U;H-At
OF .
K, = —2%| (3.15)
ou Ug;gm

The values of T} and T, depend on the direct integration scheme. For example, in the

Newmark_v(scheme

oL v

I = BAU — @I (3.16)
01 1
1,2 = aAIZJ = WI (3.17)

The solution sought for the nonlinear finite element system of equations, equation 3.12,

at step ¢ + At can be expressed in matrix form as

K*AU® = p* (3.18)
where

K'=K' +K’ (3.19)

P* =P +P; (3.20)

and

Chapter 3 Object-Oriented Analysis Algorithms 34

K = zex (M,,I)) (3.21)

K= A (M.I, + C.I; + K.) (3.22)
P; = 1%‘ (Pa(t+ At) = M, UY,) (3.23)
P = A (P (t+ A1) - Fy, (U9,,,) - Fr, (U9, UY,,.)) (3.24)

AUS) = (iilAt - Uﬁm) (3.25)

To start the iteration scheme, trial values for U; a4, UH A+ and I“JH At are required.
These are obtained by assuming Ugi)m = U;. The Ug?m and Ijﬁ)m can then be

obtained from the operators for the integration scheme.

3.3 Existing Object-Oriented Approaches for

Finite Element Analysis

The analysis algorithm is responsible for forming the system of equations, applying
the boundary conditions, solving the system of equations, and updating the response
quantities at the nodes and elements. To do this, the analysis algorithm must perform

a number of tasks. For an incremental solution algorithm these tasks are:

e Assign equation numbers and map these to the nodal degrees-of-freedom. The
mapping can have a significant influence on the amount of computation required
to solve the matrix system of equations, equation 3.18, and on the amount of

memory required to store the matrix equations.

e Form the matrix equations using contributions from elements, given by equa-
tions 3.22 and 3.24, and nodes, given by equations 3.21 and 3.23. The contri-

bution depends on the integration scheme chosen by the analyst.

Chapter 3 Object-Oriented Analysis Algorithms 35

e Apply the constraints, which may involve transforming the element and nodal

contributions or adding additional terms and unknowns to the matrix equations.
e Solve the matrix equations for the incremental nodal displacements.
e Update the nodal degrees-of-freedom with the appropriate response quantities.

e Determine the internal state and stresses in the elements.

A well designed object-oriented analysis framework will allow the analyst to change
and experiment with new solution algorithms easily and with the minimum amount
of effort. The analyst should have the ability to use different numbering schemes,
different storage schemes and solution strategies for the matrix equations, different
methods for dealing with the constraints, different time integration schemes, and
different non-linear iteration schemes. With this in mind, a review is made of some
existing finite element object-oriented software implementations, in which different

analysis algorithms can be employed.

1. Zimmermann and co-workers: In this work an object-oriented design for the
dynamic analysis using direct integration schemes is presented (Dubois-Pelerin
et al., 1992; Dubois-Pelerin and Zimmermann, 1993; Zimmermann et al., 1992).
To incorporate material non-linearity into the design, some of the class interfaces
are modified and some of the methods rewritten (Menetrey and Zimmermann,
1993). The principal classes with respect to the analysis algorithm that are used,
as shown in figure 3.1, are Domain, Element, Node, LinearSystem and
TimeStep. The Domain object is responsible for creating the finite element
model and for performing the analysis on this model, as demonstrated in the

following main program presented in Dubois-Pelerin and Zimmermann (1993):

main {
Domain structure;
structure.solveYourself();

To help perform the analysis, the Domain object creates two other objects:
a TimeStep object, which can be of type Newmark or Static, and a Lin-

earSystem object, which can be of type BandSystem or ProfileSystem.

Chapter 3

Object-Oriented Analysis Algorithms

‘TimeStep }—{ Domain }—{ LinearSystem ‘
293

Zimmermann and co-workers

DynamicAnalysis

| | | | | |

‘ Jacobi ‘ ‘Subspace ‘00 ‘ Wilson HNewmark ‘0 L]

Pidaperti and Hudl

Analysis MatrixHandler
I A—
‘ConstraintHandler }—{ Map }—{ ReorderHandler ‘

Archer

General Element PartitionManager AlgorithmManager
| | | |
| —~ |
‘ Element H Partition Algorithm

DOF AlgorithmicAgent

Miller and Rucki

Figure 3.1: Class Diagram for Existing Analysis Frameworks

Chapter 3 Object-Oriented Analysis Algorithms 37

The analyst starts the analysis by invoking solveYourself() on the Domain ob-
ject. solveYourself() causes the Domain object to step through the time interval
invoking solveCurrentStep() on itself at each interval. When solveCurrentStep()
is invoked the Domain object is responsible for forming and solving the system
of equations at each time step, and updating the model. To facilitate this ad-
ditional methods, formLHSat() and formRHSat(), are provided at the Domain
interface. formRHSat() is a method which causes the Domain object to loop
over all the Node objects invoking formRHSat(), which causes the Node to
compute the residual and add it to the LinearSystem object. formLHSat()
is a method which causes the Domain object to loop over all the Element
objects invoking formLHSat(), which causes the Element to compute its tan-
gent, and to add the tangent to the LinearSystem object. The forming of the
Element tangent is done according to the TimeStep object, which is provided

as the argument when the method is invoked.

The shortcomings with this design, in relation to an extensible and flexible

platform, are the following:

(a) The analyst has no control over the types of LinearSystem and TimeStep
objects that are created by the Domain object, as seen in the example
code that was provided. The Domain class constructor must thus be
rewritten for each different TimeStep and LinearSystem combination

the analyst wishes to use.

(b) The Domain classes solveCurrentStep() method must be rewritten for each
new iteration scheme the analyst wishes to use. For example, to incorpo-
rate material non-linearity the solveCurrentStep() method was rewritten to
perform a Newton-Raphson iteration scheme (Menetrey and Zimmermann,
1993). To perform other iteration schemes, for example modified Newton
or quasi-Newton schemes, would require the analyst to rewrite the method
again.

(¢) The mapping of equation numbers to degrees-of-freedom, which as pre-
sented is based on a first come first served approach, can result in exces-

sive numerical computations when solving the equations. To overcome this

Chapter 3 Object-Oriented Analysis Algorithms 38

problem, the analyst would have to rewrite the solveCurrentStep() method,
so that on its first invocation, more appropriate numbering schemes are

employed to perform the mapping.

(d) The Domain classes constructor must be rewritten for each new Element
subclass introduced by the analyst and for each new geometry. This means
that inheritance for classes that share a common analysis algorithm, but

do not share a common model building approach, cannot be used.

2. Pidaparti and Hudl: Pidaparti and Hudl (1993) presents a design for linear
transient and eigenvalue analysis for problems with homogeneous single-point
constraints. In this work, two abstract subclasses of DynamicAnalysis are
provided, EigenSolution and DirectIntegration. For each of these, addi-
tional subclasses are provided, as shown in figure 3.1. The two base classes
provide methods to read the input matrices. They also define pure virtual
methods in their interface to perform the analysis. For example, the Eigen-
Solution class defines computeEvec() and computeEval() as pure virtual, and
the subclasses provide the implementation of these methods. For example,
each subclass of DirectIntegration provides an implementation of the meth-
ods computeTangent(), TriangularizeTangent(), and computeResponse() which are

called in the implementation of computeState().

The shortcomings with this design, in relation to an extensible and flexible

platform, are the following:

(a) There is no code re-use between the subclasses. For example, each subclass
of DirectIntegration provides a method to factorize the tangent matrix,
when this method could have been provided by the DirectIntegration

class.

(b) To extend the design to include non-linear analysis the computeState()
method would have to be rewritten for each class and for each iteration

strategy used.

3. Archer: Archer (1996) presents five classes to allow for static and dynamic, lin-

ear and non-linear analysis. These classes are Analysis, ConstraintHandler,

Chapter 3 Object-Oriented Analysis Algorithms 39

ReorderHandler, Map and MatrixHandler. In this work an Analysis ob-

ject is responsible for the following:

(a) Instantiating the type of ConstraintHandler, ReorderHandler, Ma-
trixHandler and Map objects in the analysis.

(b) Performing the analysis algorithm. The steps of the analysis algorithm are
performed on the invocation of the analyze() method. This method calls

upon assembleK(), assembleResForce() and assembleLoad().

(¢) Incorporate the constraints into the system of equations.

The ConstraintHandler object is responsible for providing an initial mapping
between degrees-of-freedom at the Nodes in the model and equation numbers
of the analysis. It does not handle the constraints, as its name would suggest.
The handling of the constraints is performed by the Analysis object. The
ReorderHandler is responsible for changing the initial mapping assigned to

the ConstraintHandler.

The Map is the object which stores the final mapping. The Map is the interface
between the Analysis and the Domain, which is similar to the functionality
of a Connector object described in Chudoba and Bittnar (1995). The Map

has three functions:

(a) To store the mapping.

(b) To obtain stiffness, mass and damping matrices and load vectors from the
Elements, which are provided in terms of the Elements local coordinate
system, and apply the transformations necessary to transform them into

the global coordinate system of the analysis.

(c¢) Given the results of the analysis, to update the response at the Nodes.

The shortcomings with this architecture, in relation to an extensible and flexible

platform, are the following:

(a) The handling of the constraints is non-uniform. For example, if the analyst

uses the transformation method, the constraints are applied to Element

Chapter 3 Object-Oriented Analysis Algorithms 40

contributions before the Analysis receives them and so the analysis does
not have to consider constraints. If using the Penalty method or Lagrange
multipliers, the Analysis object must explicitly deal with the constraints.
The class name ConstraintHandler is thus misleading, as it only handles

constraints if using the transformation method.

(b) The design again leads to a shallow analysis hierarchy with no code reuse.
To try new constraint handling methods, direct integration methods or
iteration schemes requires the analyst to write a specific analysis class.
For example, if given a nonlinear incremental analysis for a direct integra-
tion scheme which handles the constraints using one constraint handling
method, the analyst must rewrite the constructor and analyze routines for
each different constraint handling method. This rewrite must be done for

each different integration scheme.

4. Miller and Rucki: In this work a novel approach to the analysis algorithm
is presented (Rucki, 1996; Rucki and Miller, 1996). An Algorithm object
works with the Element, DOF, Load and Constraint objects of a Partition
to update the responses directly, there is no forming of the global system of
equations. This approach allows the use of element-by-element iterative solvers,
such as Jacobi and Gauss-Seidel, and DOF-by-DOF solvers. The DOF-by-DOF
solvers can be both iterative, such as Gauss-Seidel, and direct, using a sparse
solver. The direct sparse solvers work on the DOF objects in a Partition. To
accommodate these solution strategies, the Element class defines methods to
obtain the unbalanced load and to install the tangent stiffness coefficients at
the DOF objects associated with an Element. For the sparse solver, the DOF
class defines methods which allow DOF objects to connect with other DOF

objects that they were not initially associated with.

In this work three new classes are provided, AlgorithmManager, Algorithm,
and AlgorithmicAgent, as shown in figure 3.1 to perform the analysis. The
AlgorithmManager object is responsible for managing its contained Algo-
rithm objects and for providing a method updateAlgos(), which is invoked to

update the state of the model so that equilibrium is satisfied. To perform these

Chapter 3 Object-Oriented Analysis Algorithms 41

‘ Algorithm ‘
Gauss Gauss Jacobi Conjugate Container Centra
Seidel Elimination Gradient Algorithm | | Difference
‘ Newton H Newmark ‘

Figure 3.2: Class Diagram for Algorithmic Hierarchy in Miller and Rucki (1995)

operations, the AlgorithmManager will invoke updateState() on all its con-
tained Algorithm objects. When this method is invoked on an Algorithm
object, the Algorithm is responsible for orchestrating the update of the par-
tition it is associated with. To do this, it will zero the unbalanced load, ask
the Loads to apply() themselves, and will ask the Constraints to modify the
force vector. The Algorithm object will then perform the solution of the sys-
tem of equations, using an element-by-element or DOF-by-DOF approach. To
remove from the DOF objects the need to know anything about the solution
algorithm, e.g. the operators of the integration schemes, AlgorithmicAgents
are provided. The AlgorithmicAgent acts as an intermediary between the
Algorithm and the DOF object it is associated with. Each Algorithm sub-
class will have at least one AlgorithmicAgent provided for it. The interface

for the AlgorithmicAgent subclasses is unique to the Algorithm classes.

The shortcomings with this architecture, in relation to an extensible and flexible

platform, are the following:

(a) The hierarchy presented for the Algorithm, which is shown in figure 3.2,
mixes actual analysis algorithms, i.e. algorithms used to solve the gov-
erning nonlinear equation, equation 3.2, and numerical algorithms, i.e.

algorithms used to solve the matrix equations, equation 3.18.

(b) When using the sparse solver, there is no way provided for analyst to spec-

Chapter 3 Object-Oriented Analysis Algorithms 42

ify the order in which the DOF objects are eliminated, i.e. a numbering
scheme. This is required to reduce the amount of work in each updateS-

tate() when performing a direct solve on the linear system of equations.

(c¢) Constraints can only be enforced using the transformation method. This
is because solvers work with the Element or DOF objects directly. The
introduction of equations and coefficients, that a penalty or Lagrange mul-

tiplier method requires, cannot be handled.

(d) For transient analysis using a direct integration scheme, an element-by-
element solution strategy can only be employed when I} = I, = I. This
is because the Elements are not required to know anything about each
Algorithm, and no agents are provided to act between the Elements
and the Algorithm. For example, an element-by-element solver cannot

be used with the Newmark integration scheme.

In all of the above approaches, the analyst creates a single Analysis object to
perform the analysis. The hierarchy representing the Analysis classes is very flat.
While flat hierarchies, as pointed out by Rucki and Miller (1996), do not lead to
inefficient code in terms of performance of execution they do not facilitate code-
reuse, which can lead to efficiency in terms of program development time. Neither
do flat hierarchies lead to modular code, which can be used to develop a library of
re-usable objects, i.e. if an analyst wants to use a new analysis algorithm, the analyst
must either write it from scratch or copy bits of code from other classes and hope

they work together.

Chapter 3 Object-Oriented Analysis Algorithms 43

3.4 A New Object-Oriented Approach for the

Analysis Algorithm

To facilitate code re-use and to provide for a design which is more flexible and
extensible than those presented in the previous section, object-oriented design princi-
ples can be applied to the analysis algorithm. As discussed in section 1.2, this is first
done by identifying the main tasks performed in a finite element analysis, abstracting
them into separate classes, and then specifying the interface for these classes. It is
important that the interfaces specified allow the classes to work together to perform
the analysis and allow new classes to be introduced without the need to change ex-
isting classes. In the design presented for this research, an Amnalysis object is an

aggregation, as shown in figure 3.3, of objects of the following types:

1. SolnAlgorithm: The solution algorithm object is responsible for orchestrating

the steps performed in the analysis.

2. AnalysisModel: The AnalysisModel object is a container class for storing and

providing access to the following types of objects:

(a) DOF_Group: The DOF _Group objects represent the degrees-of-freedom
at the Nodes or new degrees-of-freedom introduced into the analysis to

enforce the constraints.

(b) FE_Element: The FE_Element objects represent the Elements in the
Domain or they are introduced to add stiffness and/or load to the system

of equations in order to enforce the constraints.
The FE_Elements and DOF_Groups are important to the design because:

(a) They remove from the Node and Element objects the need to worry
about the mapping between degrees-of-freedoms and equation numbers.
In this they provide the functionality of the Map (Archer, 1996) and
AlgorithmicAgent (Rucki and Miller, 1996).

(b) They also remove from the Node and Element class interfaces methods

for forming tangent and residual vectors, that are used to form the system

Chapter 3 Object-Oriented Analysis Algorithms 44

of equations.

(¢) The subclasses of FE_Element and DOF_Group are responsible for han-
dling the constraints. This removes from the rest of the objects in the

analysis aggregation the need to deal with the constraints.

3. Integrator: The Integrator object is responsible for defining the contributions
of the FE_Elements and DOF_Groups to the system of equations and for
updating the response quantities at the DOF_Groups with the appropriate

values given the solution to the system of equations.

4. ConstraintHandler: The ConstraintHandler object is responsible for han-
dling the constraints. It does this by creating FE_Elements and DOF_Groups
of the correct type.

5. DOF _Numberer: The DOF_Numberer object is responsible for mapping
equation numbers in the system of equations to the degrees-of-freedom in the

DOF _Groups.

In the following subsections the purpose of each of these classes is outlined. Pseudo
C++ code fragments are presented to demonstrate the function of some of the main
classes and the interplay between these classes, when obtaining the solution of static

and transient problems using the incremental solution technique.

3.4.1 Analysis Class

The Analysis object is responsible for verifying that the objects in the aggrega-
tion are of the correct type, for setting up the links required by the objects in the
aggregation so that they can perform their function, for invoking start up methods
on the objects, and for starting the analysis operation. The actual numerical com-
putation performed is the responsibility of objects in the analysis aggregation. The
Analysis class, whose interface is shown in figure 3.4, is an abstract class defining
two pure virtual methods, analyze() and domainChanged(). analyze() is this method
which is invoked by the analyst to perform an analysis on the Domain and domain-

Changed() is invoked to inform the Analysis that the Domain has changed, which

Chapter 3 Object-Oriented Analysis Algorithms

45

T

‘ Sta\cAndyss‘ ‘ TrangentAndysis H EigenvdueAndyss‘ o

‘Dimlntegraiorﬂndys‘s ‘ ‘ModdTrans‘entAndysis ‘ LX)

‘Grathumberer H DOF_Numbera‘ ‘Cmsra’mHmd\er‘ ‘ AndysisViodel ‘ ‘So\mionA\gomhm‘ ‘ Integrator ‘

EquiSoinAlgo | o @ IncrementalIntegretor | © ®

L1 | |
‘TraﬁormaiionCH‘ ‘LE‘JWJECH‘ ‘PenaﬂyCH " ’ 0 . ‘ SticIntegpetor ‘ ‘DirectTransiaﬂlntegraor ‘

DOF_Group FE_Element Element
|

‘TrmslmmalionDOF‘ ‘LagrmgeDOF‘ L ‘TranstormationFE‘ ‘LagrmgeFE‘ ‘PendtyFE‘ o

CentralDiff

Figure 3.3: Class Diagram for New Analysis Framework

DirectBandSPDLinSolver

Chapter 3 Object-Oriented Analysis Algorithms 46

in turn is responsible for invoking the appropriate methods on the objects in the

aggregation.

class Analysis: {
public:
Analysis(Domain &theDomain);
virtual Analysis();

virtual int analyze(void) =0;
virtual int domainChanged(void) =0;

Figure 3.4: Interface for the Analysis Class

For the solution of static and transient problems by an incremental approach, two

subclasses of Analysis are provided:

1. StaticAnalysis: The StaticAnalysis class is used by an analyst to perform
a static analysis using an incremental solution technique. The StaticAnalysis
object is an aggregation, as shown in figure 3.5, of objects of the following types:
ConstraintHandler, DOF_Numberer, AnalysisModel, LinearSOE, Eq-
uiSolnAlgo, and StaticIntegrator. The objects in the aggregation are passed
as arguments to the constructor. The StaticAnalysis class defines two meth-

ods: domainChanged() and analyze().

(a) domainChanged(): The method, which is shown in figure 3.6, first invokes
setLinks() on the objects in the aggregation to set up the links required by

SaticAndyss ——| LinewSOE |—— LineaSolver |
ConstraimHandIer‘ ‘DOFﬁNumberer‘ ‘AnalysisModel ‘ ‘Slaxiclmegramr ‘ ‘ EquiSolnAlgo

[|
| Node p—— DOF Group $—4 FE_Element |——— Element

Figure 3.5: Class Diagram for a Static Analysis

Chapter 3

Object-Oriented Analysis Algorithms 47

these objects. It then invokes handle() on the ConstraintHandler ob-
ject, which will create the FE_Element and DOF _Group objects, and
it invokes number() on the DOF_Numberer object to create a mapping
between degrees-of-freedom and the equation numbers. It then invokes
setSize() on the LinearSOE object, using the Graph of the degree-of-
freedom connectivity obtained from the AnalysisModel. Finally it in-
vokes analysisModelChanged() on the EquiSolnAlgo and StaticIntegrator

objects.

analyze(): This is a method which is invoked by the analyst to perform
the static analysis. The method, which is shown in figure 3.6, first invokes
domainChanged() on itself. It then invokes applyLoad() on the Analysis-
Model object to have the loads in the current loadcase apply themselves,
and it invokes solveCurrentStep() on the EquiSolnAlgo object to perform
the analysis. Finally it invokes commitDomain() on the AnalysisModel

object to have commit() invoked on the Domain object.

2. DirectIntegrationAnalysis: The DirectIntegrationAnalysis class is used

by an analyst to perform a transient analysis using an incremental solution tech-

nique. The DirectIntegrationAnalysis object is an aggregation, as shown in

figure 3.7, of objects of the following types: ConstraintHandler, Analysis-
Model, LinearSOE, DOF _Numberer, EquiSolnAlgo, and TransientIn-

tegrator. The difference between a DirectIntegrationAnalysis object and

a StaticAnalysis object is that the DirectIntegrationAnalysis object has a

TransientIntegrator, as opposed to a StaticIntegrator object in a Static-

Analysis. The DirectIntegrationAnalysis class, whose interface is as shown

in figure 3.8, provides the following methods:

(a)

(b)

domainChanged(): This is a method which performs the same operations

as the StaticAnalysis classes domainChanged() method.

setTimeVar(): This is a method which is used by the analyst to set the
start time, the finish time, and At for an analysis. Subclasses of Direct-

IntegrationAnalysis can be introduced for adaptive schemes.

Chapter 3 Object-Oriented Analysis Algorithms 48

StaticAnalysis::domainChanged{

{
// first set up the links needed by the elements in the
// aggregation
theConstraintHandler->setLinks(theDomain,theModel,thelntegrator);
theDOF _Numberer->setLinks(theModel);
theStaticIntegrator->setLinks(theModel,theSOE);
theAlgorithm->setLinks(*this,theModel,thelntegrator,theSOE);
theDomain- >setAnalysis(*this);

// now we invoke handle() on the constraint handler which
// causes the creation of FE_Element and DOF _Group objects
// and their addition to the AnalysisModel.
theConstraintHandler->handle();

// we now invoke number() on the numberer which causes
// equation numbers to be assigned to all the DOFs in the
// AnalysisModel.

theDOF_Numberer->numberDOF();

// we now invoke setSize() on the LinearSOE which
// causes that object to determine its size
theSysOfEqn->setSize(theAnalysisModel->getDOFGraph());

// finally we ininvoke analysisMoed|Changed
// on the Integrator and SolutionAlgo objects
theStaticIntegrator->analysisModelChanged();
theAlgorithm->analysisModelChanged();

}

StaticAnalysis::analyze{
if (theDomain->hasDomainChanged() == true)
this->domainChanged();
thyeAnalysisModel->applyLoadDomain(0.0)
theEquiSolnAlgo->solveCurrentStep()
theAnalysisModel->commitDomain()

Figure 3.6: Pseudo-Code for Selected Methods for the StaticAnalysis Class

Chapter 3 Object-Oriented Analysis Algorithms 49

DirectlntegramionAnalys’s k)—‘ LinearSOE }—{ LinearSolver
Cons(ra'nthdIer‘ ‘ DOF_Numberer‘ ‘ AnalysisModel ‘ ‘DirectTransjmtIntegrator ‘ ‘ EquiSolnAlgo

FE_Element H Element

DOF_Group

Figure 3.7: Class Diagram for a Transient Analysis using a DirectIntegration Scheme

(c) setAlgorithm(): This is a method which can be used by the analyst to

change the TransientIntegrator object between analysis.

(d) analyze(): This is a method to perform the transient analysis. The ana-
lyze() method for the DirectIntegrationAnalysis class, which is shown
in figure 3.9, first checks to see if the Domain has changed and it then
incrementally steps through the time interval performing an equilibrium

analysis at each time step.

class DirectlntegrationAnalysis: public TransientAnalysis {
public:

DirectIntegrationAnalysis(Domain &theDomain,
ConstraintHandler &theHandler,
DOF_Numberer &theNumberer,
AnalysisModel &theModel,
StaticEquiSolnAlgo &theSolnAlgo,
LinearSOE &theSOE,
TransientIntegrator &thelntegrator);

virtual DirectIntegrationAnalysis();

virtual int domainChanged(void);

virtual int analyze(void);

virtual void setTimeVar(double tStart, double tFinish, double At);
virtual void setIntegrator(TransientIntegrator &newlntegrator);

Figure 3.8: Interface for the DirectIntegration Analysis Class

Chapter 3 Object-Oriented Analysis Algorithms 50

DirectIntegrationAnalysis::analyze{

if (theDomain->hasDomainChanged() == true)
this->domainChanged();

time = tStart

while (time < tFinal) {
thelntegrator->newStep(At)
theAnalysisModel->applyLoadDomain(time)
theEquiSolnAlgo->solveCurrentStep()
theAnalysisModel->commitDomain()
time += At

Figure 3.9: Pseudo-Code for the DirectIntegrationAnalysis Classes Interface and
analyze Method

3.4.2 SolutionAlgorithm Class

The SolutionAlgorithm object orchestrates the steps in the analysis. To do
this it specifies the sequence of operations that are invoked on the different objects in
the analysis aggregation. The SolutionAlgorithm class is an abstract class whose
interface, which is shown in figure 3.10, defines the methods solveCurrentStep() and

analysisModelChanged().

class SolutionAlgorithm: {
public:
SolutionAlgorithm();
virtual SolutionAlgorithm();

// pure virtual functions to be implemented by subclasses
virtual int solveCurrentStep(void) =0;
virtual int analysisModelChanged(void) =0;

Figure 3.10: Interface for the SolutionAlgorithm Class

For the solution of static and transient problems using the incremental approach,
the SolutionAlgorithm object will be some subclass of EquiSolnAlgo. The Eqg-

uiSolnAlgo class, whose interface is shown in figure 3.11, defines three methods:

Chapter 3 Object-Oriented Analysis Algorithms 51

class EquiSolnAlgo: public SolutionAlgorithm {
public:
EquiSolnAlgo();
virtual EquiSolnAlgo();

void setLinks(StaticAnalysis &theAnalysis,
AnalysisModel &theModel,
Incrementallntegrator &thelntegrator,
LinearSOE &theSOE);

// pure virtual functions to be implemented by subclasses
virtual int solveCurrentStep(void) =0;
virtual int analysisModelChanged(void);

protected:
StaticAnalysis *theAnalysis;
AnalysisModel *theModel;
Incrementallntegrator *thelntegrator;
LinearSOE *theSysOfEqn;

Figure 3.11: Interface for the EquiSolnAlgo Class

. setLinks(): This method is called so that the EquiSolnAlgo object can learn
of the AnalysisModel, Incrementallntegrator and LinearSOE objects on

which it will invoke operations when solveCurrentStep() is invoked.

. analysisModelChanged(): This method is called so that the EquiSolnAlgo ob-
ject can be informed that the analysis model has changed. The method for this
class does nothing. It is declared as virtual to allow subclasses to provide their

own implementation.

. solveCurrentStep(): This is a pure virtual method, which is invoked on the object
by the Analysis object. When invoked, the object will perform an equilibrium
analysis on the Domain object to find an equilibrium state, given the current
state of the Domain. The steps taken to obtain the equilibrium state depend on
the implementation of this method provided by the subclass of EquiSolnAlgo
chosen by the analyst. Examples of subclasses, as shown in figure 3.3, are

Linear and NewtonRaphson. For example, if the analyst creates an object of

Chapter 3 Object-Oriented Analysis Algorithms 52

type Linear the EquiSolnAlgo object will invoke methods on the Integrator
object to form the linear system of equations in the LinearSOE object. It will
then invoke methods on the LinearSOE object to solve the system of equations
and obtain the solution. Finally it will invoke updatelncr() on the Integrator
object which will cause that object to update the DOF_Group objects with

the appropriate response quantities. This is shown in figure 3.12.

Linear::solveCurrentStep{
// form the system of equations
thelntegrator->formUnbalance()
thelntegrator->formTangent()

// solve the system of equations
theLinearSOE->solveX()
Vector &U = thelLinearSOE->getX()

// update
thelntegrator->updatelncr(U)

Figure 3.12: Pseudo-Code for the Linear Classes solveCurrentStep Method

If the analyst instead creates a EquiSolnAlgo object of type NewtonRaph-
son, a Newton-Raphson scheme would be used to obtain an equilibrium solu-
tion. The object would iterate through the steps outlined for the Linear class

above until convergence is obtained, as shown in figure 3.13.

3.4.3 Integrator Class

The Integrator object is responsible for providing methods for forming the system
of equations, for defining the contributions of the FE_Element and DOF _Group
objects to the system of equations, and for updating the response at the DOF _Group
objects. The Integrator class is an abstract base class.

For the solution of static and transient problems by an incremental approach the
Integrator object will be a subclass of Incrementallntegrator. The Incremen-
tallntegrator class, whose interface is shown in figure 3.14, is an abstract class. It

provides for the following:

Chapter 3 Object-Oriented Analysis Algorithms 53

NewtonRaphson::solveCurrentStep{

thelntegrator->formUnbalance()

// iterate until convergence

while (theLinearSOE->normRHS() > TOL) {
thelntegrator->formTangent()
theLinearSOE->solveX()
Vector &AU = theLinearSOE->getX()
thelntegrator->updatelncr(AU)
thelntegrator->formUnbalance()

Figure 3.13: Pseudo-Code for the NewtonRaphson Classes solveCurrentStep Method

1. The setLinks() method, which is invoked by the Analysis object to make the In-
crementallntegrator object aware of the AnalysisModel and LinearSOE

objects in the aggregation.

2. The analysisModelChanged() method, which is invoked to inform the In-
crementallntegrator object that the analysis model has changed. This is
provided so that subclasses can set any Vector or other objects used. The

method for the Incrementallntegrator class performs no operations.

3. Methods for forming the linear system of equations. These methods are form-
Tangent(), formUnbalance(), formElementResidual(), and formNodalUnbalance().
These methods, which are shown in figure 3.15, iterate over the FE_Elements
to form the tangent and element residual, and iterate over the DOF _Groups

to form the nodal unbalance.

4. Methods which define each elements and nodes contribution to to the sys-
tem of equations and how the system of equations are set up. For example
when using the incremental displacement approach the choice of integration

scheme defines each elements contribution to K, equation 3.22, and P}, equa-

*
nl

tion 3.23. These methods, formEleTangent(), formEleResidual(), formNodTan-

*
n?

tion 3.24, and each nodes contribution to K*, equation 3.21, and P, equa-

gent() and formNodUnbalance(), are all declared as pure virtual.

Chapter 3 Object-Oriented Analysis Algorithms

54

class Incrementallntegrator : public Integrator {
public:
Incrementallntegrator();
virtual Tncrementallntegrator();

virtual void setLinks(AnalysisModel &theModel,
LinearSOE &theSysOfEqn);
virtual analysisModelChanged(void);

// methods to set up the system of equations
virtual int formTangent(void);

virtual int formUnbalance(void);

virtual int formNodalUnbalance(void);

virtual int formElementResidual(void);

// methods to define what the FE_Ele and DOF_Groups add to

// the system of equations, all are pure virtual.

virtual int formEleTangent(FE_Element *theEle) =0;
virtual int formEleResidual(FE_Element *theEle) =0;
virtual int formNodTangent(DOF_Group *theDof) =0;
virtual int formNodUnbalance(DOF_Group *theDof) =0;

// methods to relate the solution of the system of equations
// to the degrees-of-freedom in the DOF_Groups

virtual int update(const Vector &U) =0;

virtual int updatelncr(const Vector &AU) =0;

protected:
LinearSOE *mySOE;
AnalysisModel *myModel,

Figure 3.14: Interface for the IncrementalIntegrator Class

Chapter 3 Object-Oriented Analysis Algorithms 55

Incrementallntegrator::formTangent {
FE_Elelter theEles = theAnalysisModel->getFEs()
theLinearSOE->zeroA()
while ((feElePtr = theEles()) # 0) {
feElePtr->formTangent(thelntegrator)
theLinearSOE->addA(feElePtr->getTangent(), feElePtr->getID())

}

Incrementallntegrator::formUnbalance{
theLinearSOE->zeroB()
this->fromElementResidual()
this->fromNodalUnbalance()

Incrementallntegrator::formElementResidual {
FE_Elelter theEles = theAnalysisModel->getFEs()
while ((feElePtr = theEles()) # 0) {
feElePtr->formResidual(thelntegrator)
theLinearSOE->addB(feElePtr->getResidual(), feElePtr->getID())

}

Incrementallntegrator::formNodalUnbalance{
DOF _lter theDofs = theAnalysisModel->getDOFs()
while ((dofPtr = theDOFs()) # 0) {
dofPtr->formUnbalance(thelntegrator)
theLinearSOE->addB(dofPtr->getUnbalance(), dofPtr->getlD())

Figure 3.15: Pseudo-Code for Selected Methods for the Incrementallntegrator Class

Chapter 3 Object-Oriented Analysis Algorithms 56

5. Two methods to relate the solution of the system of equations to the degrees-
of-freedom at the nodes. These methods, update() and updatelncr(), are both

declared as pure virtual.

The Incrementallntegrator class is an abstract class. Subclasses are provided
which provide implementations of the pure virtual methods. Two subclasses of In-

crementallntegrator are provided for static and transient analysis:

1. StaticIntegrator: The StaticIntegrator class is used by the analyst when
performing static analysis. The class provides an implementation of the pure

virtual methods declared in the superclass, as the interface in figure 3.16 shows.

class Staticlntegrator : public Incrementallntegrator {
public:
Staticlntegrator();
virtual Staticlntegrator();

// methods to define what the FE_Ele and DOF_Groups add to
// the system of equations.

virtual int formEleTangent(FE_Element *theEle);

virtual int formEleResidual(FE_Element *theEle);

virtual int formNodTangent(DOF_Group *theDof);

virtual int formNodUnbalance(DOF_Group *theDof);

virtual int update(const Vector &U);

virtual int updatelncr(const Vector &AU);

Figure 3.16: Interface for the StaticIntegrator Class

The StaticIntegrator class inherits the methods formTangent(), formElemen-
tResidual(), and formNodalUnbalance() from the Incrementallntegrator class.
The StaticIntegrator class defines the methods update(), updatelncr(), formEle-
Tangent(), formEleResidual(), formNodTangent(), and formNodUnbalance(). For
example, the methods formEleTang(), update() and updatelncr() are as shown in

figure 3.17,

2. DirectTransientIntegrator: The DirectTransientIntegrator class is used

by the analyst when performing transient analysis. The class, whose interface

Chapter 3 Object-Oriented Analysis Algorithms

57

StaticIntegrator::formEleTang(FE_Element *theEle) {
theEle->zeroTang()
theEle->addKtoTang()

}

Staticlntegrator::update(Vector &U) {
DOF _Iter theDofs = theAnalysisModel->getDOFs()
while ((dofPtr = theDOFs()) # 0)
dofPtr->setNodeDisp(U)

}

StaticIntegrator::updatelncr(Vector &AU) {
DOF _Iter theDofs = theAnalysisModel->getDOFs()
while ((dofPtr = theDOFs()) # 0)
dofPtr->setNodelncrDisp(AU)

Figure 3.17: Pseudo-Code for Selected Methods for the StaticIntegrator Class

is shown in figure 3.18, is an abstract class. Examples of subclasses, as shown

in figure 3.3 are Newmark, CentralDifference and Houbolt.

class DirectTransientlntegrator : public Incrementallntegrator {

public:
DirectTransientIntegrator();
virtual Direct TransientIntegrator();

// methods to set up the system of equations
virtual int formTangent(void);
virtual int newStep(double At) =0;

Figure 3.18: Interface for the DirectTransientIntegrator Class

The DirectTransientIntegrator class inherits the methods formElementResid-

ual() and formNodalUnbalance() from the Incrementallntegrator class, but it re-

defines the formTangent() method. This is because in transient analysis the

nodes may have masses which are added to the tangent matrix. The method,

which is shown in figure 3.19, performs the formTangent() method defined for the

Incrementallntegrator class and then loops over the DOF _Group objects

Chapter 3 Object-Oriented Analysis Algorithms 58

adding their contribution as well.

DirectTransientIntegrator::formTangent {
// invoke Incrementallntegrators formTangent method
this->Incrementallntegrator::formTangent()

// now loop over the DOF_Groups

DOF _Iter theDofs = theAnalysisModel->getDOFs()

theLinearSOE->zeroA()

while ((dofPtr = theDOFs()) # 0) {
dofPtr->formTangent(thelntegrator)
theLinearSOE->addA(dofPtr->getTang(), dofPtr->getID())

Figure 3.19: Pseudo-Code for the Methods of the Direct TransientIntegrator Class

The subclasses of DirectTransientIntegrator are responsible for individu-
ally defining the methods update(), updatelncr(),formEleTangent(), formEleResid-
ual(), formEleResidual(), and formEleResidual(). For example, the updatelncr()

and formEleTang() methods for the Newmark class are shown in figure 3.20.

3.4.4 AnalysisModel Class

The AnalysisModel object is responsible for holding and providing access to the
FE_Element and DOF_Group objects. The AnalysisModel class, whose interface

is shown in figure 3.21, provides for the following:

1. Methods are provided to allow the ConstraintHandler object to add the
FE_Element and DOF _Group objects.

2. Methods are provided which allows the other objects in the analysis aggregation
access to the FE_Element and DOF_Group objects. This access is provided
in the form of iterators. DOF _Group objects can also be accessed individually

using their unique identifier.

3. Methods are provided to return connectivity information, for both the individ-

ual degrees-of-freedom and the DOF_Groups. The information returned is in

Chapter 3 Object-Oriented Analysis Algorithms

59

class Newmark : public DirectTransientIntegrator {
public:
Newmark(double v, double 3);
virtual Newmark();

virtual int formEleTangent(FE_Element *theEle);
virtual int formEleResidual(FE_Element *theEle);
virtual int formNodUnbalance(DOF_Group *theDof);
virtual int update(const Vector & U);

virtual int updatelncr(const Vector &AU);

protected:

};

Newmark::formEleTang(FE_Element *theEle) {
theEle->zeroTang()
theEle->addKtoTang()
theEIe—>adthoTang(ﬁ)
theEIe—>addCtoTang(ﬂT1t2)

}

Newmark::updatelncr(Vector & AU) {
AU = gk AU = §U; + At (}_ — 3%) Ui
AU = 535 AU — L0, - 35U
DOF _lter theDofs = theAnalysisModel->getDOFs()
while ((dofPtr = theDOFs()) # 0) {
dofPtr->setIncDisp(AU)

dofPtr—>setIcheI(AU)__
dofPtr->setIncAccel(AU)

Figure 3.20: Interface and Pseudo-Code for Selected Methods of the Newmark Class

Chapter 3 Object-Oriented Analysis Algorithms

60

class AnalysisModel {
public:
AnalysisModel(Domain &theDomain);
virtual AnalysisModel();

// method to set the link to the domain
virtual void setLinks(Domain &theDomain);

// methods to populate the AnalysisModel
virtual bool addFE_Element(FE_Element *theFE_Ele) =0;
virtual bool addDOF_Group(DOF _Group *theDOF_Grp) =0;

// methods to get the components of the AnalysisModel
virtual FE_Elelter &getFEs() =0;

virtual DOF _Grplter &getDOFs() =0;

virtual DOF _Group *getDOF_GroupPtr(int tag);

// methods to get dof connectivities
virtual Graph &getDOFGraph(void);
virtual Graph &getDOFGroupGraph(void);

// methods which trigger operations in the Domain
virtual void applyLoadDomain(double time);
virtual void commitDomain(void);

Figure 3.21: Interface for the AnalysisModel Class

Chapter 3 Object-Oriented Analysis Algorithms 61

the form of a Graph object. The degree-of-freedom graph, which is a graph
for those degrees-of-freedom which have been assigned an equation number, is
needed to determine the size and sparsity of the system of equations. The
DOF _Group graph is used by the DOF_Numberer object to assign equation

numbers to the individual degrees-of-freedom.

4. Methods are provided which trigger methods in the Domain object, on which
the analysis is being performed. These methods include commitDomain(), which
invokes commit() on the Domain, and applyLoadDomain(), which invokes ap-

plyLoad() on the Domain.

5. The method setlinks() is provided, which is called by the Analysis object to

inform the object which Domain is being analyzed.

There are no load type or constraint type objects in an Analysis model. There are
no load type objects because the Load objects apply themselves to the Element or
Node objects in the call to applyLoadDomain(). There are no constraint type objects
because the FE_Element and DOF _Group objects introduce the constraints into

the system of equations.

3.4.5 DOF_Group Class

Each DOF _Group object in the AnalysisModel represents the degrees-of- free-
dom at a Node object in the analysis or represent new degrees-of-freedom introduced
into the analysis by the ConstraintHandler object to enforce the constraints, such
as when using Lagrange multipliers. The DOF_Group class, whose interface is

shown in figure 3.22, provides for the following:

1. The DOF _Group objects are responsible for keeping track of the mapping be-
tween the degrees-of-freedom and the equation numbers. Methods are provided

to set and retrieve this mapping information.

2. Methods are also provided to return the number of degrees-of-freedom repre-

sented by the DOF _Group object and also information about the number of

Chapter 3 Object-Oriented Analysis Algorithms

62

class DOF_Group {
public:
DOF _Group(int tag, Node *myNode);
DOF _Group(int tag, int nDOF);
virtual DOF _Group();

// methods to set/obtain mapping information
virtual void setID(int, int);
virtual const ID &getID(void) const;

// methods for obtaing info about the DOFs
virtual int getTag(void) const;

virtual int getNumDOF(void) const;

virtual int getNumFreeDOF(void) const;

virtual int getNumConstrainedDOF(void) const;

// methods to form the tangent

virtual const Matrix &getTangent(void);

virtual void formTangent(Integrator *thelntegrator);
virtual void zeroTangent(void);

virtual void addMtoTang(double fact = 1.0);

// methods to form the unbalance

virtual const Vector &getUnbalance(void) const;
virtual void formUnbalance(Integrator *thelntegrator);
virtual void zeroUnbalance(void);

virtual void addPtoUnbalance(double fact = 1.0);

// methods to update the trial responses at the nodes
virtual void setNodeDisp(const Vector &U);

virtual void setNodeVel(const Vector &U);

virtual void setNodeAccel(const Vector &U);

virtual void setNodelncrDisp(const Vector &AU);
virtual void setNodelncrVel(const Vector &AU);
virtual void setNodelncrAccel(const Vector &AU);

Figure 3.22: Interface for the DOF _Group Class

Chapter 3 Object-Oriented Analysis Algorithms 63

degrees-of-freedom represented by the object that have not been assigned equa-

tion numbers.

3. Methods are provided which allow the Integrator object to form a nodal tan-
gent matrix, which is represented by equation 3.21 for an incremental solution.

A method is also provided to return this matrix.

4. Method are provided which allow the Integrator object to form the nodal
unbalance, which is represented by equation 3.23 for an incremental solution.

A method is also provided to return this vector.

5. Methods are provided which will update the trial response quantities at the
Node objects. The methods can either set the trial response, e.g. setN-
odeDisp(), or increment the trial response, e.g. setNodelncrDisp(). The ar-
guments to all these methods are Vector objects of size equal to the size of the
system of equations. The DOF_Group objects, using the mapping information
they hold, are able to extract the appropriate quantities from the Vector and

update the Node with these values.

3.4.6 FE_Element Class

Each FE_Element object is associated with an Element in the Domain or
is introduced due to some constraint, to add stiffness and/or load to the system of
equations, such as when using penalty or Lagrange methods to enforce the constraints.
The FE_Element class, whose interface is shown in figure 3.23, provides for the

following:

1. The FE_Element object is responsible for determining the mapping between its
global degrees-of-freedom and the equation numbers. The objects can determine
this mapping from the DOF _Group objects associated with the Node objects.
Methods are provided to instruct the FE_Element to determine this mapping

and to return the mapping.

2. A method getDOFtags() is provided to return the identifiers of the DOF _Groups

associated with an FE_Element. This information is needed to build the

Chapter 3 Object-Oriented Analysis Algorithms 64

class FE_Element {
public:

FE_Element(Element *);
FE_Element(int numDOF_Group, int nDOF);
virtual FE_Element();

virtual const ID &getDOFtags(void) const;
virtual void setlD(void);
virtual const ID &getlD(void) const;

// methods to form the tangent

virtual const Matrix &getTangent(void);

virtual void formTangent(Integrator *thelntegrator);
virtual void zeroTangent(void);

virtual void addKtoTang(double fact = 1.0);

virtual void addCtoTang(double fact = 1.0);

virtual void addMtoTang(double fact = 1.0);

// methods to form the residual

virtual const Vector &getResidual(void);

virtual void formResidual(Integrator *thelntegrator);

virtual void zeroResidual(void);

virtual void addRtoResidual(double fact = 1.0);

virtual void addK_Force(const Vector &U, double fact = 1.0);
virtual void addD_Force(const Vector &U, double fact = 1.0);
virtual void addM_Force(const Vector &U, double fact = 1.0);

// methods to obtain forces for ele-by-ele solutions
virtual const Vector &getTangForce(const Vector &x, double fact = 1.0);
virtual const Vector &getK_Force(const Vector &U, double fcat = 1.0);

virtual const Vector &getD_Force(const Vector &U double fcat = 1.0);
virtual const Vector &getM_Force(const Vector &U, double fcat = 1.0);

Figure 3.23: Interface for the FE_Element Class

Chapter 3 Object-Oriented Analysis Algorithms 65

degree-of-freedom graph and the DOF _Group graph.

3. Methods are provided which will allow an Integrator object to instruct the
FE_Element objects how to form their contributions to the system of equa-
tions, which for the incremental solution strategy are given by equations 3.22
and 3.24. These contributions are determined with the help of the Integrator
object, as FE_Element objects are not expected to be aware of all the possible

direct integration schemes the analyst might choose to use.

4. Methods getTangent() and getResidual() are provided to obtain these contribu-

tions.

5. Methods to obtain the product of the elements tangent, stiffness, mass and
damping matrices with a vector are provided for element by element solution

strategies.

Examples of subclasses of FE_Element are LagrangeFE _Element, Penal-
tyFE_Element and TransformationFE_Element. Objects of these classes enforce
the constraints. The FE_Element objects are created by the ConstraintHandler
object.

3.4.7 ConstraintHandler Class

The ConstraintHandler object is responsible for creating the DOF_Group
and FE_Element objects, and adding them to the AnalysisModel. The type of
DOF _Group and FE_Element objects created depends on the ConstraintHandler.
The ConstraintHandler is also responsible for assigning an initial mapping of
degrees-of-freedom to equation numbers.

The ConstraintHandler class, whose interface is shown in figure 3.24, provides
two methods: setLinks() which is invoked by the Analysis object to allow the Con-
straintHandler to set pointers to the Domain and AnalysisModel objects, and
handle(). The handle() method instructs the ConstraintHandler object to create the
FE_Element and DOF_Group objects, add these objects to the AnalysisModel,

Chapter 3 Object-Oriented Analysis Algorithms 66

and assign an initial mapping between the degrees-of-freedom and the equation num-
bers. The ConstraintHandler class is an abstract class. Examples of subclasses
the analyst may use to enforce the constraints are Penalty, Lagrange and Trans-

formation.

class ConstraintHandler {
public:
ConstraintHandler();
virtual ConstraintHandler();

void setLinks(Domain &theDomain,
AnalysisModel &theModel);
virtual int handle(const ID *nodesNumberedLast =0) =0;

Figure 3.24: Interface for the ConstraintHandler Class

3.4.8 DOF _Numberer Class

The DOF _Numberer object is responsible for assigning equation numbers to
the degrees-of-freedom in each DOF_Group object. It is also responsible for getting
the FE_Element objects to determine the mapping of their local degrees-of-freedom
to the equation numbers. The DOF _Numberer class, whose interface is shown
in figure 3.25, provides two methods: setLinks(), which is invoked by the Analysis
object to inform the object of the AnalysisModel in the analysis aggregation, and
numberDOF(). The numberDOF() method uses the GraphNumberer object passed
in the constructor to number the vertices in the DOF_Group graph. Examples
of GraphNumberer subclasses that could be used by the analyst, as shown in
figure 3.3, are MinDegree and RCM, which implement the minimum degree (Tinney
and Walker, 1967) and reverse Cuthill-McKee (George, 1971) numbering schemes.
Based on the vertex numbering, the DOF_Numberer will then go through each
individual DOF _Group object in the AnalysisModel and assign equation numbers
to the degrees-of-freedom. The DOF_Numberer will then ask each FE_Element
object to determine its mapping, based on the mapping now at the DOF_Group

Chapter 3 Object-Oriented Analysis Algorithms 67

objects.

class DOF_Numberer {
public:
DOF _Numberer();
DOF_Numberer(GraphNumberer &theGraphNumberer);
virtual DOF _Numberer();

virtual void setLinks(AnalysisModel &theModel);
virtual int numberDOF(void);

Figure 3.25: Interface for the DOF_Numberer Class

3.4.9 SystemOfEqn and Solver Classes

The SystemOfEqn object is responsible for storing the systems of equations
used in the analysis. The Solver object is responsible for performing the numerical
operations on the SystemOfEqn object. The SystemOfEqn and Solver classes
are abstract base classes. For the solution of static and transient problems using an
incremental solution strategy two subclasses are defined: LinearSOE and Linear-

Solver.

1. LinearSOE: The LinearSOE object is responsible for storing linear system
of equations. For this research the linear system of equations stored by a Lin-
earSOE object is of the form Ax = b, where A is a matrix, and x and b are
vectors. The LinearSOE class, whose interface is shown in figure 3.26, provides

the following:

(a) setSize(): This is a method to allow the LinearSOE object to determine
its storage requirements and sparsity pattern. A Graph object is used
to supply this information. The vertices of the Graph object passed in
a structural analysis are labeled based on the ordering of the degrees-
of-freedom which has been determined by the DOF_Numberer. The

LinearSOE object may internally renumber the equations in an attempt

Chapter 3

Object-Oriented Analysis Algorithms 68

(f)

to improve on the numbering scheme. This may be done provided the
results are returned in the original ordering scheme and that a domain
decomposition method, which will be discussed in chapter 4, is not being
employed. The use of the Graph object, to provide the information on
the connectivity of the matrix, is important, as it allows the analyst to
specify the type of LinearSOE to use in the analysis. Without this the
LinearSOE objects would have to be created inside the Analysis object,
with the correct arguments for that particular subclass of LinearSOE

provided by the Analysis object.
Methods are provided to zero out and to add to A and b.

setX(): This is a method to set the values of x. This is needed, for ex-
ample, when using an iterative approach to solving the equations and an

approximate solution is known.

The constructor takes as an argument the Solver object. A method,
setSolver(), is also provided to allow the analyst to change the Solver

during the course of an analysis.

Methods are provided to solve the system of equations and return the

computed result.

getNumEqn: This is a method which will return the number of equations

in the system.

The LinearSOE class is an abstract class. Examples of subclasses which are
provided are: BandSPDLinearSOE, SparseSPDLinearSOE, BandGen-
eralLinearSOE, and EleByEleLinearSOE. The LinearSOE objects do not

have to actually store the components of the system. For example, an Ele-

ByEleSOE does not store the A matrix and no operations are performed by

the object on invocations of the addA(), it does however provide an EleByE-

leSolver object with access to the FE_Elements.

2. LinearSolver: The LinearSOESOIlver object is responsible for solving the

system of equations stored in a LinearSOE object. The LinearSolver class

Chapter 3 Object-Oriented Analysis Algorithms

class LinearSOE : public SystemOfEqn {
public:
LinearSOE(LinearSolver &theSolver) ;
virtual LinearSOE() ;

virtual int setSize(Graph &theDOF _Graph);
virtual int getNumEqn(void) const =0;

virtual int addA(const Matrix &, const ID &, double fact = 1.0) =0;
virtual int addB(const Vector &, const ID &, double fact = 1.0) =0;

virtual void zeroA(void) =0;
virtual void zeroB(void) =0;

virtual void setX(int loc, double value) =0;
virtual int setSolver(LinearSolver &newSolver);

virtual int solve(void) = 0;

virtual const Vector &getX(void) = 0;
virtual const Vector &getB(void) = 0;
virtual double normRHS(void) = 0;

Figure 3.26: Interface for the LinearSOE Class

Chapter 3 Object-Oriented Analysis Algorithms 70

is an abstract class. At least one subclass is provided for each LinearSOE
subclass. The LinearSolver class, whose interface is shown in figure 3.27,
define one method analyze(). While generic solvers could have been developed,
i.e. GaussianElimination, ConjugateGradient, etc., specific solvers are
written for each LinearSOE subclass. This is done to improve performance,
which can be achieved by taking into account sparsity of the equations and
allowing the solvers to work directly on the data without needing to go through

an interface.

class LinearSolver: public Solver {
public:
Solver();
virtual Solver();

virtual int solve(void) = 0;

Figure 3.27: Interface for the LinearSolver Class

The system of equations is solved when the solve() routine is invoked. The
LinearSOE and LinearSolver are purely numerical objects, that is their in-
terface has no finite element specific arguments. This allows for the use of
outside libraries and hence does not require the analyst to write LinearSolver
subclasses. For example, the solver for the BandSPDLinSOESolver class
calls the LAPACK (Anderson et al., 1995a) library, as shown in figure 3.28.

Analysts can of course still provide their own solvers, as in the case of the
element-by-element conjugate gradient solver, whose interface and solve() method

are as shown in figure 3.29.

The separation of the system of equation and solver into two separate classes
allows the analyst to change between different solvers as the solution progresses. For
example, the analyst may wish to use a direct solver initially and then go to an
iterative solver later.

While Matrix and Vector objects could be used instead of the SystemOfEqn

and Solver objects, as is done in Archer (1996), combining the matrix and vector

Chapter 3 Object-Oriented Analysis Algorithms 71

DirectBandSPDLinSOESolver::solve() {
// solve AX = B
if (factored == false)
dpbsv_("U",&n,&kd,&nrhs,Aptr,&IdA,Bptr,&IdB,&info);
else
dpbtrs_("U”,&n,&kd,&nrhs,Aptr,&IdA,Bptr,&IdB,&info);
factored = true;

Figure 3.28: Pseudo-Code for the DirectBandSPDLinSOESolver classes solve
Method

data into one object results in more efficient code, as the operations do not have
to go through the Matrix and Vector interfaces to obtain components. Also, for
common storage schemes, i.e. profile and sparse, the writer of a LinearSOE class
will not have to implement methods for adding, subtracting, multiplying by other

LinearSOE classes, methods which will probably never be used by the analyst.

3.5 Example Programs

Using the classes presented in sections 2.2 and 3.4, pseudo C++ code is now

presented to demonstrate the flexibility and extensibility of the new approach.

3.5.1 Flexibility

To demonstrate flexibility, consider the changes that an analyst would have to
make to modify the analysis performed on a structure. The main routine for a program
to perform a static nonlinear analysis using the transformation method to enforce
constraints, a reverse Cuthill-McKee DOF numbering scheme, the Newton-Raphson
solution algorithm, and a banded symmetric positive definite system of equations,

which is solved by a direct solver, is as follows:

003 Domain theDomain();

004 DeltaWing theModelBuilder(theDomain)
005 theModelBuilder.buildModel();

006

007 /* create the analysis */

Chapter 3 Object-Oriented Analysis Algorithms

72

class EleByEleCGStaticSolver: public EleByEleSolver
public:
EleByEleCGSolver(double tol = 1.0e-6);
int solve(void);
private:
double TOL;
EleByEleLinearSOE *theLinearSOE

}

EleByEleCGSolver::solve(void) {

Vector &x = theLinearSOE->getX()

Vector &r = thelinearSOE->getB()

Vector x.Zero()

Vector p(r)

Vector Ap(p.Size())

double rdotr =r * r

while (sqrt(rdotr) > TOL) {
Ap.zero()
FE_Iter &theFes = thelLinearSOE->getFEs()
while ((FE_Element *theEle = theFEs()) # 0) {

Ap.Assemble(theEle->getTangForce(p), theEle->getlD())

double v = rdotr/(p*Ap)
x += p*y

r-=Ap * vy

double oldrdotr = rdotr
rdotr =r *r

double § = rdotr/oldrdotr
p=r+(p*p)

Figure 3.29: An Element By Element Solvers Interface and solve Method

Chapter 3 Object-Oriented Analysis Algorithms 73

008 Transformation theConstraintHandler;

009 RCM theGraphNumberer;

010 DOF_Numberer theDOFNumberer(theGraphNumberer);

011 AnalysisModel theModel;

012 DirectBandSPDSOE theSolver;

013 BandSPDSOE theLinearSOE(theSolver);

014 StaticIntegrator thelntegrator;

015 NewtonRaphson theSolnAlgo;

016 StaticAnalysis theAnalysis(theDomain, theConstraintHandler,
017 theDOFNumberer, theModel, theSolnAlgo, thelntegrator, theLinearSOE);
018

019 /* perform the analysis */

020 theDomain.setLoadCase(1);

021 theAnalysis.analyze;

022

To change from a non-linear problem to a linear problem, the analyst replaces line

015 in the original with the following:

015 Linear theSolnAlgo;

The analyst now wishes instead to use the minimum-degree algorithm and a sparse
matrix storage scheme and a conjugate gradient solver. This requires replacing lines
009, 012 and 013 in the original with the following:

009 MinDegree theGraphNumberer;
012 ConjugateGradientSparseSPDSOE theSolver;
013 SparseSPDSOE theLinearSOE(theSolver);

To perform a non-linear step-by-step dynamic analysis using the Newmark inte-
gration strategy, with constants 5 =1/4 and v = 1/2, on the domain, lines 014, 016

and 017 in the original are replaced with the following:

014 Newmark thelntegrator(1/4, 1/2);
016 DirectIntegrationAnalysis theAnalysis(theDomain,theConstraintHandler,
017 theDOFNumberer, theModel, theSolnAlgo, thelntegrator, theLinearSOE);

3.5.2 Extensibility

To demonstrate the extensibility of the new framework, sample code to implement

the BFGS solution algorithm, a quasi-Newton algorithm, is presented:

Chapter 3

Object-Oriented Analysis Algorithms 74

100 class BFGS: public EquiSolnAlgo

101
102
103
104
105
106
107
108
109
110
111

125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

150
151
152
153
154
155
156
157
158
159
160
161
162
162
163
164
165
166
167
168
169

}

public:

BFGS(int maxSteps, int numlincr, double tol, double Gtol, double maxSearch);
int solveCurrentStep(void);

void computeDirection(int numStep);

void lineSearch();

void computeTrialUnbalance(Vector & AUtrial, Vector &trialUnbalance);

private:

double TOL;
int numLoadlncr, maxSteps;
Vector unbalance,oldUnbalance,d,a,b,dl,yl,AU

BFGS::solveCurrentStep{

}

thelntegrator->formUnbalance()

thelntegrator->formTangent()

unbalance = theLinearSOE->getRHS()

d.zero()

numStep = 0

while (unbalance.norm() > TOL && numSteps < maxSteps) {

this->computeDirection()
this->lineSearch()
thelntegrator->update(d)
thelntegrator->formUnbalance()
oldUnbalance = unbalance

unbalance = theLinearSOE->getRHS()
numStep++

BFGS::computeDirection(int numStep) {

if (numStep == 0) {

theLinearSOE->solve()
d = theLinearSOE->getX()

} else {

~l = unbalance - oldUnbalance

w[numStep] = (1/(d1*~1)) * 4l

v[numStep] = (1-s*sqrt((d*~l1)/(d1*oldUnbalance)))*oldUnbalance-unbalance
double y = w[numStep]*unbalance

y = unbalance + y*v[numStep]

for (int j=numStep-1; j>0; j——) {

v =w[j] *y
x=y+ (V[] *v)
y =x

theLinearSOE->solve(y)

x = theLinearSOE->getX()

v = v[1]*x

y =x+7*wl]

for (int j=2; j <= numStep; j++)
y=V[]*b

Chapter 3 Object-Oriented Analysis Algorithms 75
170 x =y + (wli] *7)

171 y =X

172 }

173 d=y

174 }

175 }

176

180 BFGS::lineSearch() {

181 // find an interval [sa,sb] containing a root

182 sa = 0.0

183 sb = 1.0

184 Ga = d*unbalance

185 AUtrial = AU + d

186 this->computeUnbalance(AUtrial,trialUnbalance)
187 Gb = d*trialUnbalance

188 while (Ga*Gb > 0 && sb < maxSearch) {

189 sa =sb

190 sb = 2.0%sa

191 Ga = Gb

192 AUtrial = AU + (d * sb)

193 this->computeUnbalance(AUtrial,trialUnbalance)
194 Gb = d*trialUnbalance

195 }

196

197 if (Ga * Gb > 0) {

198 // if no interval found use a regular Newton step
199 AU +=d

200 ol =d

201 } else {

202 use regula-falsi to determine the root

203 numlter = 0

204 while (abs(Ga-Gb) < Gtol && (numlter < maxlter)) {
205 step = sa - Ga*(sa-sb)/(Ga-Gb)

206 AUtrial = AU + d*step

207 this->computeUnbalance(AUtrial,trialUnbalance)
208 Gstep = d*trialUnbalance

209 if (Gs*Ga > 0) {

210 sa = step

211 Ga = Gstep

212 } else {

213 sb = step

214 Gb = Gstep

215 }

216 }

217 AU += d*sb

218 }

219 }

220

Chapter 3 Object-Oriented Analysis Algorithms 76

To change the original program to perform an analysis using this solution al-
gorithm with a maximum of 100 iterations, a maximum of 10 Regula-Falsi steps, a
convergence tolerance of le-3, and a maximum search length of 2.0, the analyst simply

replaces line 015 in the original main program with:

015 BFGS theSolnAlgo(100,10,1e-3,2.0);

This example demonstrates that, with less than 100 lines of code, the analyst can
introduce a new class into the system. The BFGS class provides a new EquiSol-
nAlgo subclass, which can be used in any analysis which requires a EquiSolnAlgo
class. This greatly increases the number of possible analysis options that are available

to the analyst.

3.6 Extension of Framework to Other Types of

Analysis Procedures

The framework can be extended to include other types of analysis procedures,
such as eigenvalue analysis, modal transient analysis, and static pushover. For each
new analysis procedure, subclasses of the basic classes in the aggregation must be
defined. This section describes what changes to the framework are made to include

eigenvalue analysis and modal transient analysis.

3.6.1 Extensions for Eigenvalue Analysis

In solid mechanics and structural engineering, the determination of the buckling
load and the determination of the natural frequencies and mode shapes of struc-
tures is a common operation. An eigenvalue analysis is concerned with finding these

quantities. They are obtained from solving either of the following:

1. Standard eigenvalue problem K® = ®A for case of buckling problem. There
are many ways to solve the problem, for example Singular Value Decomposition,
Jacobi, Householder Tridiagonalization, Vector Iteration and Rayleigh Quotient

Iteration.

Chapter 3 Object-Oriented Analysis Algorithms 7
| EigenvaueAralysis >
&

o

® o | BandDiagEigenSOE ‘ StandardEigenSolver ‘ ‘GmeralizedEigenSolver‘

o
‘ RayleighBandDiagEigenSolver‘

ConslraintHandIef‘ ‘ DOF_Numbe(er‘ ‘ AnalysisModel ‘ ‘ Eigenvalueﬁlgo‘ ‘Eigefwaluelntegraior

‘ Node +—¢ DOF_Group ‘ ‘ FE_Element }—+ Element

Figure 3.30: Class Diagram for Eigenvalue Analysis

2. Generalized eigenvalue problem K® = M®A for case of natural modes and
frequencies problem. There are again many ways to solve the problem: Vector
iteration methods, Rayleigh quotient iteration, and Lanczos iteration methods.
If M is symmetric positive definite, the problem can be transformed to the

standard eigenvalue problem,

To extend the analysis framework to include eigenvalue analysis, the framework
shown in figure 3.30 is used. The new classes introduced for this framework, which

are shaded in figure 3.30, are:

1. EigenvalueAnalysis: The EigenvalueAnalysis object is created by the an-
alyst to perform an eigenvalue analysis on the Domain. The object is, as
shown in figure 3.30, an aggregation of objects of the following types: Con-
straintHandler, DOF_Numberer, EigenvalueAlgo, Eigenvaluelntegra-
tor, AnalysisModel, and EigenvalueSOE. The constructor to the Eigen-
valueAnalysis class, whose interface is shown in figure 3.31, verifies the objects

passed as arguments are of the correct type. The class provides three methods:

(a) domainChanged(): This method sets the links needed by the objects in the
aggregation, invokes handle() on the ConstraintHandler, invokes num-
ber() on the DOF_Numberer, setSize() on the EigenSOE, and analy-
sisModelChanged() on the EigenvalueAlgo and Eigenvaluelntegrator

objects.

Chapter 3 Object-Oriented Analysis Algorithms 78

(b) analyze(): This is the method which is invoked to perform the eigenvalue
analysis. To do this it invokes domainChanged() on itself, and then solve-

CurrentStep() on the EigenvalueAlgo object, as shown in figure 3.32.

(c¢) updateMode(): This is a method to update the nodal displacements with
the values in the eigenvector for a specific mode. This is done by invoking
update() on the EigenvalueIlntegrator object with the correct eigenvec-
tor. The method returns the value of the eigenvalue for the specified mode.

The method is as shown in figure 3.32.

class EigenvalueAnalysis: public Analysis {
public:

EigenvalueAnalysis(Domain &theDomain,
ConstraintHandler &theHandler,
DOF_Numberer &theNumberer,
AnalysisModel &theModel,
EigenvalueAlgo &theSolnAlgo,
EigenvalueSOE &theSOE,
EigenvalueSOESolver &theSolver,
Eigenvaluelntegrator &theEigenIntegrator);

virtual EigenvalueAnalysis();

virtual int domainChanged(void);
virtual int analyze(void);
virtual double updateMode(int mode);

Figure 3.31: Interface for the EigenvalueAnalysis Class

2. EigenvalueAlgo: The EigenvalueAlgo object in the analysis aggregation
orchestrates the steps in the analysis. Like the EquiSolnAlgo class, it is an
abstract class. The class provides the method setLinks(), which sets the links
needed by the object, and defines the method solveCurrentStep() to be pure
virtual. solveCurrentStep() is invoked to perform the eigenvalue analysis. The
steps taken in the analysis depend on the type of subclass of EigenvalueAlgo
used by the analyst. Examples of subclasses are Frequency and Buckling.
The solveCurrentStep() of the Buckling class, which is shown in figure 3.33, will

determine the buckling mode shapes of a Domain. The solveCurrentStep() of

Chapter 3 Object-Oriented Analysis Algorithms 79

EigenvalueAnalysis::analyze(void){
if (theDomain->hasDomainChanged() == true)
this->domainChanged();
theAlgorithm->solveCurrentStep();
analysisDone = true;

}
EigenvalueAnalysis::updateMode(int mode){
if (analysisDone == flase)
this->analyze();
const Vector &¢ = theSOE->getp(mode);
thelntegrator->update(¢);
return theSOE->getA(mode);
}

Figure 3.32: Pseudo-Code for Selected Methods for the EigenvalueAnalysis Class

the Frequency class, which is shown in figure 3.33, will determine the natural

modes and frequencies of a Domain.

Buckling::solveCurrentStep{
thelntegrator->formK();
theEigenvalueSOE->solve();

Frequency::solveCurrentStep{
thelntegrator->formK();
thelntegrator->formM();
theEigenvalueSOE->solve();

Figure 3.33: Pseudo-Code for the Buckling and Frequency Classes solveCurrentStep
Method

3. Eigenvaluelntegrator: The Eigenvaluelntegrator object is responsible pro-
viding methods that the EigenvalueAlgo object can use. The Eigenvalueln-
tegrator class, whose interface is as shown in figure 3.34, provides methods to
form the K and M matrices, and methods to instruct the FE_Element and

DOF _Group objects how to determine their contribution to these matrices.

Chapter 3 Object-Oriented Analysis Algorithms 80

The class also provides a method update(), which will set the trial displace-
ment at the Node objects equal to those values specified in the eigenvector

passed as the argument.

class Eigenvaluelntegrator : public Integrator {
public:
Eigenvaluelntegrator();
virtual Eigenvaluelntegrator();

virtual void setLinks(AnalysisModel &, EigenvalueSOE &);
virtual void analysisModelChanged(void);

// methods to from the M and K matrices
virtual int formK();
virtual int formM();

// methods to instruct the FE_Elements and DOF_Group

// objects how to determine their constributions to M and K
virtual int formEleTangK(FE_Element *theFeEle);

virtual int formEleTangM(FE_Element *theFeEle);

virtual int formNodTangM(DOF_Group *theDOFgrp);
virtual int update(const Vector &¢);

Figure 3.34: Interface for the EigenvalueIlntegrator Class

4. EigenvalueSOE: The EigenvalueSOE object is responsible for storing the K,
M, and ® matrices, for storing the A vector, and for providing access to ® and
A. The EigenvalueSOE class, whose interface is shown in figure 3.36, is an
abstract class which defines the methods that all subclasses must provide. These
include methods to add to the K and M matrices. In addition they include the
methods get®(), which will return all the eigenvectors, get¢(), which will return
a single eigenvector, getA(), which will return all the eigenvalues, getA(), which
will return a single eigenvalue, and solve(), which will invoke solve() on the

associated EigenvalueSolver object.

Subclasses of EigenvalueSOE are written for the different matrix storage

schemes, as were provided for the LinearSOE class in section 3.4.9.

5. EigenvalueSolver: The EigenvalueSolver object is responsible for comput-

Chapter 3 Object-Oriented Analysis Algorithms 81

Eigenvaluelntegrator::formEleTangK(FE_Element *theEle) {
theEle->zeroTang();
theEle->addKtoTang();

}

Eigenvaluelntegrator::update(Vector & ¢) {
DOF _lter theDofs = theAnalysisModel->getDOFs();
while ((dofPtr = theDOFs()) # 0)
dofPtr->setDisp(¢);

Figure 3.35: Pseudo-Code for Selected Methods of the EigenvalueIntegrator Class

class EigenvalueSOE : public SystemOfEqn {
public:
EigenvalueSOE(EigenSolver &theSolver);
virtual EigenvalueSOE();

virtual int setSize(Graph &theDOFGraph) =0;
virtual int addK(const Matrix &, const ID &, double fact = 1.0) =0;
virtual int addM(const Vector &, const ID &, double fact = 1.0) =0;

virtual void zeroK(void) =0;
virtual void zeroM(void) =0;

virtual int solve(void) = 0;

virtual const Matrix &get®() = 0;

virtual const Vector &get¢(int mode) = 0;
virtual const Vector &getA() = 0;

virtual const double &getA(int mode) = 0;

Figure 3.36: Interface for the EigenvalueSOE Class

Chapter 3 Object-Oriented Analysis Algorithms 82

ing ® and A, given the K and M matrices stored in the EigenvalueSOE
object. The EigenvalueSolver class, which is an abstract class, has two sub-
classes StandardEigenSolver and GeneralizedEigenSolver, which also are
abstract classes. Subclasses of these two classes are provided for each Eigenval-
ueSOE subclass. Each subclass provides its own implementation of the solve()
method. For EigenvalueSOE classes, which use standard storage schemes,
calls can be made to existing libraries, e.g. LAPACK (Anderson et al., 1995a),
to determine the eigenvalues and eigenvectors. The design for this class closely
resembles the design for the LinearSolver class, which was presented in sec-

tion 3.4.9.

3.6.2 Extensions for Modal Transient Analysis

A modal transient analysis performs a transient analysis, as outlined in section 3.2,
but uses a transformed system of equations. The system of equations are transformed
so that: (1) the system is less computationally expensive to solve, for example K* of
equation 3.18 will be diagonal in the transformed system and/or (2) the transformed
system of equations has significantly fewer equations.

In a modal transient analysis we replace the original system with a transformed
system. In the case of a linear transient problem, the original system of equations

can be expressed in matrix form as:

MU(t) + CU(t) + KU(t) = P(¢) (3.26)
This system is replaced by the transformed system:

(T"MT) X(¢) + (TTCT) X(t) + (T"KT) X(t) = T"P(t) (3.27)

where the two systems are related through the expression U(t) = TX(t). Once
the system has been transformed, a transient analysis, similar to that outlined in
section 3.2, can be performed. There are many types of transformation matrices T
which can be used. In practice T is either the eigenvectors for K& = M®A, or
derived Ritz or Lanczos vectors (Chopra, 1995).

Chapter 3 Object-Oriented Analysis Algorithms 83
ModalTvansmlAnalysjs)O—{ i | "')F} "?‘

LinearSOE LinearSOESolver

[ConstraintHandier | | DOF_Numberer | [Analysisviodel | [EigenvalueAlgo | [Eigenvaluelntegrator | | ModaTransientAlgo | [DirectTransientintegrator | | Modal Transientintegrator

[N \

.o
[Node $——DOF Group | [FE_Element |——¢ Element [tinertodd] [NeworRepheonitodd |

Figure 3.37: Class Diagram for Modal Transient Analysis

To extend the framework to include modal transient analysis, the framework
shown in figure 3.37 is used. The new classes introduced for this framework, which

are shaded in figure 3.37, are:

1. ModalTransient Analysis: A ModalTransient Analysis object is created
by the analyst to perform a modal transient analysis on the Domain. The ob-
ject, as shown in figure 3.37, is an aggregation consisting of objects of the follow-
ing type: ConstraintHandler, DOF_Numberer, AnalysisModel, Modal-
Transient Algo, LinearSOE, Direct TransientIntegrator, EigenvalueSOE,
Eigenvaluelntegrator and ModalTransientIntegrator. The ModalTran-
sient Analysis class, whose interface is shown in figure 3.38, provides a con-
structor which will verify the correct types of objects are passed as arguments.
In addition the methods domainChange(), which sets up the links needed and
invokes start up methods in the aggregate objects, and analyze(), which is in-
voked by the analyst to perform the analysis, are provided. The analyze method

is shown in figure 3.39.

2. ModalTransientIntegrator: The ModalTransientIntegrator class has two
methods: setlLinks() which sets up a link to the AnalysisModel object, and
update(). The update() method, as shown in figure 3.40, is responsible for setting
the transformation matrix T at each FE_Element and DOF_Group object
in the AnalysisModel.

3. ModalTransient Algo: The ModalTransient Algo object specifies the steps
to be performed in the modal transient analysis. The ModalTransient Algo

Chapter 3 Object-Oriented Analysis Algorithms 84

class ModalTransientAnalysis: public TransientAnalysis {
public:

ModalTransientAnalysis(Domain &theDomain,
ConstraintHandler &theHandler,
DOF_Numberer &theNumberer,
AnalysisModel &theModel,
ModalTransientAlgo &theSolnAlgo,
LinearSOE &theSOE,
DirectTransientIntegrator &theDirectTransientIntegrator);
EigenvalueSOE &theSOE,
Eigenvaluelntegrator &theEigenIntegrator);

virtual EigenvalueAnalysis();

virtual int domainChanged(void);
virtual int analyze(void);

Figure 3.38: Interface for the ModalTransient Analysis Class

ModalTransientAnalysis::analyze{

double time = tStart;

while (time < tFinal) {
thelntegrator->newStep(At);
theAnalysisModel->applyLoadDomain(time);
theAlgorithm->solveCurrentStep();
theAnalysisModel->commitDomain();
time += At;

Figure 3.39: Pseudo-Code for the ModalTransient Analysis Classes analyze Method

ModalTransientIntegrator::update(const Matrix &®) {
FE_Elelter theEles = theAnalysisModel->getFEs();
while ((feElePtr = theEles()) # 0)

feElePtr->set Transformation(®);
DOF _Iter theDofs = theAnalysisModel->getDOFs();
while ((dofPtr = theDOFs()) # 0)
dofPtr->setTransformation(®);

Figure 3.40: Pseudo-Code for the MlodalTransientIntegrator Classes update Method

Chapter 3 Object-Oriented Analysis Algorithms 85

class is an abstract class with two methods: setlinks(), which sets up links
to the objects in the aggregation; and solveCurrentStep, which is declared as
pure virtual. Examples of subclasses of ModalTransient Algo are, as shown
in figure 3.37, LinearModal and NewtonRaphsonModal. For the subclass
LinearModal, the method, which is shown in figure 3.41, will form the trans-
formation matrix on the first invocation of the method, and will thereafter

simply perform the linear iteration scheme defined for the Linear class.

LinearModal::solveCurrentStep{

// transform the system if not already done so

if (transformedSystem == false) {
theEigenIntegrator->formK(); // we use eigen integrtor to
theEigenIntegrator->formM(); // set up the eigen equations
theEigenSOE->solve();
theModalTransientIntegrator->update(theEigenSOE->get®());
transformedSystem = true;

theDirect TransientIntegrator->formNodalUnbalance();
theDirect Transientlntegrator->formElementResidual();
theDirect TransientIntegrator->formTangent();
theLinearSOE->solveX();

Vector &AU = thelLinearSOE->getX();

theDirect TransientIntegrator- >updatelncr(AU);

Figure 3.41: Pseudo-Code for the LinearModal Classes solveCurrentStep Method

For the subclass NewtonRaphsonModal, wherein the transformation ma-
trix is computed at the beginning of each step, the method is as shown in
figure 3.42. The method is similar to the NewtonRaphson classes solveCur-
rentStep() method, the difference being that a transformationmatrix is calcu-

lated at the start of each iteration.

Chapter 3 Object-Oriented Analysis Algorithms 86

NewtonRaphsonModal::solveCurrentStep{
// update the mode shapes for the current step if convergence slow
if (numlterationsLast > numlterationsRecalcEigen) {
theEigenIntegrator->formK();
theEigenIntegrator->formM();
theEigenSOE->solve();
theModalTransientIntegrator->update(theEigenSOE->get®());

// now perform NR on the reduced system

theDirect TransientIntegrator->formUnbalance();

int numlterationsLast = 0;

while (theLinearSOE->normRHS() > TOL) {
theDirect TransientIntegrator->formTangent();
theLinearSOE->solveX();
Vector &AU = theLinearSOE->getX();
theDirectTransientIntegrator->updatelncr(AU);
theDirectTransientlntegrator->formUnbalance();
numlterationsLast += 1;

Figure 3.42: Pseudo-Code for the NewtonRaphsonModal Classes solveCurrentStep
Method

Chapter 3 Object-Oriented Analysis Algorithms 87

The interface for the FE_Element and DOF _Group classes must also be modi-
fied. This is so the transformed system, equation 3.27, is solved and not the original
system, equation 3.26. In a modal transient analysis, the FE_Elements are required
to return TTKT and T?P? on invocation of getTang() and getResidual(). To allow
this, an additional method setTransformation() is added to the FE_Element interface.
The DOF _Groups return T"K?* T and T? P} on invocation of getTang() and getUn-
balance(). They also update the nodal response quantities with TX, TX and TX,
when setting the trial response quantities at the nodes. To allow this, the method

set Transformation() is added to the DOF_Group interface.

88

Chapter 4

Object-Oriented Domain

Decomposition

In this chapter an object-oriented design for domain decomposition is presented.
The design provides for the implementation of a number of domain decomposition
methods used in finite element analysis, using a hierarchy similar to that presented in
chapter 3. Many of the classes defined in chapter 3 are re-used for domain decompo-
sition, further demonstrating the extensibility of the object-oriented design presented

for the analysis algorithms.

Chapter 4 Object-Oriented Domain Decomposition 89

4.1 Introduction

Divide and conquer is an age old technique used to solve large problems. In struc-
tural analysis, the divide and conquer approach is typically associated with the sub-
structuring method, a domain decomposition method for solving the the large systems
of equations, given by equation 3.18, arising from refined finite element discretizations
of a problem. Domain decomposition techniques are commonly employed because:
(1) for linear problems, in which the geometry repeats itself, the subdomain infor-
mation required in the analysis algorithm need only be formulated once for identical
subdomains; (2) if memory is limited there is the potential to solve much larger prob-
lems using secondary storage; (3) superior convergence rate of domain decomposition
methods over other iterative methods; and (4) potential for efficient parallelization
because of data locality.

This chapter presents a brief review of the domain decomposition methods com-
monly employed for finite element analysis. A review is made of existing object-
oriented approaches to domain decomposition. Finally a new object-oriented ap-

proach for domain decomposition is presented.

4.2 Domain Decomposition Methods for Finite

Element Analysis

Domain decomposition methods are methods used for solving linear or non-linear
problems. What distinguishes domain decomposition methods from other methods,
such as the multifront method, is that information about the discretization of the
domain is used, i.e. the element connectivity is used explicitly to determine the

subdomains. Domain decomposition methods are classified into two groups:

1. Non-overlapping methods: The domain) is decomposed into several disjoint
subdomains €2; such that Q2 = |, €2;. Examples of non-overlapping methods are
substructuring, iterative substructuring, and finite element tearing and inter-

connecting (FETI) (Farhat and Roux, 1991; Farhat and Crivelli, 1994).

Chapter 4 Object-Oriented Domain Decomposition 90

Figure 4.1: Domain split into Two Subdomains

2. Querlapping methods: The domain is decomposed into several slightly overlap-

ping subdomains. Examples of overlapping methods are the Schwartz methods.

Of the two groups of methods, the non-overlapping methods are typically the ones

used in finite element analysis, and are the ones that will be examined in this chapter.

4.2.1 Non-overlapping Domain Decomposition Methods

Consider a domain {2 split into two disjoint subdomains €2; and €25, with a bound-
ary surface between the domains I'; 5, as shown in the figure 4.1. The unknowns in
the matrix equation 3.18 are partitioned into three sets: those corresponding to the
unknowns in €2; denoted Uy, those corresponding to the unknowns in €2, denoted Us,
and those corresponding to the unknowns on I'; » denoted Us. The matrix equation

can be rewritten in block partitioned form as

Ki;y 0 Kj3 U, P,
0 Kixp Kby U, = P, (4-1)
Kz Kz Kijs U; P;

where K33 = K3, + K3;, i.e. K33 contains contributions from elements in both 4
and 5. The unknowns U; and Us; can be eliminated from the system, using the

Schur complement of K33 in K. The resulting Schur complement system is

K;,U; = P; (4.2)

Chapter 4 Object-Oriented Domain Decomposition 91

where

K3 = K:l),?, - KKy 'K+ K§3 — K3Kop 'Kos
= K3 + K3 (4.3)

and

P; = P; — K3 K{'Py + P3 — K3 K5, Py
=P;* + P (4.4)
This concept can be extended to domains wherein the domain is split into an
arbitrary number of subdomains, ns. For each subdomain, the unknowns are parti-
tioned into two sets: those corresponding to the internal unknowns, U,;, and those

corresponding to the external unknowns, U,. For each subdomain, s = 1,2, ..ns, the

subdomain equation K,U, = P, can be expressed in a partitioned form:

Ky K U; P,
= (4.5)
Kei Kee Ue Pe

The resulting Schur complement system, or the interface problem as it is some-
times called, as given by equation 4.2 for the two subdomain problem, can be ex-

pressed as:
4 K, |U= A(P*) (4.6)

s e

where for each subdomain s:

KZe = Kee - KEiK'ElKie (47)
P: =P, - K, K;'P; (4.8)

The internal unknowns for each subdomain s, U;, can be determined once U, are
known using

Ui =]E{-_;ZI(I)Z — KieUe) (49)

The reason that the domain decomposition method is useful for larger problems

is that the Schur complement system, given in equation 4.6, is much smaller than the

Chapter 4 Object-Oriented Domain Decomposition 92

original system, given in equation 3.18, and, with the good choice of subdomains, is
better conditioned. There are a number of non-overlapping domain decomposition
methods uses in finite element analysis. The most popular of these are substructuring,

iterative substructuring, and FETI.

Substructuring

The substructuring method is a direct approach to solving the equations. In this

method the solution is obtained in three steps:

1. The unknowns not on the interfaces are eliminated in a process known as static

*

condensation, to form for each subdomain K,

given in equation 4.7, and P},
given in equation 4.8. In parallel processing this step can be performed concur-

rently among subdomains located on different processors.

2. The Schur complement system, equation 4.6, is formed by assembling the con-
tributions from all subdomains. This system is then solved for the interface

unknowns.

3. The internal unknowns in each subdomain are then determined using equa-

tion 4.9. In parallel processing this step can again be performed concurrently.

Iterative Substructuring

The substructuring method can be a computationally expensive method, due to

*

*.; given by equation 4.7, for each substruc-

the need to form the Schur complement K
ture. Also, as the number of substructures grows so does the size of the Schur comple-
ment system, equation 4.6. The iterative substructuring method assumes an element-
by-element Krylov subspace iteration method, e.g. the conjugate gradient method,
is being used to solve the interface problem. The reduced system is solved without
explicitly forming the Schur complement. Using an element-by-element solver, each
subdomain is responsible for providing the matrix-vector product K} X,, as seen in

the example code in figure 3.29. This matrix-vector product can be obtained without

*

+o; using the following matrix-vector operations:

explicitly forming K

Chapter 4 Object-Oriented Domain Decomposition 93

K:eXe = KeeXe - Kei (K;Zl (KieXe)) (410)

Once convergence has been achieved for the external unknowns, the internal un-

knowns can be determined using equation 4.9.

FETTI - Finite element tearing and interconnecting

This is a domain decomposition approach which has been shown to be quite useful.
In this method the subdomains are considered to be independent of each other and
the Lagrange multiplier method is used to enforce the displacement continuity on the
subdomains interfaces, i.e. to ensure U} = U3 for the two subdomain problem.

The system of equations for the two subdomain example can be expressed as:

K, 0 B, Vi Q1
0 K2 B2 V2 = QQ (411)
BY BY 0 Ai2 0

where B = [B;By]” is a constraint matrix, V; = [U, U7, Q; = [P,P3]” and K;
is the uncondensed tangent matrix, represented by equation 3.22, for subdomain €.

Looking at the individual equations expressed in equation 4.11 and rearranging:

V1 == K;l (Q1 - B1A12) (412)
V2 == K2_1 (Q2 - B2/\12) (413)
B/V,+BjV,=0 (4.14)

multiplying equation 4.12 by BT and equation 4.13 by B and rearranging:

BK;'B;\;=B/K;'Q, - BV, (4.15)
BIK;'By\ = BIK;'Q, — BIV, (4.16)

adding equations 4.15 and 4.16 and using equation 4.14, an expression is obtained for

the Lagrange multiplier \;s:

(BTK;'B: + BJK;'B;) M2 = BIK;'Q; + BJK;'Q, (4.17)

Chapter 4 Object-Oriented Domain Decomposition 94

This concept can be extended to include multiple subdomains. The resulting system

of equations are of the form:

(Z B{K51B5> A=Y B'K,'Q, (4.18)

s=1
Once the Lagrange multipliers have been determined, the solution for the un-

knowns V; for each subdomain can be determined using:

V,=K,'(Q, — B,)\,) (4.19)

Equations 4.18 and 4.19 require the use of K;!. For a subdomain on which there
is an insufficient number of boundary conditions imposed to remove the rigid body
motion, K is singular, being positive semi-definite. In Farhat and Roux (1991)
the solution taken to overcome the problem of a positive semi-definite K, uses the
pseudo-inverse K for K;! which satisfies the Moore-Penrose conditions (Golub and
VanLoan, 1989), i.e. K; = K, K/K,, KI = K/K,K/, and K;K} and KJK; are
Hermitian. For the two subdomain case, where {25 has rigid body modes, the solution

presented in Farhat and Roux (1991) proceeds as follows:

A general solution to equation 4.13 is first expressed as:

V2 = K;— (Q2 — BQ)\IQ) + RQQ (420)

where R, is a rectangular matrix whose columns form a basis of the null space of K,
and « is a vector. R, represents the rigid body modes of)5, and « a combination of
these modes. Substituting equation 4.20 for equation 4.13, a new interface problem

for the two subdomain case can be expressed as:

(BIK{'B; + BjKJB,) A, = B/K;'Q; + B] (K{ Q. + Ruar) (4.21)

Since K, is symmetric, equation 4.13 has at least one solution if and only if the

vector (Qy — BT \;3) has no component in the null space of K, that is

Chapter 4 Object-Oriented Domain Decomposition 95

Equations 4.21 and 4.22 can be expressed as

B/K;'B, + BJK{B, —-BJR, Az | BTK;'Q: + BjK; Q;
o U e

(4.23)
where the matrix is symmetric and nonsingular and, as pointed out in Farhat and
Roux (1991), the solution of which uniquely determines V; and V.

It is interesting to note that no longer is a solution to the interface problem sought
in terms of any of the original unknowns. A direct or iterative approach to the solution
of the equations can be employed, using the same procedures outlined for substruc-
turing and iterative substructuring. The advantage of an iterative FETT method over
the traditional iterative substructuring method is that, for small numbers of subdo-
mains, it converges in fewer iterations. This is due to the fact that the eigenvalues of

the FETTI interface problem tend to accumulate near the lowest eigenvalue and there

are relatively few high eigenvalues (Farhat and Roux, 1994).

4.2.2 Domain Partitioning

In order to implement the domain decomposition methods there are several prac-

tical matters to be faced by the analyst:

1. How many subdomains to use? The number of subdomains to use depends
on the problem size and geometry and the computing resources available. For
this work, the number of subdomains is assumed to be at the discretion of the

analyst.

2. How to partition the domain? Given the finite element discretization, how is
it decomposed into subdomains. The partitioning can be done by the analyst,
but for complicated geometries or very large models this is tedious. The do-
main partitioning can be looked at as a graph partitioning problem. A good
partitioning is generally considered to be one that results in the minimum size
of the interface with partitions with roughly equal number of elements. Except

for the simplest of regular meshes this is an NP-complete problem.

Chapter 4 Object-Oriented Domain Decomposition 96

Partitioning algorithms are used in finite element analysis to partition the mesh
into subdomains for a non-overlapping domain decomposition methods. Partitioning

the mesh is done in one of two ways:

1. Edge Separator: Find a subset of element edges such that tearing the mesh
along these element edges breaks the mesh into two disconnected submeshes.
Popular edge separator algorithms are inertia, greedy (Farhat, 1988), and spec-

tral bisection (Simon, 1991)

2. Node Separator: Find a subset nodes such that removing the nodes from the
mesh breaks the mesh into two disconnected submeshes. A popular algorithm

is nested dissection (George, 1973; George and Liu, 1978).

Most algorithms which have been developed for graph partitioning provide for a
two-way partitioning if by edge separator or a three-way partitioning if by vertex
separator. To generate further partitions, if more than two subdomains are required
by the analyst, the algorithms can be applied recursively. Two recent trends in graph

partitioning are:

1. Local Improvement: Given an initial partitioning, local improvement heuris-
tics are used to improve the initial partition. A cost function is needed to
determine what is an improvement. These local algorithms include Kernighan-
Lin (Kernighan and Lin, 1970), Simulated Annealing (Kirkpatrick et al., 1983;
Flower et al., 1987; Vanderstraeten and Keunings, 1995), and Stochastic Evo-
lution (Saab and Rao, 1991; Vanderstraeten and Keunings, 1995).

2. Multilevel Approach: As graphs get larger and algorithms become more
computationally demanding, a considerable amount of time can be spent in
the partitioning phase. Instead of working on the fine mesh, the mesh is first
coarsened, a partitioning is done on the coarser mesh and the partitioning of
the finer mesh is determined from an un-coarsening of the portioned coarsened
mesh (Bui and Jones, 1993; Bernard and Simon, 1994; Karypis and Kumar,
1995b)

Chapter 4 Object-Oriented Domain Decomposition 97

4.3 Existing Object-Oriented Approaches to

Domain Decomposition

A review is now made of research on object-oriented applications to domain de-
composition. Of interest is how the designs allow for the implementation of various
domain decomposition methods and how the domain partitioning is handled. The

most notable work in this area has been presented by three groups of researchers:

<>

[superlement
|

| SuperElementType
1

F
‘ SupstructureType m
|

‘ SubstructureGeometryType £

Element

Sause and Song

Domain
| L N J
Node Element

e SuperElement £

Archer

‘ General Element ‘ ‘PartitionManager ‘ AlgorithmManager
[Eemet —| Paiion 1 Algoritm |

DOF AlgorithmicAgent

D

Miller and Rucki

Figure 4.2: Class Diagram for Existing Domain Decomposition Frameworks

1. Sause and Song: Sause and Song (1994) presents an object-oriented design for

linear static analysis using substructuring. The design handles subdomains with

Chapter 4 Object-Oriented Domain Decomposition 98

repeated geometries, which limits the memory requirements for large problems.
The classes introduced for substructuring are: SuperElement, SuperEle-
mentType, SubstructureType, and SubstructureGeometryType. The
relationships amongst them and with the other classes in the design are as
shown in figure 4.2. The SubstructureGeometryType object represents the
geometry of a group of substructures. The SubstructureType object repre-
sents geometry, material and loads. If two substructures have identical load
and geometry, they are related by one SubstructureType object. The Su-
perElementType represents geometry, material, loads and boundary degrees-
of-freedom. It performs the static condensation on the stiffness matrix and
residual load vector, which are created by the associated SubstructureType
object. There exists one SuperElementType object for each SuperElement
object. The SuperElement object is responsible for returning the condensed
stiffness matrix K, given in equation 4.7, and condensed residual load vector
P73, given in equation 4.8, when getStiff() and getResidual() are invoked by the

Domain object, which, as in Zimmermann et al. (1992), performs the analysis.

The shortcomings with this architecture, in relation to allowing multiple domain

decomposition methods, are:

(a) The design is restricted to linear static analysis problems. The interface
could be modified for linear transient analysis but not to non-linear prob-

lems involving non-linearities within subdomains.

(b) The interface is restricted to the substructuring and FETI methods, as
only getTang() and getResidual() methods are provided at the interface.
The iterative substructuring method would require an additional method

to get the product of the tangent matrix and a vector.

2. Archer: Archer (1996) presents, as an example of the extensibility of the system
briefly described in section 3.3, a Superlement class. The Superelement is a
subclass of Element, that has a Domain. This is as shown in figure 4.2. The

interface allows for both linear and non-linear static and transient analysis.

The shortcomings with this architecture, in relation to allowing multiple domain

Chapter 4

Object-Oriented Domain Decomposition 99

decomposition methods, are:

(a)

The conceptual design is flawed. A SuperElement is both an Element
and a Domain. A SuperElement does not have a Domain, as repre-
sented in the relationship between SuperElement and Domain. This
results in excessive method calls as methods that are for the SuperEle-

ment must be called by the SuperElement on the associated Domain.

For an incremental transient analysis, as outlined in section 3.2, the de-
sign causes excessive numerical computations and numerically inaccurate
results. When performing a transient analysis, the SuperElement will
be asked for its stiffness, mass and damping matrices. The matrices that
are returned are TTKT, T'MT and TTCT, where T is the transforma-
tion matrix obtained in performing the static condensation process on the
stiffness matrix. These matrices are then added to the interface problem
using:

T"MTI, + T"CTT, + T"KT (4.24)

Numerically the correct addition to the interface problem is:

T (MI, + CT, + K) T* (4.25)

where T* would be the transformation matrix in performing the static
condensation on MI, + CI} + K. The two contributions are not the same.
Furthermore the amount of computation required to form the contribution
given by equation 4.24 is considerably more than that required to form the
contribution given by equation 4.25. This can be seen from the simple fact
that to obtain T a static condensation must be performed and then there
are the subsequent operations to be performed on M and C, whereas the

contribution given by equation 4.25 is obtained in a static condensation.

3. Miller and Rucki: In this work (Rucki, 1996; Rucki and Miller, 1996), the

Partition class is a subclass of GeneralElement, as shown in figure 4.2. Each

Partition object is associated with a Algorithm object, which is responsible

for updating the state of a Partition so that it will be in equilibrium, as was

Chapter 4 Object-Oriented Domain Decomposition 100

discussed in section 3.3. The Partition interface was modified to allow a Parti-
tion to return the unbalanced load and to allow it to install its tangent stiffness
at the DOF objects (Rucki, 1996). In order for a Partition to determine its
unbalanced load contribution to the interface problem an analysis is carried out
by the Algorithm using fixed-point constraints on the interface DOF objects.
The unbalanced load for the DOF's is equal to the reaction at the DOFs that
such an analysis determines. No discussion is presented for how the Algo-
rithm object determines the tangent stiffness coefficients that are required to

be installed at the DOF objects in a DOF-by-DOF solution strategy.

The shortcomings of this design for performing the analysis was discussed in
section 3.3. The need to perform an actual analysis on the Partition before

the interface solution can be determined is an additional failing with this work.

Also, none of the above mentioned designs have classes to help in the partitioning

of the domain into subdomains.

4.4 A New Object-Oriented Approach to Domain

Decomposition

To overcome the deficiencies in the previous works, the framework shown in fig-
ure 4.3 is introduced for domain decomposition. In figure 4.3 new classes not discussed
in previous chapters are shaded. The main new classes here are PartitionedDomain,
Subdomain, DomainDecompAnalysis, DomainDecompSolver, DomainPar-
titioner, and GraphPartitioner.

The figure 4.3 also shows some of the descendents, or subclasses, of the new classes.
In the following subsections the purpose of each of these new classes is outlined, with
pseudo C++ code being presented to demonstrate the functionality of the classes and

the interplay between them.

Chapter 4 Object-Oriented Domain Decomposition 101

Linear SOESolver
‘ Parti(ionedDomain}—{ DomainPartitioner }—{ GraphPartitioner ‘ T

LN]
Metis T

AN

DomainDecompAnalysis } LinearSOE }—{ DomainSolve"
¢ I
Substructuring IterativeSubString| FETI oo SymmPosDef SOE| o
Anaysis Analysis Andysis
VAN
® o | Band SPD_SOE
k,‘onslraijand\er ‘ ‘ DOFﬁNumberer‘ ‘ AnalysisModel ‘ ‘DomainDeoompAlgo‘ ‘Incremaﬁtallntegrator ‘

Band_SPD_SOE Substructuring
Solver Solver

£

o0
IterativeSubString|
Solver

[DoF Growp | [FE_Element |

Figure 4.3: Class Diagram for New Domain Decomposition Framework

4.4.1 PartitionedDomain Class

A PartitionedDomain object is a domain that can be partitioned into Subdo-
main objects. The PartitionedDomain class is, as shown in figure 4.3, a subclass
of Domain. The PartitionedDomain class, whose interface is shown in figure 4.4,

inherits the regular Domain class interface and provides some additional methods:

1. partition(): This is a method for partitioning the Domain which invokes par-
tition() on the DomainPartitioner object passed as an argument to the con-

structor, as shown in figure 4.5.
2. addSubdomain(): This is a method for adding Subdomains.

3. getSubdomainPtr() and getSubdomains: These are are methods for accessing the

Subdomains.

Subdomains, while they could have been treated as regular elements, are treated
specially in the design for two reasons: (1) efficiency, as the DomainPartitioner
needs quick access to the Subdomains; and (2) identification, as in the implemen-
tation used to validate the design, the elements in the Domain must have unique

identifiers and the DomainPartitioner assumes that the Subdomains have tags 1

Chapter 4 Object-Oriented Domain Decomposition 102

class PartitionedDomain: public Domain {
public:
PartitionedDomain(DomainPartitioner &thePartitioner);
virtual PartitionedDomain();

// public member functions in addition to the standard domain
virtual int partition(int numPartitions);

virtual bool addSubdomain(Subdomain *subPtr);

virtual int getNumSubdomains(void);

virtual Subdomain *getSubdomainPtr(int tag);

virtual Subdomainlter &getSubdomains(void);

Figure 4.4: Interface for the PartitionedDomain Class

PartitionedDomain::partition(int numPartitions) {
theDomainPartitioner->partition(numPartitions);

Figure 4.5: Pseudo-Code for the PartitionedDomain Classes partition Method

Chapter 4 Object-Oriented Domain Decomposition 103

through ns, which would have meant that none of the elements previously added to

the PartitionedDomain would have been permitted to have used these identifiers.

4.4.2 DomainPartitioner Class

The DomainPartitioner object is responsible for partitioning a Partitioned-
Domain object. The DomainPartitioner class, whose interface is shown in fig-
ure 4.6, provides two methods: setPartitionedDomain() which is invoked by the Parti-
tionedDomain object during its construction to set the link between the two objects;
and partition(). To partition the PartitionedDomain, the DomainPartitioner ob-
tains the element graph from the PartitionedDomain and then uses its associated
GraphPartitioner object, which is passed as an argument to the constructor, to par-
tition this graph. With the partititioned element graph, the DomainPartitioner
is responsible for removing Nodes, Elements, Loads, and Constraints from the

PartitionedDomain and adding them to the appropriate Subdomains.

class DomainPartitioner {
public:

DomainPartitioner(GraphPartitioner &theGraphPartitioner);
virtual DomainPartitioner();

virtual void setPartitionedDomain(PartitionedDomain &theDomain);
virtual int partition(int numParts);

Figure 4.6: Interface for the DomainPartitioner Class

4.4.3 GraphPartitioner Class

The GraphPartitioner object is responsible for partitioning a Graph object,
i.e. coloring the Graph. The GraphPartitioner class, whose interface is shown in
figure 4.7, is an abstract class which defines the single method partition() as being pure
virtual. It is the subclasses of GraphPartitioner that provide the implementation

of this method. The partitioning strategies that can be used by these subclasses were

Chapter 4 Object-Oriented Domain Decomposition 104

discussed in section 4.2.2. Additional partitioning strategies can also be developed by

the analyst, to take advantage of the particular geometry of the model being analyzed.

class GraphPartitioner {
public:
GraphPartitioner();
virtual GraphPartitioner();

virtual int partition(Graph &theGraph, int numPart) =0;

Figure 4.7: Interface for the GraphPartitioner Class

As with the SystemOfEqn and Solver subclasses, the GraphPartitioner in-
terface was designed so that the subclasses do not need to know anything about the
finite element method. This allows work provided by researchers in other fields to be
used. For example, for the test implementation to verify the design presented in this
research, an object-oriented interface for the METIS partitioning library (Karypis and
Kumar, 1995a), Metis, was developed. In the current design, an unweighted Graph
object is supplied to the GraphPartitioner. This could be changed to a weighted
Graph, in which the vertex weights correspond to the cost of element computations
or represent the state of the element, and the edge weights are related to boundary

conditions.

4.4.4 Subdomain Class

The Subdomain class inherits from both Element and Domain, as shown in
figure 4.3, that is a Subdomain is both an Element and a Domain. The class
interface, which is as shown in figure 4.8, provides a number of additional methods

in the interface. These additional methods can be split into two groups:

1. For efficiency when performing the domain decomposition analysis, the methods
addNode(), addExternalNode(), getinternalNodelter(), and getExternalNodelter are
introduced. These allow the Subdomain objects to keep track of which nodes

are internal and which nodes are on the interface. This information is available

Chapter 4

Object-Oriented Domain Decomposition 105

class Subdomain: public Element, public Domain {

public:

Subdomain(int tag);
virtual Subdomain();

// public methods which are new or modified in their meaning
// from a regular Domain for efficiency reasons

virtual Nodelter &getinternalNodelter(void);

virtual Nodelter &getExternalNodelter(void);

virtual bool addNode(Node *);

virtual bool addExternalNode(Node *);

// methods which are new for Subdomain type Elements

virtual void setAnalysis(DomainDecompAnalysisAnalysis &theAnalysis);
virtual int computeTang(void); // to form (4.25)

virtual int computeResidual(void);

virtual int computeTangForce(const Vector &x);

virtual const Vector &getLastTangForce(void);

virtual const Matrix &getTang(void);

virtual const Matrix &getResidual(void);

// methods to compute the response at the subdomain nodes
// once the interface problem has been solved

void setFE_ElementPtr(FE_Element *theFE_Ele);

const Vector &getlLastExternalSysResponse(void);

int computeNodalResponse(void);

Figure 4.8: Interface for the Subdomain Class

Chapter 4 Object-Oriented Domain Decomposition 106

in the DomainPartitioner object, as a result of the partitioning. Providing
this information to the Subdomain means that the Subdomains do not have

to independently determine the interface Nodes.

2. Additional element type methods have been added to the interface to over-
come the numerical problems, discussed in section 4.3, that inheriting from the

Element class would cause. The new Element type methods are:

(a) computeTang(), computeResidual(), and computeTangForce(), which are me-

*
ee’

thods to perform the computation of the tangent K* , given by equa-
tion 4.7, the residual P}, given by equation 4.8, and the tangent-vector

product K? X,, given by equation 4.10.

(b) getTang(), getResidual(), and getTangForce(), which are methods to return

the results of the computations performed by the three previous methods.

(c) setFE_elementPtr(), getLastExternalSysResponse() and computeNodalRespo-
nse() which are methods used to compute the response at the Nodes in

the Subdomain given the solution to the interface problem.

(d) setAnalysis() which is used to set the associated DomainDecompAnaly-

sis object.

The Subdomain class itself does not perform the numerical computations asso-
ciated with these methods. Invocations of these methods cause similar methods
to be invoked on the DomainDecompAnalysis object associated with the
Subdomain, as shown in figure 4.9, were code fragments are presented for
formTang() and getTang() methods. With this design the analyst is able to
experiment with different domain decomposition methods without the need to
modify the Subdomain class. This follows the design principle behind associ-

ating an Analysis object with the Domain object seen in chapter 2.

Chapter 4 Object-Oriented Domain Decomposition 107

int Subdomain::formTang(void) {
return theAnalysis->condenseA();
}

const Matrix & Subdomain::getTang(void) {
return theAnalysis->getCondensedA();
¥

Figure 4.9: Psuedo-Code for Selected Methods of the Subdomain Class

4.4.5 DomainDecompAnalysis Class

The DomainDecompAnalysis object associated with the Subdomain is an ag-
gregation of objects of the following types: ConstraintHandler, DOF_Numberer,
AnalysisModel, Incrementallntegrator, LinearSOE, DomainDecompAlgo,
and DomainSolver. It is the objects in the aggregation that perform the numer-
ical computations required of a domain decomposition analysis. These objects are
created by the analyst and passed to the DomainDecompAnalysis as arguments
in the constructor. This approach, which is similar to the approach taken to the
Analysis classes presented in chapter 3, allows the analyst to select the domain de-
composition method, storage scheme for the system of equations, and solver used in
the domain decomposition analysis.

The DomainDecompAnalysis class, whose interface is shown in figure 4.10,

provides:

1. a constructor which will verify the objects passed as arguments are of the correct

type.

2. domainChanged(), a method which is invoked by the DomainPartitioner ob-
ject on completion of the partitioning to set links and invoke set up functions

on the objects in the aggregation.

3. getNumExternalEqgn(), formTangent(), formResidual(), formTangVectProduct(),
getTangent(), getResidual(), and getTangVectProduct(), which are the methods

invoked by the Subdomain object, as was discussed in the previous section, to

Chapter 4 Object-Oriented Domain Decomposition 108

perform the numerical computations and to return the results of these compu-

tations.

class DomainDecompAnalysis: public StaticAnalysis {
public:
DomainDecompAnalysis(Subdomain &theDomain,
ConstraintHandler &theHandler,
DOF_Numberer &theNumberer,
AnalysisModel &theModel,
DomainDecompAlgo &theSolnAlgo,
LinearSOE &theSOE,
Incrementallntegrator &thelntegrator,
DomainSolver &theSolver);

virtual StaticCondensationAnalysis();

virtual int analyze(void);
virtual int domainChanged(void);

// methods called by the subdomain object
virtual int getNumExternalEqn(void);

virtual int computelnternalResponse(void);
virtual int formTangent(void);

virtual int formResidual(void);

virtual int formTangVectProduct(Vector &force);
virtual const Matrix &getTangent(void);

virtual const Vector &getResidual(void);

virtual const Vector &getTangVectProduct(void);

Figure 4.10: Interface for the DomainDecompAnalysis Class

The actual numerical computations are performed by the objects in the aggrega-
tion at the request of the DomainDecompAnalysis object, as shown in figure 4.11.

For example the IncrementalIntegrator object is responsible for forming K, equa-

*
eer

tion 3.19, and P, equation 3.20. The subsequent forming and retrieval of of K
equation 4.7, P}, equation 4.8, and the product K} X., equation 4.10, are the re-

sponsibility of the DomainSolver object.

Chapter 4 Object-Oriented Domain Decomposition 109

int DomainDecompAnalysis::formTangent(void) {
thelntegrator->formTangent();
return theDomainSolver->condenseA(numlintEqn);

}

const Matrix & DomainDecompAnalysis::getTangent(void) {
return theDomainSolver->getCondensedA();
}

int DomainDecompAnalysisAnalysis::computelnternalResponse(void) {
return theAlgo->solveCurrentStep();
}

Figure 4.11: Pseudo-Code for Selected Methods for the DomainDecompAnalysis
Class

4.4.6 DomainDecompAlgo Class

The DomainDecompAlgo object is responsible for updating the response at
the Node objects in the Subdomain.The DomainDecompAlgo, whose interface
is shown in figure 4.12, provides the methods: setlinks(), which will set the links to
the other objects; and solveCurrentStep(), which will cause the response quantities at
the Nodes in the Subdomain to be updated. To update the nodal responses, the
DomainDecompAlgo object asks the Subdomain for the last interface response
for the Subdomains external degrees-of-freedom. It then invokes methods in the
DomainSolver object to set the response at the external degrees-of-freedom (the
A if a FETI Solver is being used) and to determine the response at the internal
degrees-of-freedom (the internal and external degrees-of-freedom if a FETI _Solver).
The Integrator object is then asked to update the nodal responses. This is as shown

in figure 4.13.

4.4.7 DomainSolver Class

The DomainSolver object is responsible for performing all the numerical com-
putations required for a domain decomposition analysis. As the computations depend

on the type of domain decomposition method, a subclass is provided for each type of

Chapter 4 Object-Oriented Domain Decomposition 110

class DomainDecompAlgo: public StaticEquiSolnAlgo {
public:

DomainDecompAlgo();
virtual DomainDecompAlgo();

virtual int solveCurrentStep(void);

void setLinks(DomainDecompAnalysis &theAnalysis,
AnalysisModel &theModel,
Incrementallntegrator &thelntegrator,
LinearSOE &theSOE,
DomainSolver &theDomainSolver,
Subdomain &theSubdomain);

Figure 4.12: Interface for the DomainDecompAlgo Class

DomainDecompAlgo::solveCurrentStep(void) {

const Vector &extResponse = theSubdomain->getLastExternalSysResponse();

theDomainSolver->setComputedXext(extResponse);
theDomainSolver->solveXint();

thelntegrator->update(theLinearSOE->getX());

Figure 4.13: Pseudo-Code for the DomainDecompAlgo Classes solveCurrentStep
Method

Chapter 4 Object-Oriented Domain Decomposition 111

domain decomposition method the analyst would wish to employ. Examples of the
subclasses, as shown in the figure 4.3, include SubstructuringSolver, Iterative-
Solver, and FETI _Solver. Each of these are themselves abstract classes. Subclasses
must be written for each subclass of LinearSOE that the analyst wishes to use for
efficiency reasons. This is because the operations performed by the DomainSolver
objects are numerically intensive and for large problems will dominate the computa-
tion. While generic solvers could be supplied, they would be too slow. Specific solvers

for each subclass can take advantage of the sparsity of each type of LinearSOE class.

class DomainSolver : public LinearSOESolver {
public:
DomainSolver();
virtual DomainSolver();

virtual int condenseA(int numlint) =0;
virtual int condenseRHS(int numint, Vector *anotherRHS = 0) =0;
virtual int computeCondensedMatVect(int numlnt, const Vector &u) =0;

virtual const Matrix &getCondensedA(void) =0;
virtual const Vector &getCondensedRHS(void) =0;
virtual const Vector &getCondensedMatVect(void) =0;

virtual int setComputedXext(const Vector &) =0;
virtual int solveXint(void) =0;

Figure 4.14: Interface for the DomainSolver Class

The DomainSolver class, whose interface is shown in figure 4.14, provides meth-

ods for the following:

*
ee’

and the product K} ,X,, equation 4.10. If a FETI method is being used, the
FETI Solver will instead form BT KB, equation (4.18), BT K, 'Q,, equa-
tion (4.18), and Bl K[! B,A for the Subdomain s.

1. Methods are provided to form and retrieve K7, equation 4.7, P}, equation 4.8,

2. setComputedXext(): This is a method which is used by the DomainDecom-
pAlgo object to set X, in the LinearSOE object. If a FETI _Solver has been
employed, this will set .

Chapter 4 Object-Oriented Domain Decomposition 112

3. solveXint(): This is a method to solve for X;, equation (4.9), a FETI_Solver
will solve for X, equation (4.19).

4.5 Modifications to Classes for Domain

Decomposition

To introduce domain decomposition methods into the analysis framework, cer-
tain modifications to existing classes are necessary to avoid the numerical problems
discussed in section 4.3. The Element class interface has to be extended and the
FE_Element methods have to be modified.

The revised Element interface, which is shown in figure 4.15 has an additional
method, isSubdomain(). This method allows FE_Elements to determine if the Ele-
ment they are associated with is a Subdomain.

The FE_Element routines are now modified to account for this additional method
and to account for the methods provided in the Substructure interface for domain
decomposition. For example when formEleTang() is invoked on a FE_Element object,
the FE_Element object, will ask the Integrator object to form the Element’s
contribution to the tangent, or if the Element is a Subdomain it will ask the

Subdomain to form this contribution. This is shown in figure 4.16.

Chapter 4

Object-Oriented Domain Decomposition

113

class Element : public DomainComponent {

public:

Element(int tag);
virtual Element() ;

virtual int getNumExternalNodes(void) const =0;
virtual const ID &getExternalNodes(void) =0;

// pure virtual functions

virtual int getNumDOF(void) =0;
virtual int computeState(void) = 0;
virtual void commitState(void) = 0;

virtual const Matrix &getStiff(void)=0;

virtual const Matrix &getDamp(void)=0;

virtual const Matrix &getMass(void)=0;

virtual void zerolLoad(void) =0;

virtual int addLoad(const Vector &load) =0;
virtual const Vector &getResistingForce(void) =0;

virtual void commitState(void) = 0;

virtual bool isSubdomain(void) =0;

Figure 4.15: Revised Interface for the Element Class

FE_Element::formTangent(Integrator *theNewlntegrator) {

if (myEle # 0) // myEle is a pointer to the associated element

if (myEle->isSubdomain() == false)
thelntegrator->formEle Tangent(this);

else {
Subdomain *theSub = (Subdomain *)myEle;
theSub->computeTang();

Figure 4.16: Pseudo-Code for the FE_Element Classes formTangent Method

Chapter 4 Object-Oriented Domain Decomposition 114

4.6 Example Programs using Domain

Decomposition

To demonstrate the flexibility of this approach, a base pseudo C++ program is
first presented. Modifications to this program are then made to produce new pro-
grams, which perform different analysis to that performed by the base program. The
base program performs a transient analysis of a space shuttle model using the New-
mark integration strategy, a Newton-Raphson iteration at each time step, and the
substructuring method. Four subdomains are created, each of which uses a reverse
Cuthill-McKee numbering scheme to order the degrees-of-freedom and a profile stor-
age scheme to store the subdomain equations. The interface problem, which uses a
reverse Cuthill-McKee numbering scheme and a banded storage scheme to store the

equations, is solved by a direct method. The pseudo-code for the base program is as

follows:

001 numSubdomains = 4;

002 /* create the partitioned domain and model builder */
003 Metis theGraphPartitioner;

004 DomainPartitioner thePartitioner(theGraphPartitioner);
005 PartitionedDomain theDomain(thePartitioner);

006

007 /* create the subdomain and add to the domain

008

009

010 for (int i=1; i<=numSubdomains; i++) {

011

012 Subdomain theSubdomain(i)

013 Transformation theConstraintHandler;

014 RCM theDOFNumberer;

015 AnalysisModel theModel;

016 ProfileSPDSOE_Substr_Solver theSolver;

017 ProfileSPDSOE theLinearSOE(theSolver);

018 Newmark thelntegrator(1/4, 1/2);

019 DomainDecompAlgo theSolnAlgo;

020 DomainDecompAnalysis theAnalysis(theSubdomain, theConstraintHandler,
021 theDOFNumberer, theModel, theSolnAlgo, thelntegrator, thelLinearSOE);
022 theDomain.addSubdomain(theSubdomain);

023 }

024

025 /* create a model builder and build the model */

026 SpaceShuttle theModelBuilder(theDomain);
027 theModelBuilder.buildModel();
028

Chapter 4 Object-Oriented Domain Decomposition 115

029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046

/* partition the domain into the subdomains */
theDomain.partition(numSubdomains);

/* create the analysis */

Transformation theConstraintHandler;

RCM theDOFNumberer;

AnalysisModel theModel;

DirectBandSPDSOE theSolver;

BandSPDSOE theLinearSOE(theSolver);

Newmark thelntegrator(1/4, 1/2);

NewtonRaphson theSolnAlgo;

DirectIntegrationAnalysis theAnalysis(theDomain,theConstraintHandler,
theDOFNumberer, theModel, theSolnAlgo, thelntegrator, theLinearSOE);

/* perform the analysis */
theDomain.setLoadCase(1);
theAnalysis.analyze;

To change this code to use the FETI domain decomposition method the analyst

replaces line 016 with the following:

016

ProfileSSPDSOE_FETI_Solver theSolver;

If the analyst wishes instead to use an iterative substructuring approach, which

uses the element-by-element conjugate gradient method to solve the interface problem,

lines 016, 036 and 037 are replaced with the following:

016
036
037

ProfileSPDSOE _lterativeSubstr_Solver theSolver;
EleByEleSPDSOE theSolver;
EleByEleSOE theLinearSOE(theSolver, theModel);

116

Chapter 5

Parallel Object-Oriented Finite

Element Programming

This chapter presents an object-oriented approach for parallelizing the finite el-
ement method. A brief introduction to parallel programming is first presented. A
review is then made of existing research on parallelizing the finite element method to
identify the approaches typically used. A parallel object-oriented programming model
suitable for the finite element method is presented, which is a modified version of the
actor model, a popular parallel object-oriented programming model. A framework
is provided for this new model and a discussion of what changes are required to the
design presented in the previous chapters is given. The chapter concludes with an

example of parallel object-oriented analysis in the prototype implementation.

Chapter 5 Parallel Object-Oriented Finite Element Programming 117

5.1 Introduction

The finite element analysis of large problems can easily exhaust both the patience
of the analyst and the CPU and memory resources of conventional single proces-
sor computers. In a period of a few short years parallel computers have become a
reality as a variety of parallel computers have become commercially available and,
more importantly for practicing engineers, software has become available which al-
lows networks of workstations and microcomputers to be programmed as parallel
machines, e.g. PVM (Sunderam, 1990; Sunderam et al., 1994), PARMACS (Calkin
et al., 1994), Berkeley Sockets (Stevens, 1990), Munin (Carter et al., 1995), and LAM
(Nevin, 1996) and MPICH (Gropp et al., 1996), which support the message passing
interface standard MPI (Walker, 1994).

A considerable amount of research has been presented describing finite element
analysis for parallel computers; Mackerle (1996) identifies over seven hundred papers
on the subject. At the present time, however, there exists only a small number of
commercially available packages which run on a few parallel machines. These pack-
ages include ADINA, which offers a version for the SGI PowerChallenge and the HP
Exemplar, ANSYS which offer versions for the Cray C90 and Y-MP machines, the HP
Exemplar and a variety of workstation networks running under Unix, MARC which
offer versions for the Cray C90 and Y-MP machines, the IBM SP2, the SGI Origin
2000, the HP Exemplar and a variety of workstation networks, and MSC/NASTRAN
which offer versions for the Cray C90 and Y-MP machines and the HP Exemplar
machine. The reason for the small number of software packages and the limitation of

these software packages to a few machines can be attributed to a number of factors:

1. Much of the research was performed using machines that are no longer in use
today. This is because many current workstations can outperform these parallel

machines of yesterday.

2. The ability to port code from one machine to another is limited. This is because
compilers and libraries available on different parallel machines are often vendor
proprietary, for example IBM offers EUI for programming on its SP1 and SP2
machines, Intel offers NX2 for its iPSC and Paragon machines, Thinking Ma-

Chapter 5 Parallel Object-Oriented Finite Element Programming 118

chines offered CMMD for its CM2 and CM5 machines and nCUBE offered PSE
for its nCUBE1 and nCUBE2 machines.

3. The differences in the relative hardware performance of the components of the
parallel machines, i.e. processors, memory and communication interconnection,
result in algorithms performing well on certain machines but performing poorly

on other machines.

4. The code was written in procedural languages, which result, as was discussed

in section 1.1, in programs which are inflexible and difficult to extend.

As languages, e.g. Split-C (Culler et al., 1993) and HPF (HPF Forum, 1993),
and software packages, e.g. PVM, LAM and MPICH, become more widely available
for a variety of parallel machines, parallel programs can now be written which can
be ported to different parallel machines. In order to make efficient use of these
machines, however, it is not enough that the packages be portable. This is because
the performance of the analysis algorithms varies greatly between parallel machines
(Farhat, 1990b). For this reason the software packages that are developed for parallel
machines must be flexible, allowing the analyst to choose the appropriate algorithm
for specific problems and specific machines. The software packages must also be
extensible, allowing the analyst to introduce new routines into the package to account
for changes in hardware. Current parallel packages do not provide this flexibility and
extensibility. For example, MARC only provides a parallel sparse solver for each
parallel machine it is supported on.

It will be demonstrated in this chapter that a flexible and extensible approach for
programming on parallel machines can be achieved using an object-oriented design.
The design is based on the classes presented in the previous chapters and new classes
which are introduced for parallel programming. The flexibility and extensibility of
the design presented in the previous chapters is maintained in this new design. In ad-
dition, the design allows for flexibility and extensibility where machine hardware and
software are concerned, allowing the analyst to choose the communication software
and protocols to use, and to determine on which processors of the parallel machine

to run the processes. In section 5.2 a brief introduction to parallel computing is

Chapter 5 Parallel Object-Oriented Finite Element Programming 119

presented, in which a review of current parallel architectures, programming models
and programming methods is given. In section 5.3 a review is made of some existing
work on parallel finite element analysis. This review of existing work is presented
in order to identify the approaches that are typically used to parallelize the finite
element analysis. In section 5.4 a slightly modified parallel programming model is
presented for the object-oriented approach that is presented in this dissertation. The
modified model minimizes changes to the existing design and allows for more efficient
programs. In section 5.5 the new classes introduced for a parallel object-oriented
finite element framework are defined. In section 5.6 a discussion is presented on the
changes to existing class interfaces and the issues the analyst must be aware of when
programming in a parallel environment. In section 5.7 a prototype implementation

demonstrates the new design.

5.2 Summary of Parallel Computing

5.2.1 Parallel Architectures

A parallel computer, as defined by Almasi and Gottlieb (1989), is a collection
of processing elements that cooperate and communicate to solve large problems fast.
Most of today’s parallel computers can be viewed as a collection of processors and
memory units which are linked together by an interconnection network. There are
three prevalent parallel architectures in use today: uniform memory access (UMA)
multiprocessor; non-uniform memory access (NUMA) multiprocessor; and multicom-

puter.

1. UMA Multiprocessor: A UMA multiprocessor is a parallel architecture in
which p processors and m memory units are linked together by an interconnec-
tion network, as shown in figure 5.1a. To the processors in a UMA multiproces-
sor, the memory units make up one large memory to/from which all processors
can store/get data. The access time for each process to any location in memory
is the same for all processors. Examples of parallel machines with this architec-
ture are the Alliant FX-8, the Cray X-MP, the Cray Y-MP, the Cray C90, the
HP Exemplar and the Sequent Symmetry.

Chapter 5 Parallel Object-Oriented Finite Element Programming 120

P, P,

I nterconnection Network

I nterconnection Network

(a) UMA Multiprocessor (b) NUMA Multiprocessor and Multicom-

puter

Figure 5.1: Computer Architecture for Parallel Computers

2. NUMA Multiprocessor: A NUMA multiprocessor is a parallel architecture
in which a collection of processing units is interconnected via an interconnection
network, as shown in figure 5.1b. Each processing unit consists of a memory unit
and at least one processor, sometimes more. To the processors, as in the UMA
multiprocessor, the memory units make up one large memory to/from which
all processors can store/get data. The difference with the UMA multiprocessor
is that the time to access data in a local memory unit is considerably faster
than accessing data in a remote memory unit. Typically in such systems when
a page fault occurs, the page is copied from remote memory and a coherency
policy is enforced on duplicate pages in the system. This memory management

is all performed by the hardware.

The NUMA multiprocessor architecture is more popular than the UMA multi-
processor architecture for the building of machines with large numbers of pro-
cessors because the architecture scales better. Examples of parallel machines
with this architecture are the Cray T3D, the SGI Origin 2000, and the Stanford
Dash.

Chapter 5 Parallel Object-Oriented Finite Element Programming 121

3. Multicomputer: The multicomputer is similar to that of a NUMA multi-
processor. A multicomputer is a parallel architecture in which a number of
processing units is interconnected via an interconnection network, as shown in
figure 5.1b. Each processing unit consists of a memory unit and a processor. In
a multicomputer, unlike the NUMA multiprocessor, each processing units can
only store/get data to/from its local memory unit. Each processing unit acts
as a standard sequential computer. In order for a process, running on a pro-
cessing unit, to look at data in another process’es address space communication

between the processes must occur.

The advantage of the multicomputer architecture over the NUMA multicom-
puter is that off the shelf components can be used. For example, the IBM
SP1, the IBM SP2; and the HP 735CL are parallel machines comprised of
several workstations bundled inside a single cabinet. Examples of parallel ma-
chines with this architecture are the Intel Paragon, the Intel iPSC, the nCUBE
nCUBE2, the Thinking Machines CM-5, the IBM SP1, the IBM SP2, the HP
735CL, and networks of workstations (NOWs).

The parallel computer architectures can be further classified depending on the

number of processors in the machine. The machines can be classified as being:

1. Coarse Grained: The machine offers the user only a small number of powerful
processors, such as the Cray-XMP (4 processors), the Cray-YMP (8 processors),
the Cray C90(16 processors), and the Alliant FX-8(8 processors).

2. Fine Grained: The machine offers a large number of small processors, e.g. the

CM-2 had up to 65536 processors.

3. Medium Grained: In between fine and coarse grained, the machine offers from
a few dozen to a few thousand processors, such as the nCUBE(1024 processors),
the iPSC(128 processors), and the Cray T3D(2048 processors).

5.2.2 Parallel Programming Models

A parallel machine, like all computers, requires an operating system, compilers

and software packages in order to be useful. Collectively they provide the program-

Chapter 5 Parallel Object-Oriented Finite Element Programming 122

mer with a programming model. For parallel machines there are primarily three

programming models:

1. Message Passing: A running program is viewed as a collection of independent
communicating processes. FEach process executes in its own address space and
has a unique identifier which allows the other processes to identify it for purposes
of communication. The processes communicate with each other by the sending
and receiving of data, i.e. message passing. The sending process specifies the
local data to be transmitted and the address of the receiving process(s). The
receiving process specifies the sending process and where the data is to be placed

in its local address space.

The operating system, compilers, and software packages provide functions that
the processes can use to perform the communication. The operating system
and software packages also provide functions which allow processes to create
other processes. The functions appear to the processes as normal library calls.
Examples of operating systems which provide this functionality are Unix and
Plan-9. Examples of software packages which provide this are PVM, LAM and
MPICH.

2. Shared Memory with Threads: The running program is viewed as a col-
lection of processes each sharing a portion of its virtual address space with the
other processes, i.e. a collection of threads. Each process has private data,
such as the process stack, and shared data, which is in the same region of the
virtual address space of each process. Access to the shared data must be syn-
chronized between processes to prevent race conditions. This synchronization,
the communication between processes in a shared memory programming model,
is performed by processes using locks, barriers, condition variables, and other
synchronization operators. Examples of software packages that support this are

Munin and Express. An Example of a language which supports this model is
Split-C.

3. Data Parallel: The running program is viewed as a single process. Parallel

processing occurs when the process performs an operation on an array. Op-

Chapter 5 Parallel Object-Oriented Finite Element Programming 123

erations on arrays are performed in parallel on a number of processors. The
communication between processors is implicit, the programmer is not responsi-
ble for sending data between processors or synchronizing the access to the data

in the arrays. Examples of languages which support this model are HPF and
CM Fortran.

Certain programming models are suited to certain architectures, such as message
passing for multicomputers and shared memory for multiprocessors. A number of
software packages allow programmers to use a certain programming model on ei-
ther multiprocessor or multicomputer machines. For example, PVM (Beguelin et al.,
1993), a software package that supports the message-passing model, is available on
both multiprocessor machines, such as NOWs, the Intel iPSC, and the Thinking Ma-
chines CM-5, and multiprocessor machines, such as the Cray Y-MP and the Sequent
Symmetry. An example of software packages which provide programmers with the
shared memory model on multicomputer NOWs are IVY (Li and Hudak, 1989) and
Munin (Carter et al., 1995).

5.2.3 Parallel Programming

It is more difficult to write fast programs for parallel machines than it is to write
fast sequential programs for uniprocessor machines. The reason for this is that the
programmer has a lot more resources available than just a single processor and a single
memory unit. In addition to the usual issues that need to be addressed in developing
fast programs, e.g. data locality, the programmer in a parallel environment must also

consider:

1. Load Balance: To make efficient use of the parallel machine, the programmer
must keep all the processors busy at all times. A load imbalance occurs when
some processors sit idle while others remain busy, degrading the efficiency of

the computation.

2. Communication: The processes running on the parallel machine need to com-
municate to perform the work required of them. The communication between

processes is expensive compared to normal process operations. The programmer

Chapter 5 Parallel Object-Oriented Finite Element Programming 124

should minimize communication between processes and must also coordinate the

timing of the communication between processes.

To aid in the development of parallel programs, as Culler et al. (1997) discuss,

four steps can be identified:

1. Decomposition: The computation is broken down into a number of tasks
representing discrete portions of the computation. For example, in a finite
element analysis, the tasks include the formation of the system of equations,
the solution of this system and the updating of the nodal response quantities.
Each of these tasks can be subdivided into smaller tasks. For example, the
formulation of the system of equations may be divided into the separate tasks at
the element level, i.e. the formulation of mass, stiffness and damping matrices,
the formulation of the element tangent matrix and its assembly into the system
of equations. An important factor in determining what level of decomposition
is necessary, is that the decomposition must identify tasks that can execute

concurrently.

2. Assignment: The programmer is responsible for creating the processes in
which the tasks will be performed. In order to reduce communication between
processes a number of tasks are assigned to each process. It is important in the

assignment that:

(a) To minimize load imbalance, that the tasks that can be executed con-
currently should be assigned to different processes and that the workload

among the processes is balanced.

(b) To reduce communication between processes, tasks which reference com-

mon data should be assigned to the same process.

3. Orchestration: The processes must communicate to perform the tasks as-
signed to them. The communication is in the form of messages in a message
passing environment and synchronization in a shared memory environment.
The programmer is responsible for determining the order in which tasks within

a process execute and when the processes communicate on behalf of the tasks.

Chapter 5 Parallel Object-Oriented Finite Element Programming 125

4. Mapping: The processes must be assigned to the physical processors. For
coarse and medium grained machines, where the number of processes may ex-
ceed the number of processors or in heterogeneous environments where the
relative performance of processing units may vary, this mapping can have a

significant impact on the overall performance.

It is important to decompose the problem into tasks that can be performed con-
currently; that those tasks that can be executed concurrently be assigned to different
processes or threads; and that processes or threads requiring the most CPU time be
assigned to the faster processors. As Amdahl (1968) pointed out, if the computa-
tion is divided into the serial portion, that portion for which no tasks can execute
concurrently, and the concurrent portion, that portion for which tasks can execute
concurrently, then no matter how high the degree of concurrency in the concurrent
portion, the performance will be limited by the serial portion. This is commonly
referred to as Amdahl’s law.

If the time to perform the computation, T, is divided into the serial time T}, the
time to execute the serial portion, and the concurrent time 7, the time to execute the
concurrent portion, then the total time to execute the program on a single processor
can be expressed as

Th=T,+T.

The time to execute on p processors, assuming that communication costs are negligible

and access to data at all levels of the memory hierarchy is uniform, can be expressed

as
T,
T, =T, +—
p
Letting r = T, /Ty, the algorithmic speedup for p processes AS, is defined as
T, 1+7r
AS, ===
PT, 1+r/p

An upper-bound on the algorithmic speedup that can be obtained is expressed as

lim AS, =1+r

p—00

For example if » = 0, i.e. no concurrency exists in the program, then no matter how

many processes are used, no increase in performance by using more than one processor

Chapter 5 Parallel Object-Oriented Finite Element Programming 126

will be obtained. If » = 1, i.e. 50% of program is sequential and 50% concurrent, the
limit on the amount of algorithmic speedup that can be obtained is 2 and for two
processors the algorithmic speedup that can be obtained is 1.6, which increases only
to 1.8 for eight processors. If r = 4 the limit is increased to 5, with an algorithmic
speedup of 1.7 being obtained for two processors and 3.3 for eight processors.

For this reason the best sequential algorithm is not always the best parallel al-
gorithm. There may exist an algorithm which is slower on a sequential machine but
due to concurrency in the algorithm, it will perform better in a parallel environ-
ment. A metric that is used to compare the performance of various algorithms is the
speedup. The speedup of an algorithm using p processors S, is defined as (Codenotti
and Leoncini, 1993; Kumar et al., 1994; Quinn, 1994):

where T is the time taken to perform the computation using the best sequential
algorithm on a single processor and 7}, is the time taken to perform the computation
using the algorithm under consideration on p processors.

The algorithmic speedup and speedup of an algorithm will vary from one parallel
machine to another. This is because the relative performance of the processors, mem-
ory, and communication can be substantially different on different parallel machines.
These speedup metrics will also vary with the problem even on the same parallel
machine because for different problems the ratio of communication to numerical op-
erations, the ratio of the serial portion to the concurrent portion, and the number of

page faults and cache misses change.

5.2.4 Parallel Object-Oriented Computing

The object-oriented paradigm is ideally suited to the development of parallel pro-
grams because the tasks can be identified as the invocation of the object methods,
and the assignment of tasks that share common data to a process can be identified
as assigning an object to a process. For the development of parallel object-oriented
programs, a number of experimental object-oriented languages have been proposed

in the literature. These languages support two main programming models:

Chapter 5 Parallel Object-Oriented Finite Element Programming 127

1. Actor Model: Actors (Agha, 1984) are autonomous and concurrently execut-
ing objects which execute asynchronously. Actors can create new actors and
can send messages to other actors. The messages sent to actors are tasks re-
quested of the object. A slightly modified version of the actor model is the
aggregate model (Chien and Dally, 1990). An aggregate is a collection of
actors. A message sent to an aggregate is sent to all of the members of the
aggregate. The method invoked can be performed by one of the actors or by

some of actor objects in the aggregate working together.

The actor model is an object-oriented version of message passing in which the
actors represent processes and the methods sent between actors represent com-
munication. There are a number of languages which support the actor model,
some examples of which will be briefly discussed to show how the languages

support for the development of parallel programs:

(a) POOL (America, 1987) is a language in which each object has a body,
which is a local process. The object executes in parallel with other objects.
Communication between objects occurs when objects invoke methods on
other objects. The object that invokes the method is blocked until the

called object performs the method and returns a result.

(b) Charm++ (Kale and Krishnan, 1993) is an extension of C++ in which
actor objects must be created by the programmer. The actor classes can
have no public member functions, access to the actor methods is provided
through special entry points defined for each actor. New syntax in the
language is provided to access these member functions. For example to
invoke a method in a remote actor pointed to by actorPtr, the program-
mer creates a message and sends it to the actor by invoking actorPtr=>
EP(msgPtr). A Message is a class introduced for the sending and receiv-
ing of messages between actors. Charm++ also introduces the notion of

replicated objects, which can be accessed by all the objects in the system.

(c) ProperCAD (Parkes et al., 1994) and ACT++ (Kafura and Lee, 1989)
are C++ library based implementations of the actor model. Libraries

provide classes that can be used in standard C++ programs to create

Chapter 5

Parallel Object-Oriented Finite Element Programming 128

parallel programs which use the actor model. In ACT++ an Actor class
is provided, and in ProperCAD both the Actor and Aggregate classes
are provided. Local objects in an actor process cannot invoke methods on
actor objects in the normal way, because C++ compilers do not support
message passing between processes, so special abstractions are provided.
For example, in ProperCAD actors have special methods, ActorMethods,

which can be invoked using Continuation objects.

2. Shared Object Model: This is an object-oriented version of the shared mem-

ory model. In this model threads exist in a world of serial objects. The differ-

ence between this model and the shared memory model is that the threads can

themselves be treated as objects and the data on which the threads execute are

objects.

There are a number of languages that support this model. Examples of such

languages are: CC++ (Chandy and Kesselman, 1993), pC++ (Lee and Gan-

non,

1991), COOL (Chandra et al., 1993), pSather (Feldman et al., 1993), and

PRESTO (Bershad et al., 1988) Each of the languages provides constructs for

the following:

(a)

The creation of threads: In CC++ threads are created for each statement
within a par{}, parfor{}, and spawn{} statement. In pC++ threads are
created when objects of subclasses of TEClass are created or when a
method is invoked on a collection. In COOL methods can be identified as
being parallel; invoking such a method which creates a thread, which by
default is located on the processor on which the object resides. In pSather a
forAll statement is provided which is similar to the par statement in CC++.

In PRESTO, like pC++, objects of type Thread can be constructed.

The placement of objects: In CC++ the serial objects reside inside Pro-
cessor objects, one Processor object for each processor. In pC++ serial
objects reside in Collections; the constructor for a Collection is passed
a Distribution object as an argument which defines how objects in the

collection are to be mapped to processors. In COOL objects are located

Chapter 5

Parallel Object-Oriented Finite Element Programming 129

on the processors where they were created or the programmer can provide
an additional argument to new() specifying a processor. For load balanc-
ing, the programmer can invoke a migrate function on the serial objects to

move objects from one processor to another.

The access to remote data: CC++ uses global pointers; the invocation of
a method on an object pointed to by a global pointer is carried out on
the remote processor holding the object. In pC++ the objects on a local
processor can get a copy of the remote object on which they can invoke
the method. In pSather each object has a global address; as in CC++ the

invocation of a method on a remote object is carried out remotely.

Synchronization: Because par{} and parFor{} statements in CC++ do not
return control until all threads created in the statement are finished, barri-
ers are provided. Also in CC++ Sync variables are provided to synchronize
access to shared data. In COOL operations on shared objects can be mu-
tex and event synchronization through operations on conditions variables.
The language also has a waitFor{} statement; all threads created inside a
waitFor{} must terminate before next statement can begin execution. In
pSather locks and monitors are provided. PRESTO provides a number
of synchronization classes, such as Lock, Monitor and ConditionVari-
able.

5.3 Existing Approaches to Parallelizing the
Finite Element Method

There has been a considerable amount of research on the parallel implementa-

tion of the finite element method, with some recent work focusing on networks of
workstations (Hajjar and Abel, 1988; Burman, 1990; Sharma and Baugh Jr., 1992;
Kumar and Adeli, 1995; Santiago and Law, 1996). Most of the research has focused

on the actual analysis algorithm, though Farhat et al. (1989) looks at methods to

parallelize the I/O and in some of the work efficient methods to obtain good par-

titions are discussed (Farhat, 1988; Malone, 1988; Kamal and Adeli, 1990; Bernard

Chapter 5 Parallel Object-Oriented Finite Element Programming 130

and Simon, 1994). The type of analysis algorithms performed includes static (Law,
1986; Farhat et al., 1987), transient using direct integration (Ortiz and Nour-Omid,
1986; Hajjar and Abel, 1988; Ou and Fulton, 1988), and modal transient (Farhat
and Wilson, 1986). A number of researchers present results for the application of
the analysis algorithms on different parallel machines. Those that do comment on
the fact that one algorithm might perform better than another algorithm on one ma-
chine, but may perform worse on another machine (Farhat, 1990b). As discussed in
section 5.2.3, this is due to the fact that the performance of the processors, memory
units and communication network can vary substantially between different parallel
machines.

The focus of the majority of the work has been on the methods used to parallelize
the finite element analysis. The work has typically concentrated on either domain
decomposition methods or on the solution of the linear system of equations. In the
following subsections, a brief review of some of the work that has been presented in
these areas is given. In addition, a review of the work presented for parallel object-

oriented finite element analysis is also presented.

5.3.1 The use of Domain Decomposition Methods in Parallel

Finite Element Analysis

Domain Decomposition methods are commonly used in parallel finite element
analysis. This can be attributed to the fact that they are divide and conquer meth-
ods, which makes the task of assignment particularly easy for the programmer. The
subdomains in the domain decomposition method are each assigned to a separate
process, with the tasks required of the subdomain typically being performed in that
process, though in some of the work these tasks are performed in parallel using mul-
tiple processes (Fulton and Su, 1992; Synn and Fulton, 1995).

Of the domain decomposition methods, the substructuring method has been the
most commonly used, though the other domain decomposition methods have also
been used, for example Carter et al. (1989) use iterative substructuring and Farhat
and Roux (1994) use FETI. In the work presented for the substructuring method,

the static condensation is typically performed on the assembled system of equations.

Chapter 5 Parallel Object-Oriented Finite Element Programming 131

However, the frontal method is also sometimes used, in which case the system of
equations is never fully formed (Zhang and Lui, 1991; Roa et al., 1994; Synn and
Fulton, 1995). The solution of the interface problem is typically obtained using a
direct approach, although iterative methods are also employed (Hajjar and Abel,
1988). In the direct solution of the interface problem a number of approaches have

been taken:

1. El-Sayed and Hsiung (1990) solve the interface problem in each process. To do
this each subdomain determines its contribution to the interface problem and

then sends this information to all the other subdomains.

2. The interface problem is generally solved in a single process (Zhang and Lui,
1991; Foley and Vinnakota, 1994). All subdomain processes send their contri-
butions to that process, which determines the interface solution and sends the

solution back to the subdomain processes.

3. The interface problem can be solved in parallel using the algorithms that were
described previously for the direct methods (Farhat et al., 1987; Fulton and Su,
1992; Roa et al., 1994; Baugh Jr. and Sharma, 1994; Synn and Fulton, 1995).

5.3.2 Existing Approaches to the Parallel Solution of Linear
System Of Equations

In a lot of the research in parallel finite element analysis the focus has been on
the parallel methods used to solve the linear system of equations. A brief review
of the direct and iterative methods commonly used to solve these equations is now

presented.

1. Direct: Work in this group focuses on solving the fully formed linear system of
equations using a direct method. Typically some form of Gaussian elimination
is used, though Berry and Plemmons (1987) use a QR factorization for ill-
conditioned problems. Gaussian elimination is performed using a variety of
matrix storage schemes. Some popular storage schemes are the banded matrix

scheme (Ou and Fulton, 1988; Goehlich et al., 1989; Lai and Chen, 1992), the

Chapter 5 Parallel Object-Oriented Finite Element Programming 132

profile storage scheme (Farhat and Wilson, 1988; Farhat, 1990a; Agarwal et al.,
1994) and a sparse storage scheme, (Law and Mackay, 1993; Taylor and Nour-
Omid, 1994). In a lot of the work the assignment of the matrix elements to
the processes is different. For example, for the profiled storage scheme, Farhat
and Wilson (1988) assign the columns of the matrix in a column cyclic manner
among the processors, and to improve on the performance Farhat (1990a) assign
the columns in a block cyclic manner to the processes, adding zeros to the profile

to obtain a blocked profile scheme.

There has also been a number of papers presented by mathematicians in which
they look at the parallel solution of linear equations by direct means for band
and sparse storage schemes. For banded schemes there are two approaches ad-
vocated. For banded matrices with a very small band, a divide and conquer
approach is suggested, in which the equations are renumbered to allow the sub-
structuring method to be employed (Dongarra and Johnsson, 1987; Cleary and
Dongarra, 1997). For banded matrices with a very large band, no renumbering
of the equations occurs and the elements of the matrix are assigned in a column
cyclic or block column cyclic manner to the processes (Dongarra and Johnsson,
1987). For sparse schemes, a supernode approach is suggested in which the un-
knowns are grouped together to allow the computation to proceed on a blocked
sparse matrix. The block sparse matrix can then be solved using a general di-
rect sparse approach, in which the blocks are assigned to individual processes
(Rothberg and Gupta, 1993; Rothberg and Schreiber, 1994; Li, 1996), or using
a multifrontal approach (Duff and Reid, 1983), in which processes get work to
do from a task pool containing the blocks which can be eliminated (Duff and

Reid, 1986; Benner et al., 1987; Gupta and Kumar, 1994).

2. Iteratiwe: Work in this group focuses on solving the fully formed linear system
of equations using an iterative method. A number of iterative methods are used.
Law (1986) uses the conjugate gradient algorithm. The preconditioned method
is also used (Hughes et al., 1987; Nour-Omid and Park, 1987; Y. DeRoeck and
Vidrascu, 1992; Baugh Jr. and Sharma, 1994; Baddourah and Nguyen, 1994;
Barragy et al., 1994). A popular approach when implementing the conjugate

Chapter 5 Parallel Object-Oriented Finite Element Programming 133

gradient method is the element-by-element approach (Law, 1986; Berry and
Plemmons, 1987; Hughes et al., 1987). Ou and Fulton (1988) use a mixed
Jacobi/Gauss-Seidel method; Gauss-Seidel within a processor and Jacobi across

Processors.

5.3.3 Existing use of Parallel Object-Oriented Programming

in Finite Element Analysis

Mukunda et al. (1996) present an object-oriented framework, PFE++, for paral-
lel finite element analysis using the substructuring approach. The analyst creates a
program which is run on each of the processors of the parallel machine. The program
contains two objects: a substructure object and an analysis object. Each substruc-
ture object reads its data from an input file containing the model information, the
partitioning information, the mapping of the external degrees-of-freedom to equation
numbers, and the type of analysis to be performed. In each process the static conden-
sation is performed and the processes contribution to the interface problem is stored.
The interface problem is then solved in parallel, each process working on that part of
the matrix equation stored in that process. The framework uses an object-oriented
matrix library created for PFE++ (Modak et al., 1997), which in turn employs an
object-oriented communication library, PPI++ (Hsieh and Sotelino, 1997).

5.4 A Parallel Object-Oriented Programming
Model for the Finite Element Method

In this work the actor model is used to extend the object-oriented design of the
finite element method presented in the previous chapters to a parallel computing
environment. The actor model was chosen instead of the shared object model for

three reasons:

Chapter 5 Parallel Object-Oriented Finite Element Programming 134

1. Synchronization in the actor model occurs naturally. The message passing be-
tween objects provides the synchronization in the parallel program. If the shared
object model had been used, it would have been necessary to identify the critical
sections (those objects and object methods in which only a single process could
be executing at any one time) and barrier points (those methods requiring all
threads created inside the method to complete before control is returned to the

calling environment).

2. The creation of processes occurs naturally in the actor model. This is because a
process is created whenever a new actor object is created. In the shared object

model the programmer is responsible for identifying when to create the threads.

3. A number of reliable software packages supporting the message passing model

existed in the public domain at the time the research started.

A slightly modified form of the Actor model is developed in this work to both
minimize changes to the sequential design presented in the previous chapters and
to allow for more efficient parallel finite element programming. The modification
involves the introduction of Shadow objects. A Shadow object is an object in
an actor’s local address space. Each Shadow object is associated with an actor,
or with multiple actors if an aggregate. The Shadow object represents the remote
object to the objects in the local actor’s space. A message intended for a remote
actor is sent to the local Shadow object. The Shadow object is responsible for
sending an appropriate message to the remote actor, or actors if an aggregate. The
remote actor(s) receive the message and processes it. The remote actor(s) will then,
if required, return the result to the local Shadow object, which in turn replies to
the local object. The communication process is shown in figure 5.2a for the case of
a single actor object and in figure 5.2b for the case of an aggregate. The important
aspect of this approach is that the local object, which initiated the request, is unaware
that the processing is being done remotely.

The advantage of this approach over the traditional actor approach, in which all
requests are processed remotely, is that it allows the local shadow object to cache

often used data and data that has not changed since the last call to that method.

Chapter 5 Parallel Object-Oriented Finite Element Programming 135

Local Actor Process Remote Actor Process Local Actor Process Remote Actor Processes Local Actor Process Remote Actor Processes

Shadow Actor Shadow

R L cal IR call
. i | return ‘ | N return
o | !

Shadow Actor

Actor

Q

g

a

=
{15

g

a

c

= S
> >
Q Q
g g
g

a

c
{]3

(a) Actor - Communica- (b) Aggregate - Commu- (¢) No Communication

tion Required nication Required Required

Figure 5.2: Flow of Data using Shadow and Actor Objects

The caching of data is particularly important in a parallel environment where com-
munication is slow, such as a NOW. This is because when a local object requests data
that is being cached by the Shadow object, the Shadow object can return the data
to the local object without any communication with the actor objects, as shown in
figure 5.2c. The disadvantages of this approach are that it can result in an additional
method call, as shown in figures 5.2a and 5.2c, and that it requires that two classes
be developed, one for the Shadow object and another for the Actor object.

The Shadow objects perform a function similar to the stubs in remote procedure
call (RPC) (Birrell and Nelson, 1984; Bershad et al., 1987). RPC is a mechanism
which enables the remote performing of procedural requests made by client code in
a local process. The requests are processed in a manner which makes the remoteness
transparent to the local client code. The key to making the remote calls transparent
are the RPC stubs. When making a remote procedural call five elements are involved:
the user and user-stub, the RPC communication package (RPCruntime), and the
server and server-stub. The user and user-stub exist in a single process on the local
machine, as do the server and server-stub on the remote machine. When the user
makes a call to the user-stub, the user-stub calls the local RPCruntime. The local
RPCruntime determines which server machine is capable of servicing the request and
makes a call to the RPCruntime on that machine. The remote RCPruntime makes a

call on the server-stub which in turn invokes a procedure on the server. The server

Chapter 5 Parallel Object-Oriented Finite Element Programming 136

processes the request and the result is sent back to the client along the reverse path of
the original call. This is as shown in figure 5.3. As far as the client code is concerned

the processing of the request was performed locally by code in the user-stub.

Local Machine Remote Machine
________ cal Jd .

, Client | | 7 Server |
o =< el
dall return \ return
[return call [

, Client Stub; Servert Stub |
R - A=
call return
return cal
RPCruntime = = RPCruntime

Figure 5.3: Flow of Data when making a Call in RPC

The differences between RPC stubs and Shadow objects are:

1. The Shadow objects act as both the stub and the RPCruntime, which reduces

a level of indirection in the communication.

2. The Shadow objects can maintain history variables and a local cache of data,

which can be used to determine if a remote call is actually necessary.

3. In RPC the calling process is suspended until the remote operation is performed.

This need not be the case using Shadow objects.

Chapter 5 Parallel Object-Oriented Finite Element Programming 137

5.5 A Framework for Parallel Object-Oriented

Finite Element Analysis

The previous research into parallelizing the finite element method, summarized
in section 5.3, identified the abstractions for which actor and aggregate objects are

required:

1. Actor: It is necessary that the analyst be able to create subdomain actor
objects. Actor processes store the subdomain information and process the op-

erations required of the subdomains.

2. Aggregate: It is also necessary that the analyst be able to create an aggregate
object for a system of equations. These are collections of actor processes which
store the system of equations in parallel and in which Solver objects, of a type
specified by the analyst, are created. The Solvers orchestrate the communica-
tion between the processes to perform operations on the system of equations,
such as solving the linear system of equations, forming the Schur complement,
or determining the eigenvalues and eigenvectors. The design of these aggregate
objects permits the use of existing numerical libraries, such as ScaLAPACK

(Blackford et al., 1997) and PETSc (Balay et al., 1995).

To facilitate the development of parallel object-oriented finite element programs,
a new framework is presented in this section. The classes in the framework allow for
the development of the actor and aggregate objects identified above. The new classes
and the relationship amongst them are shown in figure 5.4. The new classes that have
not been introduced in the previous chapters are shaded in figure 5.4.

The new classes for parallel finite element programming are:

e Shadow - A Shadow object represents a remote actor object in the local actor

process.

e Actor - An Actor object is a local object in the remote actor process. It per-
forms the operations requested of it by the Shadow object. The actor objects in
an aggregation collectively perform the analysis operations by communicating

between themselves.

Chapter 5 Parallel Object-Oriented Finite Element Programming 138

ObjectBroker

creates
[—— ﬂ
&
I e I 1
e .

O

. } L) |
ShadowSubdomain MovableObject

| | |
| | | | ‘DomainComponent ‘ ‘ Matrix ‘0 o

| MPI_Channd| | [PvM_chamnel| | | ToP_Socket | | [uDP.Socket | | o @

| MPI_BroadcastCH | | PVM_BroadcasicH | [TCP_BroadcastCH | | UDP_BroadcastcH |

Figure 5.4: Class Diagram for Actor/Aggregate Framework for Parallel Finite Ele-

ment

Analysis

Channel - The Shadow and Actor objects communicate with each other
through Channel objects. A Channel object represents a point in a local

actor process through which a local object can send and receive information.

Address - An Address object represents the location of a Channel object
in the machine space. Channel objects send information to other Channel
objects, whose locations are given by an Address object. Channel objects
also receive information from other Channel objects, whose locations are given

by an Address object.

MovableObject - A MovableObject is an object which can send its state

from one actor process to another.

ObjectBroker - An ObjectBroker is an object in a local actor process for

creating new objects.

MachineBroker - A MachineBroker is an object in a local actor process
that is responsible for creating remote actor processes at the request of Shadow

objects in the same local process.

Chapter 5 Parallel Object-Oriented Finite Element Programming 139

In the following subsections the purpose of each of the new classes is outlined.
Pseudo C++ code fragments are used to demonstrate the function of the classes and

the interplay between them.

5.5.1 Shadow Class

A Shadow object is a local object in an actor’s address space. A Shadow object

has two main functions:
1. Create the remote actor processes, or processes if an aggregate.

2. Represent the remote actor object(s) to all other objects in the local actor
process. In servicing the requests made by the local objects, the Shadow
object can either communicate with the remote actor object(s), which performs
the operation, or process the operation itself with information it caches locally

on behalf of the remote object.

The Shadow class is a base class, as shown in the interface in figure 5.5, and it is

responsible for providing the following:

1. The constructor for the Shadow class is responsible for starting remote actor
processes. The number of processes to run and the name of the program to
use are passed as arguments for the constructor along with the Object Broker
object and the MachineBroker object. As shown in figure 5.6, it does this
by repeatedly invoking startActor() on the MachineBroker. The constructor
is also responsible for starting the handshaking required by the local Channel
object to enable communication with the Channel objects associated with the

remote Actor objects.

2. The Shadow class also is responsible for providing methods that allow objects
of descendent classes to communicate with their associated Actor objects. One
method is sendObject(), which is implemented as shown in figure 5.6. The
communication methods are all declared as protected, as shown in figure 5.5,
because the fact that the Actor object is on a remote process is transparent to

all other objects in the local process.

Chapter 5 Parallel Object-Oriented Finite Element Programming 140

class Shadow {
public:

Shadow(char *theProgram,
Channel &theChannel,
ObjectBroker &theObjectBroker,
MachineBroker &theMachineBroker,
int numActorProcesses,

int compDemand = 0);
virtual Shadow();

protected:
// methods for subclasses to use for communication
virtual int sendObject(MovableObject &theObject);
virtual int recvObject(MovableObject &theObject);
virtual int sendMessage(Message &theMessage);
virtual int recvMessage(Message &theMessage);
virtual int sendMatrix(Matrix &theMatrix);
virtual int recvMatrix(Matrix &theMatrix);
virtual int sendVector(Vector &theVector);
virtual int recvVector(Vector &theVector);
virtual int sendID(ID &thelD);
virtual int recvID(ID &thelD);

Figure 5.5: Interface for the Shadow Class

Chapter 5 Parallel Object-Oriented Finite Element Programming 141

Shadow::Shadow(char *program,

Channel &theChannel,
ObjectBroker &theObjectBroker,
MachineBroker &theMachineBroker,
int numActorProcesses,
int compDemand) {

// start the remote actor process running

for (int i=0; i<=numActorProcesses; i++)
theMachineBroker.startActor(program,theChannel,compDemand);

// now call setUpShadow on the channel
theChannel.setUpShadow();
theRemoteActorsAddress = theChannel.getLastSendersAddress();

}

Shadow::sendObject(MovableObject &theObject) {
theChannel->sendObj(theObject,theObjectBroker,theRemoteActorsAddress);
¥

Figure 5.6: Pseudo-Code for Selected Methods for the Shadow Class

The Shadow class is an abstract base class. The subclasses of Shadow are
used by the analyst to create parallel programs. One such subclass, as shown in
figure 5.4, is ShadowSubdomain. The ShadowSubdomain class, whose interface
is as shown in figure 5.7, uses multiple inheritance to inherit from both the Shadow

and Subdomain classes.

class ShadowSubdomain: public Shadow, public Subdomain {
public:
ShadowSubdomain(int tag,
Channel &theChannel,
ObjectBroker &theObjectBroker,
MachineBroker &theMachineBroker);
virtual ShadowSubdomain();

// most of the subdomain methods must be re-implemented

Figure 5.7: Interface for the ShadowSubdomain Class

Chapter 5

Parallel Object-Oriented Finite Element Programming 142

ShadowSubdomain::addElement(Element *theElement) {

&

// check that it is not already added

if (theElements.getLocation(theElement->getTag() > 0)
return -1;

// send a message to the actor telling it to get

// ready to add an element of the appropriate class.

theData(0) = addElement; // addElement an int specified in common header

theData(1) = theElement->getClassTag();

this->sendID(theData);

// get the Element object to send its state

this->sendObject(*theElement);

delete theElement;

ShadowSubdomain::formTang(void) {

&

theData(0) = formTang;
this->sendID(theData);
haveComputedTang = false;

ShadowSubdomain::getTang(void) {

// check if can do a quick return
if (haveComputedTang == true)
return *theMatrix;

// send a message telling actor object to return the tangent
msgData(0) = getTang;
this->sendID(theData);

// receive the tangent matrix from the actor object
this->recvMatrix(*theMatrix);

haveComputedTang = true;

return *theMatrix;

Figure 5.8: Pseudo-Code for Selected Methods for the ShadowSubdomain Class

Chapter 5 Parallel Object-Oriented Finite Element Programming 143

The ShadowSubdomain class re-implements the methods provided by the Sub-
domain class. This is because many of the operations must now be processed re-
motely by an ActorSubdomain object. For example in the addElement(), form-
Tang() and getTang() methods, which are shown in figure 5.8, the ShadowSubdo-
main object will send messages to its remote ActorSubdomain object to have it
process the request, if it cannot process the request itself, using data it has cached. In
the implementation of these methods the ShadowSubdomain class uses the com-

munication methods provided by its parent Shadow class.

5.5.2 Actor Class

An Actor object is the object in the remote process which processes the requests
made by the Shadow objects. The Actor object is responsible for receiving incoming
messages from its associated Channel object and acting upon them. The Actor
object continues processing incoming messages until it is told to stop, at which point
the actor process terminates. The processing of the incoming messages is performed
by the method run(), which is invoked on the Actor object when it is ready to process
the incoming messages. This is demonstrated in figure 5.9, in which the pseudo-code
for the remote actor program invoked by the creation of each ShadowSubdomain
object is presented.

The Actor class is an abstract base class, as shown by the interface in figure 5.10.
The Actor class, like the Shadow class, is responsible for providing its descendents
with methods for sending and receiving data. The class constructor is responsible for
starting the handshaking that the local Channel object needs to perform to enable
it to communicate with the Channel object associated with the Shadow object.

The ActorSubdomain class is an example of a subclass of Actor, as shown in
the class diagram presented in figure 5.4. Each ActorSubdomain object is associ-
ated with an ShadowSubdomain object. The ActorSubdomain object performs
the operations requested of it by the ShadowSubdomain object. The ActorSub-
domain class, as shown in the interface presented in figure 5.11, inherits from both
the Actor and Subdomain classes.

The ActorSubdomain class provides an implementation of the run() method

Chapter 5 Parallel Object-Oriented Finite Element Programming 144

int main(int argv, char **argc) {
// create the channel object using info passed in the args
int channelType = atoi(argc[1]);
if (channelType == 1)
char *machine = argc[2];
int port = atoi(argc[3]);
theChannel = new TCP_Socket(port,machine);
} else if (channelType == 2) {
// code to deal with the init of other Channel types

// create an object broker
ObjectBroker theObjectBroker;

// create the actor object and start it running
ActorSubdomain theActor(*theChannel,theObjectBroker);
theActor.run();

// exit normally
exit(0);

Figure 5.9: Pseudo-Code for an Actor Program

Chapter 5 Parallel Object-Oriented Finite Element Programming 145

class Actor {
public:
Actor (Channel &theChannel,
ObjectBroker &theObjectBroker);
virtual Actor();

virtual int run(void);

protected:
virtual int sendObject(MovableObject &theObject, ChannelAddress *theAddress =0);
virtual int recvObject(MovableObject &theObject, ChannelAddress *theAddress =0);
virtual int sendMessage(Message &theMessage, ChannelAddress *theAddress =0);
virtual int recvMessage(Message &theMessage, ChannelAddress *theAddress =0);
virtual int sendMatrix(Matrix &theMatrix, ChannelAddress *theAddress =0);
virtual int recvMatrix(Matrix &theMatrix, ChannelAddress *theAddress =0);
virtual int sendVector(Vector &theVector, ChannelAddress *theAddress =0);
virtual int recvVector(Vector &theVector, ChannelAddress *theAddress =0);
virtual int sendID(ID &thelD, ChannelAddress *theAddress =0);
virtual int recvID(ID &thelD, ChannelAddress *theAddress =0);

Figure 5.10: Interface for the Actor Class

class ActorSubdomain: public Subdomain, public Actor {
public:
ActorSubdomain(Channel &theChannel,
ObjectBroker &theObjectBroker);
virtual ActorSubdomain();

virtual int run(void);
virtual const Vector &getlLastExternalSysResponse(void);

Figure 5.11: Interface for the ActorSubdomain Class

Chapter 5 Parallel Object-Oriented Finite Element Programming 146

that was declared as pure virtual in the Actor interface, figure 5.10. The method,
portions of which are as shown in figure 5.12, uses the previously defined methods
in both its ancestor classes. The class also re-implements the getlastExternalSysRe-
sponse() method. This is because this information, which is passed by the Shad-
owSubdomain objects when an update() method is invoked, is stored locally by
ActorSubdomain object. This was done in an effort to reduce the number of mes-

sages sent between processes during the analysis.

ActorSubdomain::run(void) {
bool exitYet = false;
while (exitYet == false) {
this->recvID(theData);
int action = theData(0);
switch (action) {
case addElement: // get an element and add it to the Subdomain
theType = msgData(1);
theEle = theObjectBroker->getPtrNewElement(theType);
this->recvObject(*theEle);
result = this->addElement(theEle);
break;
case getTang: // send the tangent to the ShadowSubdomain
theMatrix = &(this->getTang());
this->sendMatrix(*theMatrix);
break;
case formTang: // compute the tangent
this->computeTang();
break;
// the pseudo-code for the other cases not shown

Figure 5.12: Pseudo-Code for the ActorSubdomain Classes run Method

5.5.3 Channel Class

A Channel object is a point of communication in a local address space through
which data enters and leaves the local process. The Channel object establishes the
lines of communication between Shadow and Actor objects, and sends and receives
the data. The Channel class, whose interface is as shown in figure 5.13, is an abstract

base class. The methods in the interface, all of which must be implemented by the

Chapter 5 Parallel Object-Oriented Finite Element Programming 147

subclasses, provide for the following:

1. Two methods are provided, which are invoked in the construction of Shadow
and Actor objects, respectively, which allow the Actor and Shadow objects

to determine the address of each other.

2. Methods are also provided to allow the transmission of data between actor
processes. The data that can be sent is in the form of objects, such as Message
objects, Matrix objects, Vector objects and ID objects. This communication
of objects in this approach is different from the that used in PPI++, in which
raw data is passed. This current approach is more object-oriented approach
and, as will be discussed in section 5.5.5, it controls the access of the Channel

objects to the data.

The subclasses of Channel provide the implementations of these methods. Ex-
amples of subclasses, as shown in figure 5.4, are PVM_Channel, MPI_Channel,
TCP_Socket, and PVM _BroadcastCH. The broadcast channel objects are used
by Shadow objects to communicate with the actor objects in an aggregation. When
a Shadow object sends data to one of these broadcast objects, the data is sent to all
the processes given by the Address specified. By instantiating an object of a partic-
ular type, the analyst chooses the protocol for communication between the Shadow

and Actor objects.

5.5.4 Address Class

Each Channel object has a unique address, which identifies the Channel among
the processes running on the parallel machine. The Address class, whose interface
is as shown in figure 5.14, is a base class defining a single pure virtual method get-
ClassTag(). A subclass of Address will exist for each subclass of Channel because
each communication protocol has its own means of identifying the addresses. The
Channel objects use getClassTag() to verify the type of Address object passed as

an argument to the Channel object’s send and receive routines.

Chapter 5

Parallel Object-Oriented Finite Element Programming

148

class Channel {

public:

Channel ();
virtual Channel();

virtual int setUpShadow(void) =0;
virtual int setUpForActor(void) =0;

virtual int setNextAddress(const ChannelAddress &theAddress) =0;

virtual ChannelAddress *getLastSendersAddress(void) =0;
virtual char *add ToProgram(void) =0;

// methods to send/receive data to/from a channel
virtual int sendObj(MovableObject &theObject,

const ObjectBroker &theObjectBroker

const ChannelAddress *theAdress =0) =0;
virtual int recvObj(MovableObject &theObject,

const ObjectBroker &theObjectBroker

const ChannelAddress *theAdress =0) =0;
virtual int sendMsg(Message &theMessage,

const ChannelAddress *theAdress =0) = 0;
virtual int recvMsg(Message &theMessage,

const ChannelAddress *theAdress =0) = 0;
virtual int sendMatrix(Matrix &theMatrix,

const ChannelAddress *theAdress =0) = 0;
virtual int recvMatrix(Matrix &theMatrix,

const ChannelAddress *theAdress =0) = 0;
virtual int sendVector(Vector &theVector,

const ChannelAddress *theAdress =0) = 0;
virtual int recvVector(Vector &theVector,

const ChannelAddress *theAdress =0) = 0;
virtual int sendID(ID &thelD,

const ChannelAddress *theAdress =0) = 0;
virtual int recvID(ID &thelD,

const ChannelAddress *theAdress =0) = 0;

Figure 5.13: Interface for the Channel Class

Chapter 5 Parallel Object-Oriented Finite Element Programming 149

class Address {
public:
Address(int classTag);
virtual Address();

int getClassTag(void) const;

Figure 5.14: Interface for the Address Class

5.5.5 Message Class

Processes communicate by passing messages between Channel objects. As dis-
cussed in section 5.2.2, the sending process specifies the location and size of the data
to be transmitted, and the receiving process specifies the size of data to be received
and where the data is to be placed. There are two approaches that could be used for

sending/receiving data to/from the Channel objects:

1. The arguments to send() and recv() specify the data size and its location in
the processes virtual address space, as is done in PPI++ (Hsieh and Sotelino,
1997). For example the pseudo-code to send an array of double to a Channel
object would be theChannel.send(dataPtr,sizeOfData). The problem with this
approach is that it leads to uncontrolled access to private data by the Channel
objects. For example, a poorly written Channel subclass can to overflow the
data buffer associated with the incoming messages, which will lead to program

errors and possibly segmentation faults.

2. Provide a single class to control the access by Channel objects to the data.
This will prevent Channel objects from both modifying the data that is to
be sent from the sending process, and from overflowing the data buffer in the

receiving process, which can lead to segmentation faults.

It is the second approach that is used in this framework. A Message object is
an object controlling the access to the data that can be sent/received by a Channel
object in one actor process to/from a Channel object in another actor process. The

Message class, whose interface is as shown in figure 5.15, provides: constructors

Chapter 5 Parallel Object-Oriented Finite Element Programming 150

for messages from a range of data types; a method to obtain the size of the data; a
method to place data into the message in a controlled way; and a method to return

a const pointer to the data.

class Message {
public:
// constructors
Message(double *dataPtr, int sizeOfData);
Message(int ~ *dataPtr, int sizeOfData);
Message(char *dataPtr, int sizeOfData);
virtual Message();

// methods to allow Channel objects to obtain

// controlled access to the data passed in the constructors.
virtual int putData(char *theData, int startLoc, int endLoc);
virtual const char *getData(void);

virtual int getSize(void);

Figure 5.15: Interface for the Message Class

5.5.6 MovableObject Class

A MovableObject object is an object which can send its state from one actor
process to an object in another actor process. The transmission of the objects state
is initialized when an object in the local sending actor process invokes a sendSelf() on
the local object and it is completed when an object in the remote process invokes a
recvSelf() on the remote object. The operations sendSelf() and recvSelf() are pairwise
operations.

The MovableObject class, whose interface is as shown in figure 5.16, is an ab-
stract base class. The methods sendSelf() and recvSelf() are pure virtual. The sub-
classes of MovableObject, such as Element, Node, Matrix and Vector, must im-
plement these methods. The MovableObject class is also responsible for providing
a method getClassTag() which will allow the objects type to be uniquely determined.
As will be discussed in section 5.5.8, this is so that objects of the sending objects

type can be constructed in the remote actor process to receive the state information

Chapter 5 Parallel Object-Oriented Finite Element Programming 151

being sent.

class MovableObject {
public:
MovableObject(int classTag);
virtual MovableObject();

int getClassTag(void) const;

virtual int sendSelf(Channel &theChannel,
ObjectBroker &theBroker) =0;

virtual int recvSelf(Channel &theChannel,
ObjectBroker &theBroker) =0;

Figure 5.16: Interface for the MovableObject Class

5.5.7 MachineBroker Class

A MachineBroker object is responsible for starting actor processes running on
the parallel machine. The MachineBroker class is an abstract base class, as shown
by the interface in figure 5.17. The class has one method, startActor(). This method
is invoked in the construction of a Shadow object, and it starts a remote actor
process. A descendent class must be provided for each parallel machine that the
analyst wishes to use. Each subclass must provide its own implementation of the
startActor() method.

The decision of which processor to start the actor process on is left to the dis-
cretion of the MachineBroker object. In considering which processor to use the

MachineBroker object may look at a number of factors:

1. The workload currently on each processor in the parallel machine, information

which can be obtained from the system.

2. The number of users currently on each processor, information which can again

be obtained from the system.

Chapter 5 Parallel Object-Oriented Finite Element Programming 152

class MachineBroker {
public:
MachineBroker();
virtual MachineBroker();

// method to start the actor program

// running on next a processor

virtual int startActor(char *actorProgram,
Channel &theChannel,
int compDemand =0) =0;

Figure 5.17: Interface for the MachineBroker Class

3. The relative performance of the available processors, if in a heterogeneous envi-
ronment. The information about the performance of the processors being built

into the particular MachineBroker subclass provided for the parallel machine.

4. The expected computational demand of the actor process, which is given by the

compDemand value passed in the startActor() method.

5.5.8 ObjectBroker Class

In a parallel environment Shadow and Actor objects construct objects to facil-
itate transmission of other objects from one actor process to another. The Shadow
or Actor object about to receive the transmitted object requires a newly constructed
object of the correct type before it can invoke recvSelf(). For example, when an
ActorSubdomain object is receiving an element that is to be added to the subdo-
main, it must invoke recvSelf() on a newly constructed element object of the correct
type, as shown in figure 5.12. Two approaches could be used to construct recipient

objects:

1. Each Actor and Shadow object knows about all the possible types of objects
that it may be asked to receive. For example, an ActorSubdomain object
knows about all the subclasses of Element that may be added to the subdo-
main. The problem with this approach is that the Actor and Subdomain

Chapter 5 Parallel Object-Oriented Finite Element Programming 153

object’s classes and their descendents would have to be rewritten for each new

MovableObject subclass introduced.

2. Provide a single class that knows all the types of objects that may be required
to move from one actor process to another. In this approach the introduction
of new subclasses only requires that this one class be modified or a subclass of

this class be introduced.

Using the second approach, an ObjectBroker object instantiates and returns point-
ers to these objects. The ObjectBroker class, whose interface is given in figure 5.18,

is responsible for providing methods to perform the following operations:

1. Methods are provided to construct and return pointers to all the main class ab-
stractions that are used in the modeling (Element, Node, MP_Constraint,
SP_Constraint, LoadCase, NodalLoad, Elementall.oad, Matrix, Vec-
tor, and ID objects).

2. Methods are also provided to construct and return pointers to all the main class
abstractions used in domain decomposition analysis, (ConstraintHandler,
AnalysisModel, DomainDecompAlgo, Incrementallntegrator, Domi-

anSolver, LinearSOE), DOF_Numberer and DomainDecompositionAn-

alysis. These methods are required so that the analyst only has to specify
the type of domain decomposition method to be used in the main program, and

not in the programs for the ActorSubdomain.

The exact type of object that is to be created and returned by the Object Broker
is identified by the unique classTag identifier supplied as an argument to the methods.
The provision of the MovableObject class allows the partitioning of the Domain to
occur in the same running process as the analysis, which cannot be done in PFE++
(Mukunda et al., 1996). In addition it allows the model to change as the analysis pro-
ceeds, which may be required in hp-refinement and multigrid, and it allows dynamic

load balancing between subdomains, as shall be demonstrated in chapter 7.

Chapter 5

Parallel Object-Oriented Finite Element Programming 154

class ObjectBroker {

public:

ObjectBroker();
virtual ObjectBroker();

// methods to create new uninitialized model component

// objects and return pointers to them

virtual Element *getPtrNewElement(int classTag);

virtual Node *getPtrNewNode(int classTag);

virtual MP_Constraint *getPtrNewMP(int classTag);

virtual SP_Constraint *getPtrNewSP(int classTag);

virtual LoadCase *getPtrNewLC(int classTag, int tag);

virtual NodalLoad *getPtrNewNodalLoad(int classTag);

virtual ElementallLoad *getPtrNewElementalLoad(int classTag);
virtual Matrix *getPtrNewMatrix(int classTag, int noRows, int noCols);
virtual Vector *getPtrNewVector(int classTag, int size);

virtual ID *getPtrNewlID(int classTag, int size);

// methods to get new unitialised objects

// for the analysis algorithms and returns a pointer to them

virtual ConstraintHandler *getPtrNewConstraintHandler(int classTag);
virtual DOF_Numberer *getPtrNewNumberer(int classTag);

virtual AnalysisModel *getPtrNewAnalysisModel(int classTag);

virtual EquiSolnAlgo *getPtrNewEquiSolnAlgo(int classTag);

virtual DomainDecompAlgo *getPtrNewDomainDecompAlgo(int classTag);
virtual Staticlntegrator *getPtrNewStaticlntegrator(int classTag);

virtual TransientIntegrator *getPtrNewTransientIntegrator(int classTag);
virtual Incrementallntegrator *getPtrNewlIncrementallntegrator(int classTag);

virtual int getPtrNewLinearSOE(int classTagSOE, int classTagSolver,
LinearSOE *, LinearSOESolver *);
virtual int getPtrNewDDLinearSOE(int classTagSOE, int classTagDDSolver,
LinearSOE *, DomainSolver *);
virtual DomainDecompositionAnalysis *
getPtrNewDomainDecompAnalysis(int classTag, Subdomain &theDomain);
virtual Subdomain *getSubdomainPtr(int classTag);

Figure 5.18: Interface for the ObjectBroker Class

Chapter 5 Parallel Object-Oriented Finite Element Programming 155
5.6 Modification of Classes for Parallelism

In this section a review is made of what changes to the design presented in the
previous chapters for parallel finite element analysis. The changes occur in both the

class interfaces and the class methods.

5.6.1 Modification to Class Interfaces

The descendents of MovableObject have to be modified to allow for the object
to send and receive itself. Each of the classes introduced in the previous chapters
must be extended to include the methods sendSelf() and recvSelf(). For example, the

revised NodalLoad interface is shown in figure 5.19.

virtual class NodallLoad : public Load {
public:
NodalLoad(int nodeTag);
NodalLoad(int nodeTag, const Vector &load);
NodallLoad();
virtual int getNodeTag(void) const;
virtual void applyLoad(double timestep = 0.0);
virtual int sendSelf(Channel &theChannel,ObjectBroker &theBroker);
virtual int recvSelf(Channel &theChannel,ObjectBroker &theBroker);

Figure 5.19: Revised Interface for the NodalLoad Class

5.6.2 Modification to Class Methods

As discussed in section 5.2.3, it is important not just to identify those tasks that
can be executed concurrently but to orchestrate the tasks that can be performed
concurrently. To orchestrate effectively, some of the existing code has to be modified.
For example, consider the pseudo-code used by an Incrementallntegrator when
forming the tangent matrix, which is repeated in figure 5.20.

A time line for the pseudo-code in figure 5.20 for the execution of an analysis
with two ActorSubdomains is shown in figure 5.22. Even though the tangent for

each subdomain is being processed by separate actor processes, there is no overlap

Chapter 5 Parallel Object-Oriented Finite Element Programming 156

Incrementallntegrator::formTangent {
FE_Elelter theEles = theAnalysisModel->getFEs()
theLinearSOE->zeroA()
while ((feElePtr = theEles()) # 0) {
feElePtr->formTangent(thelntegrator)
theLinearSOE->addA(feElePtr->getTangent(), feElePtr->getID())

Figure 5.20: Pseudo-Code for the Intcrementallntegrators formTangent Method

of computation. As discussed in section 5.2.3, this program would perform no better
than a sequential program for this phase of the computation, although both Ac-
torSubdomains could be forming their tangents concurrently. To orchestrate the
tasks concurrently, the operations in the formTangent() method must be re-sequenced.
The sequence of pseudo-code for the revised operation is presented in figure 5.21. In
the revised method each FE_Element is asked to compute its tangent before each
FE_Element is asked for its tangent. The resulting improvement in performance can

be seen in figure 5.23.

Incrementallntegrator::formTangent {
FE_Elelter theEles = theAnalysisModel->getFEs()
theLinearSOE->zeroA()
while ((feElePtr = theEles()) # 0)
feElePtr->formTangent(thelntegrator)
while ((feElePtr = theEles()) # 0)
theLinearSOE->addA(feElePtr->getTangent(), feElePtr->getID())

Figure 5.21: Revised Pseudo-Code for the Incrementallntegrators formTangent
Method

Chapter 5

Parallel Object-Oriented Finite Element Programming 157

Main Actor Process

ActorSubdomain Process ActorSubdomain Process

Incremental | ntegrator ‘

‘ FE_Element ‘ ‘ ShadowSubdomain‘

formTangent) | formTang() formTang() formTang()

t | formTang
5V |

getTang() getTang() getTang()
—

getID()
formTang()

formTang() formTang()
S ———

getTang() getTang() getTang()
L_getID() r’/

ActorSubdomain ‘ ‘ ActorSubdomain

processidle in object waiting for result to be processed remotely
I process busy in object

Figure 5.22: Time Line for Original formTangent Method

Chapter 5 Parallel Object-Oriented Finite Element Programming 158

Main Actor Process ActorSubdomain Process ActorSubdomain Process
‘ Incremental Integrator ‘ ‘ FE_Element ‘ ‘ ShadowSubdomain ActorSubdomain ‘ ‘ ActorSubdomain
formTangent) _| formTang() formTang()
formTang()
__getTang() e ———
getTang() o]
getTang()
—
D
‘gefTang() getTang() getTang()
=

gettD() ~ |

Figure 5.23: Time Line for Revised formTangent Method

Chapter 5 Parallel Object-Oriented Finite Element Programming 159

5.7 Example Parallel Programs

To demonstrate the flexibility and the transparency of this approach, the base
sequential pseudo C++ program presented in section 4.6 is repeated here. Modi-
fications to this program are then made to produce new programs which perform
parallel analysis. The base program performs a transient analysis of a space shuttle
model using the Newmark integration strategy, a Newton-Raphson iteration at each
time step, and the substructuring method on a uniprocessor. Four subdomains are
created, each of which uses a reverse Cuthill-McKee numbering scheme to order the
degrees-of-freedom and a profile storage scheme to store the subdomain equations.
The interface problem, which uses a reverse Cuthill-McKee numbering scheme and
a banded storage scheme to store the equations, is solved by a direct method. The

pseudo-code for the base program is as follows:

001 numSubdomains = 4;

002 /* create the partitioned domain and model builder */
003 Metis theGraphPartitioner;

004 DomainPartitioner thePartitioner(theGraphPartitioner);
005 PartitionedDomain theDomain(thePartitioner);

006

007 /* create the subdomain and add to the domain

008

009

010 for (int i=1; i<=numSubdomains; i++) {

011

012 Subdomain theSubdomain(i)

013 Transformation theConstraintHandler;

014 RCM theDOFNumberer;

015 AnalysisModel theModel;

016 ProfileSSPDSOE_Substr_Solver theSolver;

017 ProfileSPDSOE thelLinearSOE(theSolver);

018 Newmark thelntegrator(1/4, 1/2);

019 DomainDecompAlgo theSolnAlgo;

020 DomainDecompAnalysis theAnalysis(theSubdomain, theConstraintHandler,
021 theDOFNumberer, theModel, theSolnAlgo, thelntegrator, thelLinearSOE);
022 theDomain.addSubdomain(theSubdomain);

023 }

024

025 /* create a model builder and build the model */

026 SpaceShuttle theModelBuilder(theDomain);
027 theModelBuilder.buildModel();

028

029 /* partition the domain into the subdomains */
030 theDomain.partition(numSubdomains);

Chapter 5 Parallel Object-Oriented Finite Element Programming 160

031
032 /* create the analysis */
033 Transformation theConstraintHandler;

034 RCM theDOFNumberer;

035 AnalysisModel theModel;

036 DirectBandSPDSOE theSolver;

037 BandSPDSOE theLinearSOE(theSolver);
038 Newmark thelntegrator(1/4, 1/2);

039 NewtonRaphson theSolnAlgo;

040 DirectIntegrationAnalysis theAnalysis(theDomain,theConstraintHandler,

041 theDOFNumberer, theModel, theSolnAlgo, thelntegrator, theLinearSOE);
042

043 /* perform the analysis */

044 theDomain.setLoadCase(1);

045 theAnalysis.analyze;

046

To change the code so that the substructuring is done in parallel, the analyst

would replace lines 008, 009, 011 and 012 with the following:

008 ObjectBroker theObjectBroker;

009 AlphaMachineBroker theMachineBroker;

011 PVM_Channel theChannel;

012 ShadowSubdomain theSubdomain(theChannel, theObjectBroker);

If the analyst finds that the resulting program is still too slow the analyst could
instead partition the domain into 32 subdomains and try a parallel system of equations
and solver. The analyst would replace lines 001, 036 and 037 in the revised program

with the following:

001 numSubdomains = 32;
036 ShadowDirectBandSPDSOE theSolver;
037 ShadowBandSPDSOE theLinearSOE(theSolver);

161

Chapter 6

Example Structural Analysis and

Performance Evaluation

In this chapter the performance of the object-oriented design presented in the pre-
vious chapters is discussed. The design is evaluated by performing, both sequentially
and in parallel, the analysis of a number of simple structural models using a test
implementation of the design. The performance of the test implementation is then

compared with a procedural program.

Chapter 6 Ezample Structural Analysis and Performance Fvaluation 162

6.1 Introduction

In order to be practical a software design must allow for efficiency in terms of both
time and memory requirements. Object-oriented programs have been shown from a
programmers point of view to have a shorter development time than conventional
procedural programs (Forde et al., 1990), and to require less time to both maintain
and extend (Dubois-Pelerin and Zimmermann, 1993; Zeglinski and Han, 1994; Rucki,
1996). The resulting executables have also been shown to be smaller for object-
oriented programs than comparable procedural programs (Forde et al., 1990).

In order to be practical, however, it is more important that the software design
be efficient from a users point of view. A software design must allow finite element
packages to be developed which are as fast as conventional packages and which are
able to accommodate problems as large as these conventional packages.

In this chapter the efficiency of the design presented in the previous chapters
is evaluated from a users point of view. To do this a test implementation of the
design is developed using the object-oriented programming language C++4, the test
implementation containing over 50,000 lines of code. The efficiency of this program

is then evaluated in two steps:

1. A number of analyses are performed on some structural models using a unipro-
cessor machine. The performance of the object-oriented program is then com-

pared with the performance of a procedural program.

2. The analysis are repeated in parallel using two different parallel machines, two
different NOWs. The performance of the object-oriented program is then com-
pared with the performance of the object-oriented program on the uniprocessor

machines.

The results will show that while the performance is comparable in terms of CPU time,
the object-oriented program suffers in terms of memory requirements. This memory

problem is alleviated on parallel machines, as the results will show.

Chapter 6 Ezample Structural Analysis and Performance Fvaluation 163

6.2 Example Structural Models

To evaluate the performance of the test implementation a number of linear static
analysis are performed on typical structural models. The models are of two basic
types: plane frame and three dimensional frame. These two types are chosen for
a number of reasons: they allow example models to be generated easily, they allow
models to be generated which vary in respect to the percentage of operations per-
formed in the various stages of the analysis, and the topologies of the models are

representative of two- and three- structural models.

d
— —

\ |

)N N N N N N N N A

Figure 6.1: Two and Three Dimensional Test Models

Two ModelBuilder classes are developed, Quick2dFrame and Quick3dFrame
respectively. Objects of these classes generate models which use linear two- and three-
dimensional beam elements to connect the nodes. Loads are applied at the roof
levels and the base of each model is fully restrained, as shown in figure 6.1. The two
ModelBuilder classes prompt the user for the number of bays and number of stories
of the model to be generated. The resulting models which, while not corresponding
to any actual structures, are useful for measuring the performance of the software.

A number of example models, as described in tables 6.1 and 6.2, are analyzed.

Chapter 6 Ezample Structural Analysis and Performance Fvaluation 164

The examples chosen vary both in respect to the memory requirements and with
regard to the percentage of the time required by the program to solve the system
of equations relative to the time to form the equations. The examples 3dF3, 3dF4,
3dF5, and 3dF6, while they have similar numbers of degrees-of-freedom as examples
2dF3, 2dF4, 2dF5, and 2dF6, require more memory, as can be seen from the fact
the size of the profile is greater. These examples also require a greater percentage of
the CPU time to solve these equations. This can be seen from the fact that, while
the average column height of the upper triangular portion of the symmetric profile
matrix required to store the system of equations (Avg. Height) is increased by 56%
for these 3d examples, the number of elements and nodes in the examples are less

than half those in the plane frame examples.

Example || # Elements | # Nodes | # DOF | Profile Size | Avg. Height
2dF1 3050 1581 4650 43371 93
2dF2 4050 2091 6150 753981 122
2dF3 5050 2601 7650 1162791 151
2dF4 6060 3111 9180 1399941 152
2dF5 7070 3622 10710 1637091 152
2dF6 8080 4131 12240 1874241 153

Table 6.1: Two Dimensional Frame Examples

Example || # Elements | # Nodes | # DOF | Profile Size | Avg. Height
3dF3 2560 1320 7680 1815252 239
3dF4 3120 1600 9360 2224332 238
3dF5 3600 1840 10800 2574972 237
3dF6 4080 2080 12240 2925612 236

Table 6.2: Three Dimensional Frame Examples

Chapter 6 Ezample Structural Analysis and Performance Fvaluation 165

6.3 Evaluation of the Object-Oriented Design on

Uniprocessor Machines

6.3.1 Introduction

In this section the performance of the object-oriented program is compared with a
procedural program. The performance of each program is evaluated by measuring the
real time, the CPU time and the number of page faults required to perform a linear
static analysis of the models presented in section 6.2. To demonstrate the effects

of memory size and processor speed on the performance of the programs, several

different machines, as indicated in table 6.3, are used to perform the analysis.

\ HOLDEN ALPHA DEC
Workstation ALPHAstation 500 | ALPHAstation 255 | DECstation 3100
Processor ALPHA ALPHA MIPS
Clock Speed 266 MHz 233 MHz 16.67 MHz
Cache 8KB-I, 8KB-D 16KB-I 64KB-1
on Chip 96KB - L2 64KB-D
Cache
on Board 2MB -L3 1MB - L3 None
RAM 64MB 32MB 12MB
0OS Digital Unix Digital Unix Ultrix
V3.2D V3.2D V4.4
Page Size 8192 8192 4096
Compiler DEC C++ DEC C++ GNU C++
Machines 1 8 8
Connection NA 10Mb Ethernet 10 Mb Ethernet
Linpack MFLOPS
100x100 123.7 46.5 1.6
Cost of
Page Fault Tms 10ms 40ms

Table 6.3: Hardware Environments for Performance Measurements

For the static analysis of the models, the system of equations are stored using a
profile storage scheme and solved directly. No equations are assigned to the degrees-
of-freedom that are constrained and no renumbering of the equations is performed to

reduce the profile. The driver of the C++ program using the new framework is:

Chapter 6 Ezample Structural Analysis and Performance Fvaluation 166
001 main() {

002 Domain theDomain();

003 Quick2dFrame theModelBuilder(theDomain)

004 theModelBuilder.buildModel();

005

006 /* start measuring the system resources */

007 Timer theTimer();

008 theTimer.start();

009

010 /* create the analysis */

011 Transformation theConstraintHandler;

012 PlainNumberer theGraphNumberer;

013 DOF_Numberer theDOFNumberer(theGraphNumberer);
014 AnalysisModel theModel;

015 DirectProfileSPDSOE theSolver;

016 ProfileSSPDSOE theLinSOE(theSolver);

017 Staticlntegrator thelntegrator;

018 Linear theSolnAlgo;

019 StaticAnalysis theAnalysis(theDomain, theConstraintHandler, theDOFNumberer,
020 theModel, theSolnAlgo, thelntegrator, theLinSOE);
021

022 /* perform the analysis */

023 theDomain.setLoadCase(1);

024 theAnalysis.analyze;

025

026 /* print system resources used */

027 theTimer.pause();

028 theTimer.print(cout);

029 }

6.3.2 Procedural Program

A reference implementation is developed for a uniprocessor machine. This ref-

erence implementation is written in the procedural language C, using the typical

procedural design (Zienkiewicz and Taylor, 1989). The procedural program is writ-

ten to perform a linear static analysis of the plane frame examples with many features

hard coded. For example, the profile of the system of equations can be determined

from the number of bays and stories supplied as input. Also, as there are no element

loads and the analysis is static no element residuals need be calculated. The hard

coding was done to ensure the fastest possible reference procedural implementation.

As a consequence, the program is also limited to analyzing the simple frame examples

presented in section 6.2. Other two- and three- dimensional frame examples cannot

Chapter 6 Ezample Structural Analysis and Performance Fvaluation 167

be analyzed by this program.

6.3.3 Results

Tables 6.4 through 6.6 show the performance results on the various uniprocessor
machines. These tables show the real and CPU times in seconds for the analysis on
the different machines, using both programs. In addition, these tables also indicate
the number of page faults, requiring pages to be read from disk, that occur during the
analysis. Tables B.1 through B.3 provided in appendix B give the profile information
showing what percentage of the CPU time was spent in the main components of
the domainChanged(), solveCurrentStep(), and update() method calls, which are the
methods invoked when analyze() is invoked on a StaticAnalysis object. Similar
profile information for the page faults on the limited memory ALPHA and DEC

machines are shown in tables B.4 and B.5.

3dF3 9.01 | 875
3dF4 11.13 | 10.77
3dF5 12.98 | 12.51
3dF6 14.90 | 14.38

No Program Developed
No Program Developed
No Program Developed

Object-Oriented Procedural

Example | Real | CPU [# Page || Real [CPU [# Page || <504+
2dF1 1.08 | 1.01 0 0.75] 0.73 0 1.38
2dF2 213 [2.00 0] 1.66] 1.61 0 1.24
2dF3 3.73 | 3.53 0] 325] 315 0 1.12
2dF4 4.50 | 4.25 0] 3.93] 3.8 0 1.12
2dF5 5.26 | 4.98 0| 458 | 4.45 0 1.12
2dF6 6.05 | 5.75 0] 5.26 | 5.08 0 1.13

0

0

0

0

No Program Developed

Table 6.4: Performance Results on HOLDEN

The CPU time required by the object-oriented program is greater than that
required by the procedural program. This is because the object-oriented program
spends more CPU cycles setting up and forming the systems of equations than the
procedural program, as shown in figure 6.2. There are a number of reasons for the

extra CPU time required by the object-oriented program:

1. The object-oriented program performs more work than the procedural program

Chapter 6 Ezample Structural Analysis and Performance Fvaluation 168
Object-Oriented Procedural

Example | Real | CPU [# Page || Real | CPU | # Page || <7t
2dF1 2.1 1.9 0 1.7 1.6 0 1.23
2dF2 4.1 3.8 0| 3.70 3.5 0 1.08
2dF3 23.1 6.9 985 6.9 6.4 0 1.07
2dF4 57.2 8.6 4220 8.7 8.0 0 1.09
2dF5 81.5 | 10.1 6377 || 10.0 9.3 0 1.09
2dF6 105.0 | 114 8220 || 13.0 | 10.7 50 1.07
3dF3 83.2 | 17.0 6235 No Program Developed
3dF4 130.0 | 20.7 10163 No Program Developed
3dF5 147.6 | 21.8 11653 No Program Developed
3dF6 173.4 | 25.7 13783 No Program Developed

Table 6.5: Performance Results on ALPHA
Object-Oriented Procedural

Example || Real [CPU [# Page || Real | CPU | # Page | S+
2dF1 26 24 0 20 20 0 1.20
2dF2 87 63 14 57 56 0 1.12
2dF3 362 131 4146 || 123 118 0 1.11
2dF4 550 | 160 8908 || 150 | 142 0 1.12
2dF5 758 188 13889 || 184 | 167 0 1.13
2dF6 894 | 215 16837 || 391 194 3699 1.11
3dF3 875 341 13156 No Program Developed
3dF4 1119 | 419 17983 No Program Developed
3dF5 Out of Memory No Program Developed
3dF6 Out of Memory No Program Developed

Table 6.6: Performance Results on DEC

Chapter 6 Ezample Structural Analysis and Performance Fvaluation 169

B setup C++ [| formequations C++ Il so'veequations C++
v~) solve equations C

100

90 —

80—

70 —

60 —

% CPU

50 —

40—

30

20

10

2dF1 2drF2 2dF3 2dF4 2dF5 2dF6 3dF3 3dF4 3dF5 3dF6

Example

Figure 6.2: Profile of CPU Time for C++ Program on ALPHA

Chapter 6 Ezample Structural Analysis and Performance Fvaluation 170

in setting up and forming the system of equations. For example, the object-
oriented program spends upwards of 2% of the CPU time forming the element
residual and 3% of its time forming the degree-of-freedom graph. These are

operations not performed in the procedural program.

2. There are considerably more method calls in the object-oriented program than
procedural calls in the procedural programs. For example, whereas the proce-
dural program performs 3064 and 8094 procedure calls to analyze models 2dF'1
and 2dF6, the object-oriented program requires over 2.6 million and 7.6 million

method calls when analyzing these same two models.

This is typical of object-oriented programs and is due to the fact that there
are many more levels of abstraction, and hence indirection, in object-oriented
programs than in procedural programs. For example, the methods invoked in
the object-oriented program when formTangent() is invoked on a FE_Element
object. This method will cause formElementTanget() to be invoked on the In-
tegrator object, which will in turn will cause zeroTang() and addKtoTang() to
be invoked on the FE_Element object. addKtoTang() invokes getStiff() on the
FE_Elements associated Element object. This in turn invokes getCrd() on all
the ELements Node objects. In the procedural program, there is only a sin-
gle procedural call for each element. For problems involving more complicated
element calculations, the relative additional cost of the element calculations
in an object-oriented enviroment to that in a procedural enviroment will be

diminished.

3. In the object-oriented program it is sometimes necessary for the system to
determine which method is to be invoked, when a method is invoked on an
object. This is known as dynamic binding and is due to subclassing. For
example when getStiff() is invoked on each Element object it is necessary for

the system to determine which Element subclasses getStiff() method to invoke.

4. The object-oriented program spends more time managing memory than does
the procedural program. For example, in the procedural program there are 10

calls to the kernel’s memory allocation function malloc() for all the examples.

Chapter 6 Ezample Structural Analysis and Performance Fvaluation 171

In the object-oriented program model 2dF1 requires the creation of over 85,740

objects and model 2dF6 over 224,740 objects.

This is typical of object-oriented programs and is a consequence of the dynamic
allocation and destruction of the many objects used in the object-oriented pro-
grams, which is a result of the high degree of abstraction used. For example, in
a procedural program one large section of memory can be allocated for holding
all the element data. In the object-oriented program a separate location is al-
located for each Element object. In addition for each Element object memory
is allocated for the additional objects internal to the Element, such as an ID

to identify the nodes and a Matrix object.

The results for the limited memory ALPHA and DEC machines also show that
the object-oriented programs requires more memory, as seen by comparing page faults
in tables 6.5 and 6.6. The increased memory requirement of the object-oriented
program means that the procedural program will be able to handle larger problems
than the object-oriented program for a fixed amount of memory. In addition, when
page faulting occurs, especially for the machines with faster processors, the real time
taken to perform the analysis degrades considerably. There are a number of reasons

for the additional memory requirements of the object-oriented program:

1. The use of the FE_Element objects requires that a Matrix object and ID
object be created for each FE_Element object. In addition, the creation of
a Graph object, needed to provide the LinearSOE object with information
about the degree-of-freedom connectivity, requires a Vertex object be created
for each degree-of-freedom. Each Vertex requires an ID object to store it’s
adjacency information. This allocation of memory is not required in the proce-

dural program.

2. Due to the large number of dynamically created objects, the demands on the
heap tends to be greater for an object-oriented programs than for a procedural

programs.

3. Due to the large number of method calls which can be invoked when a method

Chapter 6 Ezample Structural Analysis and Performance Fvaluation 172

is invoked on an object, the requirements on the stack are greater for an object-

oriented program than for a procedural program.

[] formequations I so'veequations [] other

100

90

o =B

70

60

50

% Page Faults

30

20

10

2dF1 2dF2 2dF3 2dF4 2dF5 2dF6 3dF3 3dF4 3dF5 3dF6
Example

Figure 6.3: Profile of Page Faults for C++ Program on ALPHA

When paging does occur, the number of page faults is quite high. As can be seen
in figure 6.3, the page faulting is not restricted to that portion of the program solving
the system of equations. The high page rates are due to the fact that the programmer
has little control over the location in the virtual address space allocated to each of the
many objects, which results in poor data locality. For example, while only at most 7%
of the CPU time is spent in formTangent() over 60% of the page faults occur here. This
is because this method, as previously discussed, is invoking further methods on objects

that are scattered all over the virtual address space of the program. To reduce the

Chapter 6 Ezample Structural Analysis and Performance Fvaluation 173

number of page faults, certain classes could be rewritten to provide their own memory
management (Stroustrup, 1991). The revised classes would be responsible for looking
after large contiguous portions of memory, allocating portions of this memory to their
objects and to the aggregate objects used by these objects. For example, the virtual
address allocated to the Element objects of a certain class, along with their Matrix,

Vector and ID objects, would be in a contiguous portion of the virtual address space.

6.4 FEvaluation of the Object-Oriented Design on

Parallel Machines

6.4.1 Introduction

In this section the performance of the object-oriented program when executing on a
parallel machine is evaluated by comparing it with the execution of the object-oriented
program executing on a single processing unit of the parallel machine. The parallel
machines that are used are the networked ALPHA and DEC machines presented in
table 6.3. The performance of the program is evaluated by measuring the real time
taken to perform the analysis and the number of page faults that occur. These are
then compared to the real time and CPU time taken to solve the problem on a single
processing unit. The real time is used as the metric for the algorithmic speedup and

the CPU time for the speedup:

T

AS, = —
p Tp
CPU,

S ="

The CPU time is used for the speedup because page faults cause a serious degradation
in performance and frontal solvers could be used to solve the equations, which would
reduce considerably the number of page faults. This is a conservative measure as
frontal solvers would be slower in terms of CPU time for the examples analyzed,
which generate systems of equations which have relatively constant and narrow band
profiles, and the reported CPU time is always less than the reported real time because

of system overhead.

Chapter 6 Ezample Structural Analysis and Performance Fvaluation 174

To perform the static analysis in parallel the substructuring domain decomposition
method is used. The domain is partitioned using a multilevel strategy and the spectral
bisection method. The subdomain equations and the interface equation are stored
using a profile storage scheme. The interface problem is solved directly. This is as

shown in the C+4 program shown below:

001 main() {

002 /* ask user for the number of subdomains */

003 int numSubdomains;

004 cout << “Enter Number of Subdomains: *;

005 cin >> numSubdomains;

006

007 /* create the partitioned domain and model builder */
008 Metis theGraphPartitioner;

010 DomainPartitioner thePartitioner(theGraphPartitioner);
011 PartitionedDomain theDomain(thePartitioner);

012

013 /* create the subdomains and add to the domain

014 ObjectBroker theObjectBroker;

015 AlphaMachineBroker theMachineBroker;

016 for (int i=1; i<=numSubdomains; i++) {

017 TCP_Socket theChannel;

018 ShadowSubdomain theSubdomain(theChannel, theObjectBroker);
019 Transformation theConstraintHandler;

020 RCM theGraphNumberer;

021 DOF_Numberer theDOFNumberer(theGraphNumberer);
022 AnalysisModel theModel;

023 ProfileSPDSOE_Substr_Solver theSolver;

024 ProfileSPDSOE theLinSOE(theSolver);

025 Staticlntegrator thelntegrator;

026 DomainDecompAlgo theSolnAlgo;

027 DomainDecompAnalysis theAnalysis(theSubdomain, theConstraintHandler,
028 theDOFNumberer, theModel, theSolnAlgo, thelntegrator, theLinSOE);
029 theDomain.addSubdomain(theSubdomain);

030 }

031

032 /* create a model builder and build the model */

033 Quick2dFrame theModelBuilder(theDomain);

034 theModelBuilder.buildModel();

035

036 /* create a timer and start it running */

037 Timer theTimer;

038 theTimer.start();

039

040 /* partition the domain into the subdomains */

041 theDomain.partition(numSubdomains);

042

043 /* create the analysis */

044 Transformation theConstraintHandler;

Chapter 6 Ezample Structural Analysis and Performance Fvaluation 175

045 RCM theGraphNumberer;

046 DOF _Numberer theDOFNumberer(theGraphNumberer);

047 AnalysisModel theModel;

048 DirectProfileSPDSOE theSolver;

049 ProfileSPDSOE theLinSOE(theSolver);

050 Staticlntegrator thelntegrator;

051 Linear theSolnAlgo;

052 StaticAnalysis theAnalysis(theDomain,theConstraintHandler,
053 theDOFNumberer, theModel, theSolnAlgo, thelntegrator, theLinSOE);
054

055 /* perform the analysis */

056 theDomain.setLoadCase(1);

057 theAnalysis.analyze;

058

059 /* stop the timer and print out the results */

059 theTimer.pause();

060 theTimer.print(cout);

061 }

6.4.2 Results

The results showing the performance obtained on these machines is as shown in
tables 6.7 and 6.8. The speedup and algorithmic speedup are as shown graphically
in figures 6.4 and 6.5. These figures also show the load imbalance among the sub-
domains, by providing the maximum ratio of the result of invoking getCost() on the
ActorSubdomain objects, and they provide an indication of the percentage of the
total time can be attributed to page faulting, communication and computation. In
tables B.6 through B.21 the time taken to perform the computation is divided into
the time taken to partition the domain and the time taken to perform the analysis. In
addition these tables also provide information about the CPU time required to solve
the interface problem and the times required by the individual subdomain processes
during the analysis.

The results demonstrate the following:

1. A parallel environment allows problems to be analyzed which cannot be an-
alyzed on a single uniprocessor machine, because of memory limitations. For
example, problems 3dF5 and 3dF6, cannot be analyzed on a single DEC work-

station, but they can be analyzed using a number of these machines in parallel.

2. Large problems can be analyzed faster in a parallel environment than in a

NP=1 NP=3 NP=4 NP=5 NP=7
Example | Real | CPU | # PF || REAL | # PF || Real | # PF | Real | # PF || Real | # PF
2dF1 2.1 1.9 0 2.85 0 3.65 0 3.05 0] 4.45 0
2dF2 4.1 3.8 0 4.05 0 4.28 0 3.65 0 5.85 0
2dF3 23.1 6.9 985 6.08 0 6.05 0 5.05 0 7.42 0
2dF4 57.2 8.6 | 4220 8.05 0 8.23 0 5.98 0 9.28 8
2dF5 81.5 | 10.1 | 6377 16.15 45 8.78 0 8.62 0 || 10.85 17
2dF6 105.0 | 114 | 8220 15.40 125 || 28.37 8 || 10.30 5 || 13.93 25
3dF3 83.2 | 17.0 | 6235 10.15 01 22.12 0| 16.70 0| 15.23 18
3dF4 130.0 | 20.7 | 10163 16.40 152 || 33.92 74 || 22.50 21 || 20.58 16
3dF5 147.5 | 21.8 | 11653 23.82 547 || 56.00 | 1176 || 32.88 62 || 29.57 198
3dF6 173.4 | 25.7 | 13787 52.55 | 6312 | 84.25 | 2770 || 38.63 69 || 45.63 Y

Table 6.7: Performance Results on ALPHA Cluster

9 1e1dey)

UODNIDAST IIUDULLOLUD J PUD SISHDUY 104non.lg 2)dwnziy

9.1

NP=1 NP=3 NP=4 NP=5 NP=7
Example || Real | CPU | # PF || REAL | # PF || Real | # PF || Real | # PF || Real | # PF
2dF1 26 24 0 23 0 40 0 22 0 38 2
2dF2 87 63 14 38 0 45 1 35 1 51 1
2dF3 362 131 4146 60 0 71 0 51 2 81 24
2dF4 550 160 8908 74 0 94 4 70 0 118 155
2dF5 758 188 | 13889 94 13 148 1 86 6 141 208
2dF6 894 216 | 16837 123 72 306 278 143 208 185 170
3dF3 875 341 | 13156 140 4 296 80 247 623 236 804
3dF4 1119 419 | 17983 286 | 4872 517 | 1000 325 860 309 | 1090
3dF5 Not Enough Memory 416 | 2800 614 | 2619 513 1042 415 | 1532
3dF6 Not Enough Memory 964 | 5186 881 | 7449 564 | 1422 648 | 1890

Table 6.8: Performance Results on DEC Cluster

9 1e1dey)

UODNIDAST IIUDULLOLUD J PUD SISHDUY 104non.lg 2)dwnziy

LLT

Chapter 6

Ezample Structural Analysis and Performance Fvaluation

178

Algorithmic Speedup (AS)

Speedup

Factor Unbalance in Subdomains

% Analysis Time

I NP=3 [] NP4 N N\NP=5 [N NP=7

BN WD OO N ®©

2dF1 2dF2 2dF3 2dF4 2dF5 2dF6 3dF3 3dF4 3dF5 3dF6
Example
2dF1 2dF2 2dF3 2dF4 2dF5 2dF6 3dF3 3dF4 3dF5 3dF6
Example
—‘ —
2dF1 2dF2 2dF3 2dF4 2dF5 2dF6 3dF3 3dF4 3dF5 3dF6
Example
2dF1 2drF2 2dF3 2dF4 2dF5 2dF6 3dF3 3dF4 3dF5 3dF6
Example
I Page Faults [cpu I Communication

Figure 6.4: Parallel Performance on ALPHA

Chapter 6 Ezample Structural Analysis and Performance Fvaluation 179

BN NP=3 [] NP4 HEEEE N\NP=5 [NP=7

10
o
<
o
i
&
Qo
£
£
S
°
<
2dF1 2dF2 2dF3 2dF4 2dF5 2dF6 3dF3 3dF4 3dF5 3dF6
Example
3
% 2
&
1]

2dF1 2dF2 2dF3 2dF4 2dF5 2dF6 3dF3 3dF4 3dF5 3dF6
Example

Factor Unbalance in Subdomains
P N Wb OO N

2dF1 2dF2 2dF3 2dF4 2dF5 2dF6 3dF3 3dF4 3dF5 3dF6
Example

% Analysis Time
i
\
\
I

2dF1 2dF2 2dF3 2dF4 2dF5 2dF6 3dF3 3dF4 3dF5 3dF6
Example

I Page Faults [cpu I Communication

Figure 6.5: Parallel Performance on DEC

Chapter 6 Ezample Structural Analysis and Performance Fvaluation 180

sequential environment. This is despite the overhead of partitioning the problem
required in the parallel analysis, which accounts, on average, for over 35% of
the time taken to perform the analysis. For example for all examples but 2dF1

on the ALPHA cluster, algorithmic speedup is obtained.

The primary reason for this marked increase in performance is in the reduction
in the number of page faults that occur in the parallel environment. This is
demonstrated by the fact that the algorithmic speedup is considerably more
than the speedup when page faulting occurs, as demonstrated in figures 6.4 and
6.5. The figures also demonstrate that the effect of reducing the number of page
faults is greater for the ALPHA machine than the DEC machine. This is due
to the fact that the ratio of processor speed to disk access is greater for the
ALPHA machine than the DEC machine.

3. The ratio of processor speed to the cost of communication has a significant
influence on the performance of the parallel machine. As the ratio of processor
speed to communication speed reduces, the speedup obtained will increase. This
is demonstrated by the fact that the speedup values for the DEC machines are
greater than those for the ALPHA machines.

4. The performance does not necessarily improve as more processors are added.

There are a number of reasons for this:

(a) As more processors are added, the time required to partition the problem
increases, accounting for over 50% of the total time required to perform
the computation for some examples. This additional time is due both
to the extra time required to partition the element graph and the extra
time required to construct the degree-of-freedom graph given the increase
in connectivity. To overcome this problem a parallel graph partitioning
package could be used, e.g. ParMetis (Schloegel et al., 1997), and more

efficient graph classes could be developed.
The overhead associated with the partitioning phase will be negated when
an iterative solution strategy is specified by the analyst, for example in

non-linear or transient analysis. The reason for this is that the partition-

Chapter 6

Ezample Structural Analysis and Performance Fvaluation 181

ing is only done once, while the setting up and solving of the equations
are done numerous times. This is as seen in figure 6.6, where the algo-
rithmic speedup and speedup values when 25 iterations are performed on
the ALPHA machine is presented. The results show that the speedup val-
ues obtained are almost double that obtained for the single iteration case,

presented in figure 6.4.

As more processors are added, the size of the interface problem grows.
The larger interface problem requires additional CPU cycles to solve and
can also result in page faulting. To overcome this problem the interface

problem could be solved in parallel.

As more processors are added, the amount of communication required
to perform the analysis increases, as shown in figures 6.4 and 6.5. For
smaller problems and slower communication networks, the computation
can be dominated by the communication, for example the communication
accounts for over 60% of the time spent when analyzing 2dF1 with six

subdomains on the ALPHA machine.

When using more than two processors there is sometimes a problem of load
imbalance on the processors. In certain instances one processor is taking
almost five times longer than another processor to perform the subdomain
calculations. This is due to both the partitioning of the domain, generated
by the Metis object, and the numbering scheme used in assigning equation
numbers to the degrees-of-freedom, generated by the RCM object. The
partitioner does not take into account that, when using the substructuring
method, the amount of work to be done in a subdomain depends not only
on the number of elements in a subdomain, but also on the relationship
between the interior and exterior degrees-of-freedom. The algorithm em-
ployed by the RCM object does not take into account that, when using
substructuring, the degrees-of-freedom in a partition need to be split up

into two groups, interior and exterior, and numbered accordingly.

Chapter 6

Ezample Structural Analysis and Performance Fvaluation

182

Algorithmic Speedup (AS)

Speedup

I NP=3 [] NP-4 HEEEE \NP-5 [NP=7

28

26

24

22

20

18

16

14

12

10

2dF1 2dF2 2dF3 2dF4 2dF5 2dF6 3dF3 3dF4 3dF5 3dF6
Example

2dF1 2dF2 2dF3 2dF4 2dF5 2dF6 3dF3 3dF4 3dF5 3dF6
Example

Figure 6.6: Parallel Performance on ALPHA for 25 Iterations

Chapter 6 Ezample Structural Analysis and Performance Fvaluation 183

6.5 Summary

In this chapter it has been shown that an object-oriented program, based on
the design presented in the previous chapters, will require more CPU time than a
corresponding procedural program. For large problems, the additional CPU time
required by the object-oriented program will be less than 5% of the total CPU time.
This is acceptable given the flexibility and extensibility offered to the analyst as a
consequence of the object-oriented design.

Of greater concern to the analyst, however, is the greater memory requirements
of the object-oriented program over that of a procedural program. The additional
memory requirements limit the size of the problems that can be analyzed and can
result in significantly slower execution times if page faulting occurs.

To overcome this memory problem, the design presented allows the analyst to use
a parallel machine, such as a network of computers commonly found in most offices.
The results show that if enough machines are made available the memory problems
associated with the object-oriented program can be negated.

A problem of load imbalance among processors can however limit the performance
of the parallel program as it results in CPU cycles being wasted. As discussed, the
load imbalance can be a result of the partitioning scheme and degree-of-freedom num-
bering algorithm used by the analyst. New GraphPartitioner and GraphNum-
berer subclasses could be introduced to overcome this problem. The object design
presented allows the analyst to choose the specific classes of GraphPartitioner and
GraphNumberer most suitable for the problem at hand, further demonstrating the
flexibility and extensibilty of the design. An alternative solution to the load imbal-
ance problem is, for non-linear and transient problems, to use dynamic load balancing.

This will be looked at in chapter 7.

184

Chapter 7

Dynamic Load Balancing for Finite

Element Analysis

In this chapter the design presented in the previous chapters is extended to allow
for dynamic load balancing during the analysis. A review of existing approaches for
dynamic load balancing in a finite element analysis is first presented. A new approach
is then given, along with the extensions and modifications to the design to accommo-
date this new approach. Finally, results showing the performance improvements that

can be obtained using this new approach are presented and discussed.

Chapter 7 Dynamic Load Balancing for the Finite Element Method 185

7.1 Introduction

Static load balancing, where the work is assigned to the processors at the start
of the computation and does not vary as the computation proceeds, is not always
adequate for parallel processing. This is especially true for finite element analysis on

networks of workstations. There are a number of reasons for this:

1. The initial partitioning of the domain may lead to load imbalance among the

processors, as seen in chapter 6.

2. In a non-linear analysis, certain regions of the domain may go non-linear at
any stage in the solution. For elements in the non-linear range, the amount of
computation required for the state determination can be significantly greater
than when in the linear range. This can result in load imbalance among the
processors, if a large number of elements in the non-linear range exist on a single

processor.

3. On a traditional network of workstations with which the users share the system
resources, the load on the individual processors can change at any moment as
new users log on, or as existing users begin new or terminate old processes. On

dedicated parallel computers, this is not an issue.

4. On a network of workstations, the performance of the workstations may vary.
This can lead to load imbalance if the initial partitioning does not take into

account the processing capabilities of the individual processors.

Dynamic load balancing, wherein the work assigned to the individual processors
varies as the computation progresses, can overcome the performance problems asso-
ciated with static load balancing. Dynamic load balancing techniques have been used
in this and other areas, particularly in parallel computational fluid dynamics (CFD)
and distributed and parallel operating systems research. In CFD applications where
adaptive mesh control is used, quasi-static load balancing is typically employed (Nicol
and Reynolds Jr., 1990; Williams, 1991; Pramono et al., 1994; Chien et al., 1994; Van

Driessche and Roose, 1995). That is, load balancing is done whenever changes to the

Chapter 7 Dynamic Load Balancing for the Finite Element Method 186

mesh would cause a severe load imbalance. The typical strategy employed is to repar-
tition the new mesh, that is to perform static load balancing again. In distributed and
parallel operating systems research, the goal is to attempt to balance the workload
of all runnable processes among the processors. This is typically done in one of two

ways:

1. Task queue approach (Wang and Morris, 1985): The waiting runnable processes
are placed in a queue. When a processor becomes free, the processor is assigned

a process from the queue.

2. Diffusion approach (Wang and Morris, 1985; Ni et al., 1985; Barak and Shiloh,
1985; Eager et al., 1986; Lin and Keller, 1987; Cybenko, 1989; Douglis and
Ousterhout, 1989; Chowdhury, 1990; Xu and Hwang, 1993): The processes, as-
signed initially to a specific processor, move around as processes change and/or
as more load enters the system. Typically background processes run on each
processor, to monitor the load on the processor, and they communicate with
a managing process, which monitors the load in the system. As unbalance oc-
curs and certain processors become overloaded, processes are moved from one

processor to another in the system.

3. Switch approach (Chakrabarti et al., 1997): Tasks, which represent work to be
done, are placed in a queue when ready to run. Each task contains data parallel
operations, that is operations which can be performed in parallel on arrays, and
has a speedup profile, which is a function of the task size, the machine and the
type of work being performed by the task. The tasks are placed into one of two
queues based on their speedup profiles; one queue, .J;, contains all tasks that
will only be assigned a single processor and the other queue, Jp, contains tasks
that will be assigned to run all all the processors. Initially, all the tasks in Jp
are run and, when Jp is empty, a switch is made and all the processes in .J; are
run, using a greedy algorithm to assign the tasks to the processors. When J; is

empty, a switch back to Jp is made and the process continues.

In this chapter a review of an existing approach for dynamic load balancing a

finite element analysis is presented, with a discussion on how the software design can

Chapter 7 Dynamic Load Balancing for the Finite Element Method 187

be modified for this approach. Two new approaches for dynamic load balancing an
analysis are then given. The modifications to the existing framework to accommodate
one of these new approaches is then presented. Finally, empirical results demonstrate
that the performance of the parallel program can be improved using simple load

balancing algorithms.

7.2 Existing Approaches to Dynamic Load

Balancing the Finite Element Analysis

Santiago and Law (1996) perform dynamic load balancing using a task queue
approach. In this work the domain is broken down into many subdomains, with
the number of subdomains being much greater than the number of processors. The
subdomain operations, i.e. formTangent(), represent tasks. The subdomain data,
such as elements, nodes and loads, are kept by the main process. Also running on
the parallel machine are a number of slave processes. A slave process asks the main
process for work when the current subdomain task assigned to the process has been
completed. During the analysis, as the main process iterates over the subdomains it
will assign a subdomain task to next available slave process.

The problems with this approach are:

1. There is a considerable amount of communication. For each task assigned to
a slave process, the master process must send all the subdomain data to the
slave process. Upon completion, the slave process sends the results and the

subdomain data back to the main process.

2. The approach will not scale well to larger problems because the master process

must hold all the model data.

To accommodate this approach in the frameworks presented in the previous chap-
ters, a new SubdomainProcess class and two new Subdomain subclasses, Shad-
owSubdomainTask and ActorSubdomainTask could be introduced. The Shad-
owSubdomainTask object resides in the main process and holds all the subdomain

data. When a computationally demanding method, such as getTangent(), is invoked

Chapter 7 Dynamic Load Balancing for the Finite Element Method 188

on the object it would invoke a method in the SubdomainProcess object to obtain
a Channel object with which to communicate with the next available ActorSub-
domainTask object. The ActorSubdomainTask object, which resides in a remote
actor process, is responsible for receiving the subdomain data, performing the opera-
tion and returning the results and subdomain data to the ShadowSubdomainTask
object via its Channel object. When done, the ActorSubdomainTask object sends
a message to the SubdomainProcess object telling that object that it is done and

is ready to work on another subdomain.

7.3 New Approaches for Dynamic Load Balancing

A number of different approaches than that used by Santiago and Law (1996)
could be employed for performing dynamic load balancing during a finite element

analysis. In this section two new approaches are presented:

1. One approach is to partition the domain into subdomains, with the number of
subdomains being less than the number of available processors. Initially each
subdomain is assigned a number of processors based on the a-prior: determi-
nation of the workload in each subdomain (Synn and Fulton, 1995). As the
computation progresses and load imbalance occurs, the number of processors

assigned to each subdomain is modified to reduce the load imbalance.

2. An alternative approach is to partition the domain into subdomains, with the
number of subdomains being equal to the number of processors. Each subdo-
main is assigned to a single processor. As the computation progresses and load
imbalance occurs, the original partitioning is modified, by migrating elements

between subdomains to reduce the load imbalance.

The first approach, a multilevel subdomain approach, can result in situations in
which numerous processors try to communicate at once, which causes an consid-
erable degradation in the performance of a NOW, which relies on an ethernet for
communication, (Cabrera et al., 1988). The second approach does not generate such
communication patterns. For this reason and due to the fact that the NOWSs available

for this research use ethernets, the second approach is developed in this research.

Chapter 7 Dynamic Load Balancing for the Finite Element Method 189

7.4 Extension of Framework for Dynamic Load

Balancing

To incorporate the second approach to dynamic load balancing described in the
previous section, the software design presented in the previous chapters is modified
and extended. A new class LoadBalancer is introduced and the PartitionedDo-

main, Subdomain and DomainPartitioner classes are modified or extended.

7.4.1 Modification to the PartitionedDomain Class

The commit() method of the PartitionedDomain class is modified so that af-
ter the normal commit operations are performed, the PartitionedDomain object
can gather from the Subdomain objects the real time taken by them to perform
their tasks during the previous iteration step. Given the load information the Parti-
tionedDomain will invoke balance() on the DomainPartitioner object associated

with it.

7.4.2 Extension to the Subdomain Class

The Subdomain class is extended to include a method getCost(). This method
will return the real time spent by the Subdomain processing operations since the

last invocation of the Subdomain’s getCost() method.

7.4.3 Extension to the DomainPartitioner Class

The DomainPartitioner class is now a subclass of the GraphBalancer class,
which defines methods for balancing a weighted graph. This requires that additional
methods, as shown in figure 7.1, are implemented for the DomainPartitioner class.

The additional methods can be divided into two categories:

1. A method balance() which is invoked when a load balancing step is to be per-
formed. If no LoadBalancer object is associated with the DomainParti-
tioner no load balancing is performed. If a LoadBalancer is associated with

the object, the DomainPartitioner invokes balance() on the LoadBalancer

Chapter 7

Dynamic Load Balancing for the Finite Element Method

190

class DomainPartitioner: public GraphBalancer {

public:

DomainPartitioner(GraphPartitioner &theGraphPartitioner);
DomainPartitioner(GraphPartitioner &theGraphPartitioner

LoadBalancer &theGraphLoadBalancer);
virtual DomainPartitioner();

virtual void setPartitionedDomain(PartitionedDomain &theDomain);
virtual int partition(int numParts);

// new methods for load balancing defined in GraphBalancer

virtual int balance(Graph &theWeightedPartitionGraph);

virtual int swapVertex(int from, int to, int vertexTag);

virtual int swapBoundary(int from, int to);

virtual int releaseVertex(int from,
int vertexTag,
const Graph &theWeightedPartitionGraph,
bool okToReleaseToLighter);

virtual int releaseBoundary(int from,
const Graph &theWeightedPartitionGraph,
bool okToReleaseToLighter);

virtual Graph &getColoredGraph(void);

Figure 7.1: Revised Interface for the DomainPartitioner Class

Chapter 7 Dynamic Load Balancing for the Finite Element Method 191

object. When this object is done, the DomainPartitioner will check to see
if the Subdomain objects have been modified. If modified, it invokes domain-

Changed() on them and on the PartitionedDomain object.

2. Methods swapVertex(), swapBoundary, releaseVertex(), releaseBoundary(), getCol-
oredGraph(), and getPartitionGraph() which are invoked by the LoadBalancer
object during the load balancing. While these methods are responsible for
moving the Element, Node, Load and Constraint objects among the Sub-
domains, the methods provide a simple interface which can be used for other
graph balancing problems. This would allow the LoadBalancer classes to be

used in other frameworks which have a GraphBalancer class.

7.4.4 LoadBalancer Class

The LoadBalancer object is responsible for modifying the partition to obtain a
better load balance among the partitions. The LoadBalancer class, whose interface
is shown in figure 7.2, is an abstract base class. It defines one method, balance(), for

which all subclasses must provide an implementation.

class LoadBalancer {
public:
LoadBalancer();
virtual LoadBalancer();

virtual void setLinks(GraphBalancer &theBalancer)
// method to balance the load among the processors
virtual int balance(graph &weightedPartitionGraph) =0;

protected:
GraphBalancer *theGraphBalancer;

Figure 7.2: Interface for the LoadBalancer Class

When balancing, the LoadBalancer object uses the methods defined in the Do-
mainPartitioner object. For example, the HeavierToLighterNeighbours sub-

class, which is shown in figure 7.3, uses the swapBoundary() method. The load bal-

Chapter 7 Dynamic Load Balancing for the Finite Element Method 192

ancing algorithm employed by this subclass will shed the elements on the boundary
between all partitions and their less loaded neighboring partitions subject to the

following conditions:

1. No shedding of elements will occur between a partition and its neighbor if
the ratio of the load in the partition and its neighbor is less the a certain
factor. This factor, loadFactor, is used to recognize that there is a point where
the costs associated with the load balancing will be greater than the benefits
obtained. The cost of swapping elements between partitions is due to both the
communication costs involved in sending Element, Node and Load objects
and the cost of invoking domainChanged() on the Subdomains when the load

balancing is completed.

2. No swapping of elements between partitions occurs if elements were moved in
the previous load balancing step. This is done to ensure that page faulting,
which can greatly increases in number when domainChanged() is invoked on a
Subdomain, does not cause load balancing to occur when the next analysis

step would not require any due to computationally balanced Subdomains.

7.5 Evaluation of the Effect of Dynamic Load

Balancing on Performance

7.5.1 Introduction

This section examines the effect of dynamic load balancing on the performance
of the parallel program, when the load imbalance on the processors is a consequence
of the initial partitioning. This is done by comparing the time taken to perform 25
analysis steps in which no dynamic load balancing is performed to 25 steps in which
the HeavierToLighterNeighbours dynamic load balancing strategy, presented in
figure 7.3, is used. In the analysis, the elements remain in the elastic range and the
only processes running on the machine are due to the parallel program. To perform
25 steps with no load balancing, line 052 of the code presented in section 6.4.1 is

replaced with the following:

Chapter 7 Dynamic Load Balancing for the Finite Element Method

193

class HeavierTolLighterNeighbours: public LoadBalancer {
public:
HeavierToLighterNeighbours(double loadFactor);
virtual HeavierToLighterNeighbours();

int balance(Graph &weightedPartitionGraph);

b

HeavierToLighterNeighbours::balance(Graph &weightedPartitionGraph){
// only do the algorithm if no swapping last time
if (lastSwap == true) {
lastSwap = false;
return 0;

}

// iterate through the vertices
Vertexlter &theVertices = weightedPartitionGraph->getVertices();
while ((vertexPtr == theVertices()) ! = 0) {
int vertexTag = vertexPtr->getTag();
double vertexLoad = vertexPtr->getWeight();
const ID &neighbours = vertexPtr->getAdjacency();
// look at all the vertices neighbours
for (int i=0; i<neighbours.Size(); i++) {
int otherTag = neighbours.Size();
vertex *otherPtr = weightedPartitionGraph->getVertexPtr(otherTag);
double otherLoad = otherPtr->getWeight();
// shed load to lighter neighbor if unbalance large enough
if (vertexLoad/otherLoad > loadFactor) {
theGraphBalancer->swapBoundary(vertexTag,otherTag);
lastSwap = true;

Figure 7.3: The HeavierToLighterNeighbours Class

Chapter 7 Dynamic Load Balancing for the Finite Element Method 194

052 PDeltaAnalysis theAnalysis(25,theDomain,theConstraintHandler,

To perform 25 analysis steps using the HeavierToLighterNeighbours dynamic
load balancing algorithm, lines 009 and 010 of the code just presented for the 25 steps

with no load balancing is replaced with the following:

009 HeavierToLighterNeighbours theLoadBalancer(factor);
010 DomainPartitioner(thePartitioner, theLoadBalancer);

7.5.2 Results

Table 7.1 shows the effect of performing dynamic load balancing on the ALPHA
machine for the examples presented in section 6.2 using two different values for the
loadFactor of 1.5 and 2.0. In table 7.1 both the times taken to perform all 25 steps
of the analysis, T7_95, and the time taken to perform the 25‘th step of the analysis,
Tass.

The results demonstrate the following:

1. Dynamic load balancing can improve the performance of the parallel program.
For example, the performance of the parallel program, 7} o5, is improved by
a factor of 2.5 when using 3 subdomains (NP=4) and a loadFactor of 1.5 to
analyze example 3dF5 on the ALPHA machine.

2. Dynamic load balancing can also degrade the performance. For example, the
parallel program 77 _o5, is slowed down by a factor of 1.6 when using 6 subdo-
mains (NP=7) and a loadFactor of 1.5 to analyze example 3dF3 on the ALPHA

machine.

3. The potential for improvement in the parallel performance that can be achieved
using dynamic load balancing is greater when the communication costs, rela-
tive to computation costs, are low. This is demonstrated by the fact that the
improvement in performance is, typically, greater for the 3 subdomain (NP=4)
case than the 6 subdomain (NP=7) case. When using 3 subdomains (NP=4)
processors and a loadFactor of 1.5 example 2dF1 requires 481 sec(Tags = 14 sec)

on the DEC machine. Without load balancing the same example requires

Chapter 7 Dynamic Load Balancing for the Finite Element Method 195
Dynamic Load Balancing
NP | Example || No Balancing || loadFactor = 1.5 || loadFactor = 2.0
Tios | Tags | Tia5 | Tazs | Tios | Taszs
2dF1 4793] 1.80 | 3590 1.17] 37.88] 1.28
2dF2 58.13 | 2.17 No Balancing No Balancing
2dF3 86.27 | 3.35 || 73.50 2.70 | 82.20 3.07
2dF4 140.72 | 5.45 || 112.43 4.22 || 114.42 4.30
2dF5 139.27 | 5.33 || 130.02 4.73 || 135.93 5.13
4 2dF6 664.67 | 27.77 || 352.47 5.83 || 364.00 7.58
3dF3 457.75 | 18.08 || 392.63 14.75 || 403.82 14.48
3dF4 732.48 | 28.10 || 395.50 13.06 || 437.05 15.45
3dF5 1156.43 | 55.47 || 461.05 14.93 || 566.58 20.30
3dF6 1753.20 | 72.38 || 919.48 31.32 || 730.92 20.53
2dF1 28.98 | 1.15 || 29.95 1.08 || 28.96 1.07
2dF2 38.97 | 1.42 || 39.70 1.36 || 38.53 1.36
2dF3 54.02 | 2.02 | 59.87 2.03 | 53.75 1.95
2dF4 67.63 | 2.53 | 68.32 2.50 | 66.98 2.45
2dF5 113.20 | 4.15 || 116.08 4.20 || 110.67 4.22
5 2dF6 137.28 | 5.13 || 119.75 4.33 || 117.73 4.33
3dF3 306.38 | 11.95 || 310.62 11.32 || 286.43 10.75
3dF4 413.12 | 16.22 || 408.05 15.82 || 402.10 15.73
3dF5 647.06 | 25.45 || 651.85 22.48 || 607.47 23.10
3dF6 736.65 | 28.92 || 646.40 19.18 || 634.62 23.90
2dF1 41.85 | 1.30 || 41.55 1.55 || 37.90 1.28
2dF2 61.90 | 2.17 || 62.30 2.28 || 59.03 2.05
2dF3 87.85 | 3.13 | 85.96 3.03 | 85.38 3.06
2dF4 118.92 | 4.47 || 114.13 4.26 || 118.45 4.23
2dF5 125.82 | 4.65 || 130.76 4.50 || 119.06 4.03
7 2dF6 171.88 | 6.40 || 200.23 8.67 || 160.72 5.50
3dF3 222.32 | 8.65 || 356.57 10.97 || 242.83 9.03
3dF4 311.12 | 11.95 || 338.00 12.70 No Balancing
3dF5 456.07 | 17.10 || 461.11 16.80 No Balancing
3dF6 704.23 | 26.92 || 688.95 23.90 || 684.48 | 23.83

Table 7.1: Effect of Dynamic Load Balancing on the Real Time using ALPHA for 25
Analysis Steps with the HeavierToLighterNeighbours algorithm

Chapter 7 Dynamic Load Balancing for the Finite Element Method 196

763 sec(Tazs = 30 sec). This is a gain in performance on the DEC machine
of 1.58(2.14), while the gain in performance on the ALPHA machine is only
1.33(1.55).

4. The improvement in the parallel performance is greater when the imbalance
among the processors is large. This is demonstrated by the fact that, for the 3
subdomain (NP=4) case, the gain in performance for example 2dF1 is greater
than that for examples 2dF3, 2dF4, and 2dF5, even though the later problems

require a smaller percentage of overall communication time.

5. If a considerable amount of load balancing occurs, the parallel program can
spend a significant amount of time performing the load balancing. For ex-
ample, for a number of examples, even though the performance at the 25th
iteration is better when dynamic load balancing is used, there is an overall loss
in performance. This loss in performance would not have occurred if a large
enough number of iterations is performed, such as for a time history analysis in

which several thousand time steps are used.

6. The load balancing employed can result in a partitioning which requires more
computations to solve than the original partitioning. This occurs in some of the
analysis using 6 subdomains (NP=7) for the smaller two and three-dimensional
problems with a small loadFactor. This is a consequence of the load balancing
strategy that is employed, which does not attempt to minimize the interface
boundaries between the partitions. The problem can be overcome for smaller
problems by specifying larger values for loadFactor, for example a loadFactor of

2.0 for these problems, or by using a different load balancing strategy.

7. For certain problems that are just large enough to initiate page faulting on a
processor, variability in the number of page faults occurring at each iteration
can result in dynamic load balancing when none is really needed. The problem
is overcome by setting a large loadFactor for these problems, or using parallel

machines with memory large enough that page faulting is not an issue.

Chapter 7 Dynamic Load Balancing for the Finite Element Method 197

7.6 Summary

In this chapter the finite element design that had been presented in the previous
chapters was extended to allow for dynamic load balancing a finite element analysis. It
was shown that the extensions and modifications to the existing design to accomplish
this was minimal.

It was also shown that dynamic load balancing a finite element analysis can im-
prove the performance of the parallel program. These improvements were observed
for the analysis of a number of examples using simple elements for situations in which
no other users were running processes on the parallel machine. The potential for
even greater improvements in performance exist for analysis involving more complex
elements and non-linear state determination, for larger problems requiring more com-
putation running on machines with large enough memories so page faulting is not an

issue, and for the situations in which other users are on the system.

198

Chapter 8

Conclusions and Future Directions

8.1 Summary

The main objectives of this research were:

1. To develop, using object-oriented software design techniques, a design which

would allow for flexible and extensible finite element programming.

2. To extend the design to accommodate efficient parallel finite element processing.

In chapter 1, a review of the fundamental class abstractions that have been identi-
fied for object-oriented finite element programming was presented. These classes are:
Element, Node, Constraint, Domain, ModelBuilder, Matrix, and Vector.

In chapter 2, the existing approaches taken for the Analysis class were reviewed
and their limitations identified. A new design for the finite element analysis was pre-
sented which provides greater flexibility and extensibility than the current approaches.
The new approach breaks the Analysis class into several component classes. An ana-
lyst builds an analysis procedure by providing objects of the component classes to the
analysis objects constructor. This approach is different than the traditional approach,
in which the analyst constructs a single object, the Analysis object, to perform the
analysis. The new approach offers great flexibility, because the analyst can vary the
analysis by changing the types of objects passed to the constructor, and extensibility,
because the types of analysis procedures that can be performed is greatly increased

by the introduction of a new component subclass. The component classes introduced

Chapter 8 Conclusions and Future Directions 199

are: Integrator, AnalysisAlgorithm, ConstraintHandler, DOF_Numberer,
and FE_Model. The FE_Model object is a repository for the FE_Element and
DOF _Group objects. The FE_Element and DOF _Group classes allow different
constraint handling algorithms to be employed in a manner that is transparent to the
Analysis.

In chapter 2, a different approach to the storing and solving of the system of
equations was also introduced. In the traditional approach, a single class is used to
both store and solve the system of equations. In this work, two classes are introduced,
SystemOfEqn and Solver classes, which are responsible for storing the equations
and solving the equations respectively. This approach allows different equation solving
algorithms to be employed in a single analysis. The interface for the SystemOfEqn
subclasses, i.e. LinearSOE, are specified so that different storage schemes can be
employed without the Analysis object needing to be aware of the specific type of
SystemOfEqn object.

Finally, the design was extended to allow modal analysis and modal transient
analysis. In chapter 3, the design was extended to allow non-overlapping domain
decomposition methods. Two new classes, GraphPartitioner and DomainParti-
tioner, were introduced for partitioning the domain, and new classes were introduced
for the domain decomposition. These new classes for the domain decomposition, all
subclasses of existing classes, are: Subdomain, PartitionedDomain, DomainDe-
compAnalysis, DomainDecompAlgorithm and DomainSolver.

Empirical results showing the performance of an implementation of the design was
presented in the first part of chapter 6. By comparing the performance of the new
implementation with that of a specially written procedural program, it was shown
that the the CPU requirements of the object-oriented design was comparable with
that of the procedural design. However, the object-oriented design required more of
the virtual address space than the procedural program, which is an issue for larger
problems on limited memory machines. Also, due to the lack of spatial locality in the
mapping of the objects to the virtual address space of the object-oriented program,

the number of page faults are quite high when page faulting does occur.

Chapter 8 Conclusions and Future Directions 200

Chapter 5 introduced concepts in parallel programming and discussed techniques
that have been used to parallelize the finite element method. New classes for parallel
finite element programming using the actor programming model were then presented:
Actor, Channel, Message, MovableObject, Address, MachineBroker, Ob-
jectBroker, and Shadow. The Shadow class allows the introduction of parallel
processing to the design, in a manner which is virtually transparent to the existing
classes. The Shadow class provides for efficient parallel processing because data
can be cached locally in a Shadow object, which in certain non-computationally
demanding situations allows the local processing of methods by Shadow objects on
behalf of objects that reside in a remote process. The ability to cache data locally
proved to be particularly useful for implementing efficient ShadowSubdomain and
ActorSubdomain classes. This is because when performing dynamic load balancing
the DomainPartioner object must iterate through all the Loads in a Subdomain
from which an Element is being removed. By caching a local copy of these load
objects with the ShadowSubdomain object the performance of the load balancing
was greatly improved.

Results showing the performance of the implementation was presented in the sec-
ond part of chapter 6 for two NOWSs. The results showed that significant performance
improvements could be obtained, in one instance five workstations provided almost
twenty-eight times the performance of a single workstation.

In chapter 7, dynamic load balancing to improve the performance of a parallel
programming was presented. An existing approach to dynamic load balancing for
finite element analysis was presented. Two alternative approaches were proposed,
one of which is better suited to a NOW using an ethernet for communication between
the workstations. A new class, LoadBalancer, was presented and the modifications
required to some existing classes, PartitionedDomain, Subdomain, and Domain-
Partitioner was given. Empirical results showed that the performance of the parallel
program can be improved when a simple load balancing scheme is employed, in some

instances more than doubling the original performance.

Chapter 8 Conclusions and Future Directions 201

8.2 Future Directions

This research achieved its main objectives of providing a software design that
allows for flexible and extensible finite element analysis to be performed in an effi-
cient way in both sequential and parallel computing environments. In the process of
developing and implementing the new design, future research directions have been

identified. These include:

1. As the design allows for great flexibility and extensibility it is essential that
an interpreted environment, similar to that provided for Matlab, be developed.
Such an environment would allow the analyst to develop new classes and perform
different analysis without the need to recompile the program for each new class

and each different type of analysis procedure.

2. The current design allows the creation of the finite element model in the main
process of the parallel program. For very large problems the model itself may
exhaust the memory resources of the machines. It is necessary that parallel
ModelBuilder classes be used. A review of the changes that would be required

to allow for efficient parallel model generation is required.

3. A non-linear or transient analysis of a very large problem, whether by an object-
oriented program or a procedural program, can generate enormous amounts of
history data that the analyst may wish to save. It is inefficient for the Element
and Node objects to store this information. A review of the changes that would
be required to allow this information to be stored in sequential and/or parallel

databases is required.

4. Tt is important that the analyst be able to build the finite element models and
review the results of the analysis graphically. A review of the new classes that

would be required for a graphical user interface is required.

5. It was demonstrated in chapter 6 that the partitioning strategy does not always
lead to well balanced partitions, when using the substructuring method for small

numbers of subdomains. New partitioning strategies need to be developed for

Chapter 8 Conclusions and Future Directions 202

such situations which take into account not only the number of elements but

also the number of external and internal nodes.

6. It was noticed in the experiments that the amount of processing in the sub-
domains was somewhat sensitive to the DOF_Numberer used. The reason
for this is that typical numbering schemes do not take into account that, when
using the domain decomposition methods, the degrees-of-freedom need to be
split into two groups, internal and external, and numbered accordingly. New

numbering schemes need to be developed for the substructuring method.

7. Only a few dynamic load balancing schemes were examined in this work. Many

other load balancing schemes could be developed and tested.

203

Bibliography

Agarwal, T. K., Storaasli, O. O., and Nguyen, D. T. (1994). “A Parallel-Vector
Algorithm for Rapid Structural Analysis on High-Performance Computers,”
Computers and Structures, Vol. 51(No. 5):pp. 503-512.

Agha, G., editor (1984). Actors: A Model of Concurrent Computation in Distributed
Systems, The MIT Press.

Almasi, G. S. and Gottlieb, A., editors (1989). Highly Parallel Computing, Ben-
jamin/Cummings, Redwood CA.

Amdahl, G. M. (1968). “The Validity of the Single-Processor Approach to Achieving
Large-Scale Computing Capabilities,” In Proceedings of the American Feder-
ation of Information Processing Society, April 18-20, Atlantic City, NJ., pp.
483-485.

America, P. (1987). “Inheritance and Subtyping in a Parallel Object-Oriented Lan-
guage,” In Proceedings of ECOOP’87, volume 276 of Lecture Notes in Computer
Science, pp. 234-242, Springer-Verlag.

Anderson, E., Bai, Z., Bischof, C., Demmel, J., Dongarra, J., J. Du Croz, A. Green-
baum, S. H., McKenny, A., Ostrouchov, S., and Sorenson, D. (1995). LA-
PACK Users’ Guide - 2nd ed., Society for Industrial and Applied Mathematics,
Philadelphia, PA.

Anderson, T., Culler, D., and Patterson, D. (1995). “A Case for NOW (Networks
of Workstations),” IEEE Micro, Vol. 15(No. 1):pp. 54-64.

Archer, G. (1996). “Object-Oriented Nonlinear Dynamic Finite Element Analysis,”
PhD thesis, University of California at Berkeley, May.

Baddourah, M. A. and Nguyen, D. T. (1994). “Parallel-Vector Computations for
Geometrically Nonlinear Finite Element Analysis,” Computers and Structures,
Vol. 51(No. 6):pp. 785-789.

Balay, S., McInnes, L. C., Gropp, W., and Smith, B. (1995). “PETSc 2.0 Users
Manual,” Report No. ANL 95/11, Argonne National Laboratory, Argonne, II.

Bibliography 204

Barak, A. and Shiloh, A. (1985). “A Distributed Load Balancing Policy for a Mul-
ticomputer,” Software - Practice and Ezperience, Vol. 15(No. 9):pp. 901-913.

Barragy, E., Carey, G. F., and Van Ge Geijn, R. (1994). “Performance and Scalabil-
ity of Finite Element Analysis for Distributed Parallel Computation,” Journal
of Parallel and Distributed Computing, Vol. 21(No. 2):pp. 202-212.

Bathe, K. J. (1996). Finite Element Procedures, Prentice-Hall, Englewood Cliffs,
NJ.

Baugh, J. W. and Rehak, D. E. (1992). “Data Abstraction in Engineer-
ing Software Development,” Journal of Computing in Civil Engineering,
Vol. 6(No. 3):pp. 282-301.

Baugh Jr., J. W. and Sharma, S. K. (1994). “Evaluation of Distributed Finite
Element Algorithms on a Workstation Network,” FEngineering with Computers,
Vol. 10(No. 1):pp. 45-62.

Beguelin, A., Dongarra, J., Geist, A., Manchek, R., Moore, K., and Sunderam, V.
(1993). “PVM and HeNCE: Tools for Heterogeneous Network Computing,” In
Dongarra, J. and Tourancheau, B., editors, Enviroments and Tools for Parallel
Scientific Computing, pp. 139-153, North-Holland.

Benner, R. E., Montrey, G. R., Weigand, G. G., and Duff, I. (1987). “Concurrent
Multifrontal Methods: Shared Memory, Cache and Frontwidth Issues,” The
International Journal of Supercomputer Applications, Vol. 1(No. 3):pp. 26—44.

Bernard, S. T. and Simon, H. D. (1994). “A Fast Multilevel Implementation of Re-
cursive Spectral Bisection for Partitioning Unstructured Meshes,” Concurrency:
Practice and Ezperience, Vol. 6(No. 2):pp. 101-117.

Berry, M. W. and Plemmons, R. J. (1987). “Algorithms and Experiments for Struc-
tural Mechanics on High-Performance Architectures,” Computer Methods in
Applied Mechanics and Engineering, Vol. 64(No. 1-3):pp. 1987.

Bershad, B., Ching, D., Lazowska, E., Sanislo, J., and Schwartz, M. (1987). “A
Remote Procedure Call Facility for Interconnecting Heterogeneous Computer
Systems,” IEEE Transactions on Software Engineering, Vol. 13(No. 8):pp. 880
894.

Bershad, B. N., Lazowska, E., and Levy, H. M. (1988). “PRESTO: A System for
Object-Orientd Parallel Programming,” Software: Practice and FEzxperience,
Vol. 18(No. 8):pp. 713-732.

Birrell, A. and Nelson, B. (1984). “Implementing Remote Procedure Calls,” ACM
Transactions on Computer Systems, Vol. 2(No. 1):pp. 39-59.

Bibliography 205

Blackford, L. S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J., Dhillon, I., Don-
garra, J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D., , and
Whaley, R. C. (1997). “ScalLAPACK: A Linear Algebra Library for Message-
Passing Computers,” In SIAM Conference on Parallel Processing.

Bui, T. N. and Jones, C. (1993). “A Heuristic for Reducing Fill-In in Sparse Matrix
Factorization,” In Sincovec, R. F., Keyes, D. E., Leuze, M. P., Potzold, L. R.,
and Reed, D. A., editors, Sizth SIAM Conference on Parallel Processing for
Scientific Computing, pp. 445—-452, STAM.

Burman, A. (1990). “On Increasing the Throughput in a Computer Network,” In
Kinzel, G. L. and Rohde, S. M., editors, Computers in Engineering: Proceedings
of the 1990 ASME International Computers in Engineering Conference and
Ezxposition, Sugust 5-9, Boston, MA, pp. 441-448, ASME.

Cabrera, L., Hunter, E., Karels, M. J., and Mosher, D. A. (1988). “User-Process
Communication Performance in Networks of Computers,” IEEE Transactions
on Software Engineering, Vol. 14(No. 1):pp. 38-53.

Calkin, R., Hempel, R., Hoppe, H. C., and Wypior, R. (1994). “Portable Pro-
gramming with the PARMACS Message-Passing Library,” Parallel Computing,
Vol. 20(No. 4):pp. 615-632.

Cardona, A., Klapka, I., and Geradin, M. (1994). “Design of a New
Finite Element Programming Environment,” Engineering Computations,
Vol. 11(No. 4):pp. 365-381.

Carter, W. T., Sham, T. L., and Law, K. H. (1989). “A Parallel Finite Element
Method and it’s Prototype Implementation on a Hypercube,” Computers and
Structures, Vol. 31(No. 6):pp. 921-934.

Carter, J. B., Bennett, J. K., and Zwaenepoel, W. (1995). “Techniques for Reduc-
ing Consistency and Communication in Distributed Shared Memory Systems,”
ACM Transactions on Computer Systems, Vol. 13(No. 3):pp. 205-243.

Chakrabarti, S., Demmel, J., and Yelick, K., editors (1997). Models and Scheduling
Algorithms for Mized Data and Task Parallel Programs, to apppear in: Journal
of Parallel and Distributed Computing.

Chandra, R., Gupta, A., and Hennessy, J. L. (1993). “Data Locality and Load
Balancing in COOL,” ACM SIGPLAN Notices, Vol. 28(No. 7):pp. 249-259.

Chandy, K. M. and Kesselman, C. (1993). “CC++: A Declerative Concur-
rent Object-Orientd Programming Notation,” In Agha, G., Wegner, P., and
Yonezawa, A., editors, Research Directions on Concurrent Object-Oriented Pro-
gramming, pp. 281-313, MIT Press.

Bibliography 206

Chien, A. A. and Dally, W. J. (1990). “Concurrent Aggregates (CA),” ACM SIG-
PLAN Notices, Vol. 25(No. 3):pp. 187-196.

Chien, Y. P., Ecer, A., Akay, H. V., Carpenter, F., and Blach, R. A. (1994). “Dy-
namic Load Balancing on a Network of Workstations for Solving Computational
Fluid Dynamics Problems,” Computer Methods in Applied Mechanics and En-
gineering, Vol. 119(No. 1-2):pp. 17-33.

Chopra, A. K. (1995). Dynamics of Structures : Theory and Applications to FEarth-
quake Engineering, Prentice-Hall, Englewood Cliffs, NJ.

Chowdhury, S. (1990). “The Greedy Load Sharing Algorithm,” Journal of Parallel
and Distributed Computing, Vol. 9(No. 1):pp. 93-99.

Chudoba, R. and Bittnar, Z. (1995). “Explicit Finite Element Computation: An
Object-Oriented Approach,” In Pahl, P. J. and Werner, H., editors, Comput-
ing in Ciwil and Building Engineering: Proceedings of the Sizth International

Conference on Computing in Civil and Building Engineering, Berlin, Germany,
July 12-15 1995, pp. 139-145, A. A. Balkema, Brrokfield, VT 05036.

Cleary, A. and Dongarra, J. (1997). “Implementation in ScaLAPACK of Divide-
and-Conquer Algorithms for Banded and Tridiagonal Linear Systems,” Report
No. CS-97-358, University of Tennessee, Knoxville, TN.

Codenotti, B. and Leoncini, M., editors (1993). Introduction to Parallel Processing,
Addison-Wesley.

Culler, D., Dusseau, A., Goldstein, S., Krishnamurthy, A., Lumetta, S., von Eiken,
T., and Yelik, K. (1993). “Parallel Programs in Split-C,” In Werner, P.; edi-
tor, Supercomputing’93, Nov 15-19, Portland, Oregon., IEEE Computer Society
Press.

Culler, D., Singh, J. P., and Gupta, A., editors (1997). Parallel Computer Architec-
ture: A Hardware/Software Approach, Morgan Kaufmann Publishers.

Cybenko, G. (1989). “Dynamic Load Balancing for Distributed Memory Multipro-
cessors,” Journal of Parallel and Distributed Computing, Vol. 7(No. 2):pp. 279
301.

Dongarra, J. J. and Johnsson, L. (1987). “Solving BAnded Systems on a Parallel
Processor,” Parallel Computing, Vol. 5(No. 1-2):pp. 219-246.

Dongarra, J., Pozo, R., and Walker, D. (1995). “Lapack++ v1.0: High Performance
Linear Algebra Users’ Guide,” Report No. CS-95-290, University of Tennessee,
Knoxville, TN.

Bibliography 207

Douglis, F. and Ousterhout, J. (1989). “Transparent Process Migration for Per-
sonal Workstations,” Report No. UCB/CSD 89/540, Computer Science Division
(EECS), University of California, Berkeley, CA 94720, November.

Dubois-Pelerin, Y. and Zimmermann, T. (1993). “Object-Oriented Finite Element
Programming: III. An Efficient Implementation in C++,” Computer Methods
in Applied Mechanics and Engineering, Vol. 108(No. 1-2):pp. 165-183.

Dubois-Pelerin, Y., Zimmermann, T., and Bomme, P. (1992). “Object-Oriented Fi-
nite Element Programming: II. A Prototype Program in Smalltalk,” Computer
Methods in Applied Mechanics and Engineering, Vol. 98(No. 3):pp. 361-397.

Duff, I. S. and Reid, J. K. (1983). “The Multifrontal Solution of Indefinite Sparse
Symmetric Linear Equations,” ACM Transactions on Mathematical Software,
Vol. 9(No. 3):pp. 302-325.

Duff, I. S. and Reid, J. K. (1986). “Parallel Implementation of Multifrontal
Schemes,” Parallel Computing, Vol. 3(No. 2):pp. 193-204.

Eager, D. L., Lazowska, E. D., and Zahorjan, J. (1986). “Adaptive Load in Homo-
geneous Distributed Systems,” IEEE Transactions on Software Engineering,
Vol. SE-12(No. 5):pp. 662—675.

El-Sayed, M. E. M. and Hsiung, C. K. (1990). “Parallel Finite Element
Computation with Separate Substructures,” Computers and Structures,
Vol. 36(No. 2):pp. 261-265.

Farhat, C. and Crivelli, L. (1994). “A Transient FETI Methodology for Large-Scale
Parallel Implicit Computations in Structural Mechanics,” International Journal
for Numerical Methods in Engineering, Vol. 37(No. 11):pp. 1945-1975.

Farhat, C. and Roux, F. X. (1991). “A Method of Finite Element Tearing and
Interconnecting and its Parallel Solution Algorithm,” International Journal for
Numerical Methods in Engineering, Vol. 32(No. 6):pp. 1205-1227.

Farhat, C. and Roux, F. (1994). “Implicit Parallel Processing in Structural Mechan-
ics,” Computational Mechanics Advances, Vol. 2(No. 1):pp. 1-124.

Farhat, C. and Wilson, E. (1986). “Modal Superposition Dynamic Analysis on Con-
current Multiprocessors,” Engineering Computations, Vol. 3(No. 4):pp. 305-
311.

Farhat, C. and Wilson, E. (1988). “A Parallel Active Column Equation Solver,”
Computers and Structures, Vol. 28(No. 2):pp. 289-304.

Farhat, C., Wilson, E., and Powell, G. (1987). “Solution of Finite Element Sys-
tems on Concurrent Processing Computers,” FEngineering with Computers,
Vol. 2(No. 3):pp. 157-165.

Bibliography 208

Farhat, C., Pramono, E., and Felippa, C. (1989). “Torwards Parallel I/O in Fi-
nite Element Simulations,” International Journal for Numerical Methods in
Engineering, Vol. 28(No. 11):pp. 2541-2553.

Farhat, C. (1988). “A Simple and Efficient Automatic FEM Domain Decomposer,”
Computers and Structures, Vol. 28(No. 5):pp. 579-602.

Farhat, C. (1990). “Redesigning the Skyline Solver for Parallel /Vector Supercomput-
ers,” The International Journal for High Speed Computations, 2:pp. 223-238.

Farhat, C. (1990). “Which Parallel Finite Element Algorithm for which Architecture
and which Problem?,” Engineering Computations, Vol. 7(No. 3):pp. 186-195.

Feldman, J. A., Lim, C., and Rauber, T. (1993). “The Shared Memory Language
pSather on a Distributed Memory Multiprocessor,” ACM SIGPLAN Notices,
Vol. 28(No. 1):pp. 17-20.

Fenves, G. L. (1990). “Object-Oriented Programming for Engineering Software De-
velopment,” Engineering with Computers, Vol. 6(No. 1):pp. 1-15.

Flower, J., Otto, S., and Salama, M. (1987). “Optimal Mapping of Irregular Finite
Element Domains to Parallel Processors,” In Noor, A. K., editor, Parallel Com-
putations and their Impact on Mechanics, pp. 239-250, The American Society
of Mechanical Engineers.

Foley, C. M. and Vinnakota, S. (1994). “Parallel Processing in the Elastic
Nonlinear Analysis of High-Rise Frameworks,” Computers and Structures,
Vol. 52(No. 6):pp. 1169-1179.

Forde, B. W. R., Foschi, R. O., and Steimer, S. F. (1990). “Object-Oriented Finite
Element Analysis,” Computers and Structures, Vol. 34(No. 3):pp. 355-374.

Fulton, R. F. and Su, R. S. (1992). Parallel Substructure Approach for Massively
Parallel Computers, ASME.

George, J. A. and Liu, J. W. H. (1978). “An Automatic Nested Dissection Algorithm
for Irregular Finite Element Problems,” STAM Journal on Numerical Analysis,
Vol. 15(No. 5):pp. 1053-1069.

George, J. A. (1971). “Computer Implementation of the Finite Element Method,”
PhD thesis, Stanford University, May.

George, J. A. (1973). “Nested Dissection of a Regular Finite Element Mesh,” SIAM
Journal on Numerical Analysis, Vol. 10(No. 2):pp. 345-363.

Goehlich, D., Komzsik, L., and Fulton, R. E. (1989). “Applications of a Par-
allel Equation Solver to Static FEM Problems,” Computers and Structures,
Vol. 31(No. 2):pp. 121-129.

Bibliography 209

Golub, G. H. and VanLoan, C. F. (1989). Matriz Computations, The John Hopkins
University Press, Baltomre, Maryland.

Gropp, W., Lusk, E., Doss, N., and Skjellum, A., editors (1996). A High Perfor-
mance, Portable Implementation of the MPI Message Passing Interface Stan-
dard, URL: http://www.mcs.anl.gov/mpi/mpich /mpicharticle.ps.

Gupta, A. and Kumar, V. (1994). “A Scalable Parallel Algorithm for Sparse
Cholesky Factorization,” In Werner, B., editor, Supercomputing’94, Nov 14-
18, 1994, Washington, D.C., pp. 793-802, IEEE Computer Society Press.

Hajjar, J. F. and Abel, J. F. (1988). “Parallel Processing for Transient Nonlinear
Structural Dynamics of Three-Dimensional Framed Structures using Domain
Decomposition,” Computers and Structures, Vol. 30(No. 6):pp. 1237-1254.

Hoffmeister, P., Zahlten, W., and Kratzig, W. B. (1993). “Object-Oriented Finite
Element Modeling,” In Cohn, L. F.; editor, Computing in Civil and Build-
ing Engineering: proceedings of the fifth International Conference V_ICCCBE,
Anaheim, CA, June 7-9, pp. 537-544, ASCE, New York, NY 10017.

HPF Forum (1993). “High Performance Fortran Language Specification, version
1,0,” Report No. CRPC-TR92225, Rice University.

Hsieh, S. H. and Sotelino, E. D. (1997). “A Message-Passing Class Library
C++ for Portable Parallel Programming,” Engineering with Computers,
Vol. 13(No. 1):pp. 20-34.

Hughes, T. J. R., Ferencz, R. M., and Hallquist, J. O. (1987). “Large-Scale Vec-
torized Implicit Calculations in Solid Mechanics an a Cray X-MP /48 Utilizing
EBE Preconditioned Conjugate Gradients,” Computer Methods in Applied Me-
chanics and Engineering, Vol. 61(No. 2):pp. 215-248.

Hughes, T. J. R. (1987). The Finite Element Method, Prentice-Hall, Englewood
Cliffs, NJ.

Kafura, D. G. and Lee, K. H. (1989). “Inheritance in Actor Based Concurrent
Object-Oriented Languages,” In Proceedings of ECOOP’89, pp. 131-145, Cam-
bridge University Press.

Kale, L. V. and Krishnan, S. (1993). “CHARM++: A Portable Concur-
rent Object Oriented System based on C++,” ACM SIGPLAN Notices,
Vol. 28(No. 10):pp. 91-108.

Kamal, O. and Adeli, H. (1990). “Automatic Partitioning of Frame Struc-
tures for Concurrent Processing,” Microcomputers in Civil Engineering,
Vol. 5(No. 4):pp. 269-283.

Bibliography 210

Karypis, G. and Kumar, V. (1995). “METIS: Unstructured Graph Partitioning and
Sparse Matrix Ordering System Version 2.0,” anonymous ftp to ftp.cs.sandia.gov
in the file pub/papers/bahendr/quide.ps.Z.

Karypis, G. and Kumar, V. (1995). “Multilevel k-way Partitioning Scheme for
Irregular Graphs,” Report No. 96-064, Univiversity of Minnesota, Deptartment
of Computer Science, Minneapolis, MN.

Kernighan, B. and Lin, S. (1970). “An effective heuristic procedure for partitioning
graphs,” The Bell System Technial Journal, pp. 291-308.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). “Optimization by Simulated
Annealing,” Science, 220:pp. 671-680.

Kumar, S. and Adeli, H. (1995). “Distributed Finite-Element Analysis on Network
of Workstations - Implementation and Application,” Journal of Structural En-
gineering, Vol. 121(No. 10):pp. 1456-1462.

Kumar, V., Grama, A., Gupta, A., and Karypis, G., editors (1994). Introduction to
Parallel Computing: Design and Analysis of Algorithms, Benjamin/Cummings
Publishing Company, Redwood, CA.

Lai, G. and Chen, H. (1992). “Parallelization of Linear Finite Element Analysis,”
In Goodno, B. J. and Wright, J. R., editors, Computing in Civil Engineering,
Fighth Conference held in conjunction with A/E/C Systems ’92, Dallas, Tezas,
June 7-9, pp. 6565662, ASCE.

Law, K. H. and Mackay, D. R. (1993). “A Parallel Row-Oriented Sparse Solution
Method for Finite Element Structural Analysis,” International Journal for
Numerical Methods in Engineering, Vol. 36(No. 17):pp. 2895-2919.

Law, K. H. (1986). “A Parallel Finite Element Solution Method,” Computers and
Structures, Vol. 23(No. 6):pp. 845-858.

Lee, J. K. and Gannon, D. (1991). “Object Oriented Parallel Programming Exper-
iments and Results,” In Copeland, A., editor, Supercomputing’91, Nov 18-22,
Albuquerque, New Mexico, pp. 273282, IEEE Computer Society Press.

Li, K. and Hudak, P. (1989). “Memory Coherence in Shared Virtual Memory Ma-
chines,” ACM Transactions on Computer Systems, Vol. 7(No. 4):pp. 321-359.

Li, X. S. (1996). “Sparse Gaussian Elimination on High Performance Computers,”
PhD thesis, University of California at Berkeley, September.

Lin, F. C. H. and Keller, R. M. (1987). “The Gradient Model Load Bal-
ancing Method,” IEEE Transactions on Software Engineering, Vol. SE-
13(No. 1):pp. 32-38.

Bibliography 211

Lu, J., White, D. W., and Chen, W. F. (1993). “Applying Object-Oriented Design
to Finite Element Programming,” In Proceedings of the 1993 ACM/SIGAPP
Symposium on Applied Computing, Indianapolis, Indiana, pp. 424-492, ACM.

Lu, J., White, D. W., Chen, W. F., and Dunsmore, H. E. (1995). “A Matrix
Class Library in C++ for Structural Engineering Computing,” Computers and
Structures, Vol. 55(No. 1):pp. 95-111.

Mackerle, J. (1996). “Implementing Finite Element Methods on Supercomput-
ers, Workstations and PCs: A Bibliography,” FEngineering Computations,
Vol. 13(No. 1):pp. 33-85.

Mackie, R. J. (1992). “Object-Oriented Programming of the Finite Element
Method,” International Journal for Numerical Methods in Engineering,
Vol. 35(No. 2):pp. 425-436.

Mackie, R. I. (1995). “Object-Oriented Methods - Finite Element Programming and
Engineering Software Design,” In Pahl, P. J. and Werner, H., editors, Comput-
ing in Civil and Building Engineering: Proceedings of the Sizth International

Conference on Computing in Civil and Building Engineering, Berlin, Germany,
July 12-15 1995, pp. 133-138, A. A. Balkema, Brrokfield, VT 05036.

Malone, J. G. (1988). “Automated Mesh Decomposition and Concurrent Finite
Element Analysis for Hypercube Multiprocessor Computers,” Compute Methods
in Applied Mechanics and Engineering, Vol. 70(No. 1):pp. 27-58.

Menetrey, P. and Zimmermann, T. (1993). “Object-Oriented Non-Linear Finite
Element Analysis: Application to J2 Plasticity,” Computers and Structures,
Vol. 49(No. 5):pp. 767-777.

Miller, G. R. and Rucki, M. D. (1993). “A Program Architecture for Interactive
Nonlinear Dynamic Analysis of Structures,” In Cohn, L. F., editor, Computing
in Civil and Building Engineering: Proceedings of the Fifth International Con-
ference V_ICCCBE, Anaheim , CA, June 7-9, pp. 529-536, ASCE, New York,
NY 10017.

Miller, G. R. (1991). “An Object-Oriented Approach to Structural Analysis and
Design,” Computers and Structures, Vol. 40(No. 1):pp. 75-82.

Modak, S., Sotelino, E. D., and Hsieh, S. H. (1997). “A Parallel Matrix Class Library
in C++ for Computational Mechanics Applications,” Microcomputers in Civil
Engineering, Vol. 12(No. 1):pp. 83-99.

Mukunda, G. R., Sotelino, E. D., and Hsieh, S. H. (1996). “An Object-Oriented
Finite Element Analysis Framework,” Report No. CE-STD-96-4, Civil Engi-
neering Purdue University, West Lafayette, IN.

Bibliography 212

Nevin, N., editor (1996). The Performance of LAM 6,0 and MPICH 1.0.12 on a
Workstation Cluster, URL: http://www.osc.edu/Lam/lam/lam60-perf.html.

Ni, L. M., Xu, C. W., and Gendreau, T. B. (1985). “A Distributed Drafting Al-
gorithm for Load Balancing,” IFEEE Transactions on Software Engineering,
Vol. SE-11(No. 10):pp. 1153-1161.

Nicol, D. M. and Reynolds Jr., P. F. (1990). “Optimal Dynamic Remap-
ping of Data Parallel Computations,” IEEE Transactions on Computers,
Vol. 39(No. 2):pp. 206-219.

Nour-Omid, B. and Park, K. C. (1987). “Solving Structural Mechanics Problems
on the Caltech Hypercube Machine,” Computer Methods in Applied Mechanics
and Engineering, Vol. 61(No. 2):pp. 161-176.

Ortiz, M. and Nour-Omid, B. (1986). “Unconditionally Stable Concurrent Proce-
dures for Transient Finite Element Analysis,” Computer Methods in Applied
Mechanics and Engineering, Vol. 58(No. 2):pp. 151-174.

Ostermann, W., Wunderlich, W., and Cramer, H. (1995). “Object-Oriented Tools
for the Development of User Interfaces for Interactive Teachware,” In Pahl, P. J.
and Werner, H., editors, Computing in Civil and Building Engineering: Proceed-
ings of the Sizth International Conference on Computing in Civil and Building
Engineering, Berlin, Germany, July 12-15 1995, pp. 139-145, A. A. Balkema,
Brrokfield, VT 05036.

Ou, R. and Fulton, R. E. (1988). “An Investigation of Parallel Numerical Integration
Methods for Nonlinear Dynamics,” Computers and Structures, Vol. 30(No. 1-
2):pp. 403-409.

Parkes, S., Chandy, J. A., and Banerjee, P. (1994). “A Library Based Approach
to Portable, Parallel, Object-Oriented Programming Interface, Implementation
and Application,” In Werner, B., editor, Supercomputing’94, Nov 14-18, 199/,
Washington, D.C., pp. 69-78, IEEE Computer Society Press.

Pidaparti, R. M. V. and Hudl, A. V. (1993). “Dynamic Analysis of Struc-
tures using Object-Oriented Techniques,” Computers and Structures,
Vol. 49(No. 1):pp. 149-156.

Pramono, E., Simon, H. D., and Sohn, A. (1994). “Dynamic Load Balancing for
Finite Element Calculations on Parallel Computers,” In Bailey, D. H., Bjorstad,
P. E., Gilbert, J. P., Mascagni, M. V., Schreiber, R. S., Simon, H. D., Torc-
zon, J. T., and Watson, L. T., editors, Seventh SIAM Conference on Parallel
Processing for Scientific Computing, pp. 599-604, STAM.

Quinn, M. J., editor (1994). Parallel Computing: Theory and Practice, McGraw-Hill,
Inc.

Bibliography 213

Raphael, B. and Krishnamoorthy, C. S. (1993). “Automatic Finite Element De-
velopment using Object Oriented Techniques,” FEngineering Computations,
Vol. 10(No. 3):pp. 267-278.

Rihaczek, C. and Kroplin, B. (1993). “Object-Oriented Finite Element Modeling,” In
Cohn, L. F., editor, Computing in Civil and Building Engineering: proceedings
of the fifth International Conference V ICCCBE, Anaheim , CA, June 7-9, pp.
545-552, ASCE, New York, NY 10017.

Roa, M., Logarathan, K., and Raman, N. V. (1994). “Multifrontal Based Ap-
proach for Concurrent Finite Element Analysis,” Computers and Structures,
Vol. 52(No. 4):pp. 841-846.

Ross, T. J., Wagner, L. R., and Luger, G. F. (1992). “Object-Oriented Programming
for Scientific Codes. II: Examples in C++,” Journal of Computing in Civil
Engineering, Vol. 6(No. 4):pp. 497-514.

Rothberg, E. and Gupta, A. (1993). “An Efficient Block-Oriented Approach to Par-
allel Sparse Cholesky Factorization,” In Werner, P., editor, Supercomputing’93,
Nov 15-19, Portland, Oregon, pp. 503-512, IEEE Computer Society Press.

Rothberg, E. and Schreiber, R. (1994). “Improved Load Distribution in Parallel
Sparse Cholesky Factorization,” In Werner, B., editor, Supercomputing’94, Nov
14-18, 1994, Washington, D.C., pp. 783-792, IEEE Computer Society Press.

Rucki, M. D. and Miller, G. R. (1996). “An Algorithmic Framework for Flexible
Finite Element Element-Based Structural Modeling,” Computer Methods in
Applied Mechanics and Engineering, Vol. 136(No. 3-4):pp. 363-384.

Rucki, M. D. (1996). “An Algorithmic Framework for Flexible Finite Element Mod-
elling,” PhD thesis, University of Washington, May.

Rumbaugh, J., Blaha, M., Premerhani, W., Eddy, F., and Lorensen, W. (1991).
Object-Oriented Modeling and Design, Prentice-Hall, Englewood Cliffs, New
Jersey 07632.

Saab, Y. G. and Rao, V. B. (1991). “Combinatorial Optimization by Stochastic Evo-
lution,” IEEE Transactions on Computer Aided Design of Integrated Circuits
and Systems, Vol. 10(No. 4):pp. 525-535.

Santiago, E. D. and Law, K. H. (1996). “An Implementation of Finite Element
Method on Distributed Workstations,” In Cheng, F. Y., editor, Analysis and
Computation: proceedings of the twelfth conference held in conjunction with
Structures Congress XIV, Chicago, Illinois, April 15-18, pp. 188-199, ASCE.

Bibliography 214

Sause, R. and Song, J. (1994). “Object-Oriented Structural Analysis with Substruc-
tures,” In Khozeimeh, K., editor, Computing in Civil Engineering: Proceedings
of the First Conference held in Conjunction with A/E/C Systems 94, Wash-
ington, D.C., June 20-22, 199/, pp. 153-160, ASCE.

Schloegel, A., Karypis, G., and Kumar, V. (1997). ParMetis: Parallel Library
for Unstructured Meshes (Re)Partitioning and Sparse Matriz Ordering, URL:
http://www-users.cs.umn.edu/ karypis/talks/parmetis/index.htm.

Scholz, S. P. (1992). “Elements of an Object-Oriented FEM++ Program in C++,”
Computers and Structures, Vol. 43(No. 3):pp. 517-529.

Sharma, S. K. and Baugh Jr., J. W. (1992). “LAN Ho! Structural Analysis on a
Network,” In Goodno, B. J. and Wright, J. R., editors, Computing in Civil
Engineering, Eighth Conference held in conjunction with A/E/C Systems ’92,
Dallas, Texas, June 7-9, pp. 639-646, ASCE.

Simon, H. D. (1991). “Partitioning of Unstructured Problems for Parallel Problems,”
Computing Systems in Engineering, Vol. 2(No. 2/3):pp. 135-148.

Stevens, W. R., editor (1990). Uniz Network Programming, Prentice Hall, Inglewood
Cliffs, New Jersey.

Stroustrup, B. (1991). The C++ Programming Language, Addison-Wesley.

Sunderam, V. S., Geist, G. A., and Dongarra, J. J. (1994). “The PVM Concurrent
Computing System: Evolution, Experiences and Trends,” Parallel Computing,
Vol. 20(No. 4):pp. 531-546.

Sunderam, V. S. (1990). “PVM: A framework for parallel distributed computing,”
Concurrency: Practice and Experience, Vol. 2(No. 4):pp. 315-339.

Synn, S. Y. and Fulton, R. E. (1995). “Practical Strategy for Concurrent Substruc-
ture Analysis,” Computers and Structures, Vol. 54(No. 5):pp. 939-944.

Taylor, V. E. and Nour-Omid, B. A. (1994). “A Study of the Factorization Fill-In
for a Parallel Implementation of the Finite Element Method,” International
Journal for Numerical Methods in Engineering, Vol. 37(No. 22):pp. 3809-3823.

Tinney, W. F. and Walker, J. W. (1967). “Direct Solution of Sparse Network
Equations by Optimally Ordered Triangular Factorization,” Proc. IEEE,
Vol. 55(No. 11):pp. 1801-1809.

Van Driessche, R. and Roose, D. (1995). “An Improved Spectral Bisection Algo-
rithm and its Application to Dynamic Load Balancing,” Parallel Computing,
Vol. 21(No. 1):pp. 29-48.

Bibliography 215

Vanderstraeten, D. and Keunings, R. (1995). “Optimized Partitioning of Unstruc-
tured Finite Element Meshes,” International Journal for Numerical Methods in
Engineering, Vol. 38(No. 3):pp. 433-450.

Walker, D. W. (1994). “The Design of a Standard Message Passing Inter-
face for Distributed Memory Concurrent Computers,” Parallel Computing,
Vol. 20(No. 4):pp. 657-673.

Wang, Y. T. and Morris, R. J. T. (1985). “Load Sharing in Distributed Systems,”
IEEE Transactions on Computers, Vol. C-34(No. 3):pp. 204-217.

Williams, R. D. (1991). “Performance of Dynamic Load Balancing Algo-
rithms for Unstructured Meshes,” Concurrency: Practice and Fzxperience,
Vol. 3(No. 5):pp. 457-481.

Xu, J. and Hwang, K. (1993). “Heuristic Methods for Dynamic Load Balancing
in a Messgage-Passing Multicomputer,” Journal of Parallel and Distributed
Computing, Vol. 18(No. 1):pp. 1-13.

Y. DeRoeck, P. L. and Vidrascu, M. (1992). “A Domain Decomposed Solver for Non-
linear Elasticity,” Computer Methods in Applied Mechanics and Engineering,
Vol. 99(No. 2-3):pp. 187-207.

Yu, G. and Adeli, H. (1993). “Object-Oriented Finite Element Analysis using EER
Model,” Journal of Structural Engineering, Vol. 119(No. 9):pp. 2763-2781.

Zahlten, W., Demmert, P., and Kratzig, W. B. (1995). “An Object-Oriented Ap-
proach to Physically Nonlinear Problems in Computational Mechanics,” In
Pahl, P. J. and Werner, H., editors, Computing in Civil and Building Engineer-
ing: Proceedings of the Sixth International Conference on Computing in Civil
and Building Engineering, Berlin, Germany, July 12-15 1995, pp. 139-145,
A. A. Balkema, Brrokfield, VT 05036.

Zeglinski, G. W. and Han, R. P. S. (1994). “Object Oriented Matrix Classes for Use
in a Finite Element Code using C++,” International Journal for Numerical
Methods in Engineering, Vol. 37(No. 22):pp. 3921-3937.

Zhang, W. and Lui, E. M. (1991). “A Parallel Frontal Solver on the Alliant FX/80,”
Computers and Structures, Vol. 38(No. 2):pp. 203-215.

Zienkiewicz, O. C. and Taylor, R. L. (1989). The Finite Element Method - 4thEd.,
McGraw-Hill, London.

Zimmermann, T., Dubois-Pelerin, Y., and Bomme, P. (1992). “Object-Oriented
Finite Element Programming: I. Governing Principles,” Computer Methods in
Applied Mechanics and Engineering, Vol. 98(No. 2):pp. 291-303.

216

Appendix A

Matrix, Vector and ID Classes

In this appendix the Matrix, Vector and ID classes are presented. Matrix,
Vector and ID objects are primarily used in the design to pass information, e.g.
stiffness and load information, between objects. The Matrix and Vector classes
also provide a full range of numerical functions, typically in the form of overloaded
operator functions. These functions were found to be useful in the primary stages of
element development, however, for efficiency reasons many of the element methods

that used these functions were later rewritten.

A.1 Matrix Class

The Matrix class, whose interface is showing in figure A.1, provides methods to
obtain information about the size of the Matrix, to zero out the Matrix, to assemble
a Matrix into the Matrix, and to set and retrieve components of the Matrix. In
addition many of the operator functions are overloaded. The overloaded functions
can be split into two groups: those that change the original Matrix (=, + =, — =,
*x =, / =), an those that return a new Matrix (+, —, *, /). The latter functions
require that a Matrix constructor be called twice and so are expensive to use in large
problems. This is because a constructor must first be called inside the function to
create a Matrix into which to store the results of the operation, and a constructor is
called again when this Matrix is returned. A reference to the new Matrix created

inside the function cannot be returned because a destructor cannot be called.

Appendix A

Matriz, Vector and ID Classes

217

class Matrix {

public:

// constructors and destructors

Matrix(); // for subclasses

Matrix(int nRows, int nCols);

Matrix(int nRows, int nCols, double *theData);
Matrix(const Matrix &M);

virtual Matrix();

// utility methods
virtual int noRows() const;
virtual int noCols() const;
virtual void Zero(void);
virtual Vector Solve(const Vector &V);
virtual Matrix &Assemble(const Matrix &,
const ID &rows, const ID &cols, double fact = 1.0);
friend ostream &operator<<(ostream &s, const Matrix &V);
friend istream &operator>>(istream &s, Matrix &V);

// operator overloaded functions

virtual double &operator()(int row, int col)

virtual double &operator()(int row, int col) const
virtual Matrix operator()(const ID &rows, const ID & cols) const;
virtual Matrix &operator=(double value);

virtual Matrix &operator=(const Matrix &M);
virtual Matrix &operator+=(double fact);

virtual Matrix &operator-=(double fact);

virtual Matrix &operator*=(double fact);

virtual Matrix &operator/=(double fact);

virtual Matrix &operator*=(const Matrix &other);
virtual Matrix &operator+=(const Matrix &other);
virtual Matrix &operator-=(const Matrix &other);

virtual Matrix operator+(double fact) const;
virtual Matrix operator-(double fact) const;
virtual Matrix operator*(double fact) const;
virtual Matrix operator/(double fact) const;
virtual Vector operator*(const Vector &V) const;

virtual Vector operator{const Vector &V) const; // " used for transpose

virtual Matrix operator+(const Matrix &M) const;
virtual Matrix operator-(const Matrix &M) const;
virtual Matrix operator*(const Matrix &M) const;
virtual Matrix operator/(const Matrix &M) const;
virtual Matrix operator{const Matrix &M) const;

Figure A.1: Interface of the Matrix Class

Appendix A Matriz, Vector and ID Classes 218

A.2 Vector Class

The Vector class, whose interface is shown in figure A.2, provides methods to
obtain information about the size of the Vector, to zero out the Vector, to assemble
a Vector into the Vector, to obtain the norm of the Vector, and to set and retrieve
components of the Vector. In addition many of the operator functions are overloaded.
The overloaded functions can be split into two groups: those that change the original
Vector (=,+=,-=,*=,/=), and those that return a new Vector (+,-,*,/). The latter
functions should be avoided because they require that a Vector constructor be called

twice and are therefore expensive to use in large problems.

A.3 1ID Class

The ID class, whose interface is shown in figure A.3, provides controlled access to
integer arrays. Methods are provided to obtain the size of the array, to zero out the
array, and to set and retrieve components of the array. Methods are also provided to

see if an integer is in the array and to remove an integer value from the array.

Appendix A

Matriz, Vector and ID Classes

219

class Vector {

public:

// constructors and destructors
Vector(); // for subclasses
Vector(int size);

Vector(const Vector &);
Vector(double *data, int size);
Vector();

// utility methods

virtual double Norm(void) const;
virtual int Size(void) const;
virtual void Zero(void);

virtual void Assemble(const Vector &V, const ID &I, double fact = 1.0);
virtual void addVector(const Vector &other, double fact = 1.0);

virtual void addMatrixVector(const Matrix &m, Vector &v, double fact = 1.0);

friend ostream &operator<<(ostream &s, const Matrix &V);
friend istream &operator>>(istream &s, Matrix &V);

// operator overloaded functions

virtual double &operator()(int x);

virtual double &operator()(int x);

virtual Vector operator()(const ID &rows) const;
virtual Vector &operator=(const Vector &V);

virtual Vector &operator+=(const Vector &V);
virtual Vector &operator-=(const Vector &V);
virtual Vector &operator+=(double fact);
virtual Vector &operator-=(double fact);
virtual Vector &operator*=(double fact);
virtual Vector &operator/=(double fact);

virtual Vector operator+(const Vector &V) const;
virtual Vector operator-(const Vector &V) const;
virtual Vector operator+(double fact) const;
virtual Vector operator-(double fact) const;
virtual Vector operator*(double fact) const;
virtual Vector operator/(double fact) const;
virtual Vector operator/(const Matrix &M) const;
virtual double operator{const Vector &V) const;
virtual Matrix operator{const Matrix &M) const;

Figure A.2: Interface of the Vector Class

Appendix A Matriz, Vector and ID Classes 220

class ID {
public:
// constructors and destructors
ID(); // for subclasses
ID(int size);
ID(int size, int *theData);
ID(const ID &);
virtual 1D();

// utility methods

virtual int Size(void) const;

virtual void Zero(void);

virtual int getLocation(int value);

virtual int removeValue(int value);

virtual friend ostream &operator<<(ostream &s, const ID &V);
virtual friend istream &operator>>(istream &s, ID &V);

// operator overloaded functions

virtual int operator()(int x);

virtual int operator[](int x); // if x > size, makes larger
virtual int operator()(int x) const;

virtual ID &operator=(const ID &l);

Figure A.3: Interface of the ID Class

221

Appendix B

Detailed Performance

Measurements

In this appendix detailed information about the performance presented in chap-

ter 6 is given.

B.1 Sequential Performance

In this section tables are presented profiling the CPU time and number of page
faults for the sequential program presented in section 6.3.1. Tables B.1 through B.3
give the profile information showing what percentage of the CPU time was spent in the
main components of the domainChanged(), solveCurrentStep(), and update() method
calls, which are the methods invoked when analyze() is invoked on a StaticAnalysis
object. Similar profile information for the percentage of page faults on the limited

memory ALPHA and DEC machines are shown in tables B.4 and B.5.

B.2 Parallel Performance

Tables B.6 through B.21 provide detailed information on the performance of the
parallel program presented in section 6.4.1. In the tables the time taken to perform
the analysis is broken into two: the time taken to partition the model, and the time

taken to perform the analysis once the partitioning has been performed. For each,

Appendix B Detailed Performance Measurements 222

the CPU time and number of page faults are also provided. In addition, for each
subdomain information showing the size of the problem and the cost in terms of real
time, CPU time and number of page faults, to perform the subdomain computations

are also provided.

Example
2dF1 | 2dF2 | 2dF3 | 2dF4 | 2dF5 | 2dF6 | 3dF3 | 3dF4 | 3dF5 | 3dF6
domainChanged() 16 11 9 9 9 9 6 5 5 6
handle() 6 4 4 4 4 4 1 1 1 1
numberDOF() 1 1 0 0 0 0 0 0 0 0
getDOFGraph() 7 5 4 4 3 3 3 3 3 3
setSize() 2 1 1 1 1 1 1 1 1 1
| applyLoad() |] o] o] o] o] o] o] o] o] o] 0]
solveCurrentStep() 82 87 90 90 90 90 94 94 94 94
formNodalUnbalance() 1 0 0 0 0 0 0 0 0 0
formElementResidual() 5 3 2 2 2 2 2 2 2 2
formTangent() 7 5 4 3 4 4 2 2 2 2
solve() 69 79 84 84 84 84 91 91 91 91
update() 0 0 0 0 0 0 0 0 0 0
| commit()] o] o] o] o] o] o] o] o] o] o]

Table B.1: % CPU time on HOLDEN for C++ Program

g xrpuaddy

SIUIULILNSDI JAT QOU’D’UJJJ,O‘[JQJ panoiaq

144

Example
2dF1 | 2dF2 | 2dF3 | 2dF4 | 2dF5 | 2dF6 | 3dF3 | 3dF4 | 3dF5 | 3dF6
domainChanged() 18 14 10 10 10 10 6 6 6 6
handle() 8 7 5 5 5 5 2 2 2 2
numberDOF() 1 1 0 1 1 1 0 0 0 0
getDOFGraph() 8 5 4 4 4 4 3 3 3 3
setSize() 1 1 1 0 0 0 0 0 0 0
| applyLoad() | 1] o] o] o] o] o] o] o] o] 0]
solveCurrentStep() 80 86 89 90 90 89 94 94 93 93
formNodalUnbalance() 1 1 0 1 1 1 0 0 0 0
formElementResidual() 6 4 3 3 3 2 1 1 1 1
formTangent() 7 5 4 6 4 4 3 2 3 3
solve() 66 76 81 82 82 82 90 89 89 89
update() 1 1 0 0 0 0 0 0 0 0
| commit() | 1] 1] o] o] o] o] o] o] o] 0]

Table B.2: % CPU time on ALPHA for C++ Program

g xrpuaddy

SIUIULILNSDI JAT QOU’D’UJJJ,O‘[JQJ panoiaq

(44

Example
2dF1 | 2dF2 | 2dF3 | 2dF4 | 2dF5 | 2dF6 | 3dF3 | 3dF4
| domainChanged() | 14| 8| 5| 5| 5] 5] 3] 3]
handle() 5 3 1 2 2 2 1 1
numberDOF() 1 0 0 0 0 0 0 0
getDOFGraph() 6 3 2 2 2 2 2 2
setSize() 2 1 1 1 1 1 0 0
applyLoad() 0 0 0 0 0 0 0 0
| solveCurrentStep() | 85| 92| 95| 95| 95| 95| 97| 97|
formNodalUnbalance() 0 0 0 0 0 0 0 0
formElementResidual() 3 2 1 1 1 1 1 1
formTangent() 5 3 2 2 2 2 1 1
solve() 7 87 92 91 91 91 95 95
update() 0 0 0 0 0 0 0 0
| commit() | o] o] o] o] o] o] o o]

Table B.3: % CPU time on DEC for C++ Program

g xrpuaddy

SIUIULILNSDI JAT QOU’D’UJJJ,O‘[JQJ panoiaq

5144

Example
2dF1 | 2dF2 | 2dF3 | 2dF4 | 2dF5 | 2dF6 | 3dF3 | 3dF4 | 3dF5 | 3dF6
domainChanged() - - 1 0 0 0 1 1 0 0
handle() - - 0 0 0 0 0 0 0 0
numberDOF() - - 0 0 0 0 0 0 0 0
getDOFGraph() _ _ 0 0 0 0 0 0 0 0
setSize() - - 1 0 0 0 1 1 0 0
| applyLoad() | -] -] 1] 4] 3] 6] 3] 2] 3] 2]
solveCurrentStep() - - 96 89 91 89 92 92 95 95
formNodalUnbalance() - - 2 1 1 1 1 0 0 1
formElementResidual() - - 22 9 8 5 8 5 6 6
formTangent() - - 53 65 65 63 65 55 58 57
solve() - - 4 10 13 16 17 30 30 29
update() - - 15 4 3 3 1 1 1 1
| commit() | -] -] 2] 7] 6| 5] 4] 3] 2] 2]

Table B.4: % Page Faults on ALPHA for C++ Program

g xrpuaddy

SIUIULILNSDI JAT QOU’D’UJJJ,O‘[JQJ panoiaq

9¢¢

Example
2dF1 | 2dF2 | 2dF3 | 2dF4 | 2dF5 | 2dF6 | 3dF3 | 3dF4
domainChanged() - 0 0 0 0 0 0 0
handle() - 0 0 0 0 0 0 0
numberDOF() - 0 0 0 0 0 0 0
getDOFGraph() _ 0 0 0 0 0 0 0
setSize() - 0 0 0 0 0 0 0
| applyLoad() | -] o] 5] 1] 5] 5] 3] 3]
solveCurrentStep() - 93 89 94 91 91 96 96
formNodalUnbalance() - 0 0 1 1 1 0 0
formElementResidual() - 28 4 5 4 4 2 2
formTangent() - 64 78 64 61 60 64 61
solve() - 0 2| 21| 23| 24| 28| 31
update() - 0 4 2 2 2 1 1
| commit() | -] 7] 5] 5] 3] 3] 1] 1]

Table B.5: % Page Faults on DEC for C++ Program

g xrpuaddy

SIUIULILNSDI JAT QOU’D’UJJJ,O‘[JQJ panoiaq

L¢3

g xrpuaddy

SIUIULILNSDI JAT QOU’DUJJJ,O‘[JQJ panoiaq

Total Partition Analyze Subdomains
Time REAL | CPU | # PF REAL | CPU | # PF | DOF | AvgHt || REAL | CPU | # PF | DOF | extDOF | AvgHt | # Ele | # Nod
l2w (- [- [- [2w0/f192]0 [4650[98 [-[-] -1 -1 -[-[-[-
0.65 | 0.63 0 | 2394 96 79 | 1525 | 798
2.85 || 0.90 | 0.45 | 0 1.95 1 0.02 | 0 96 48 068 T0.67 019352 96 %9 1525 | 815
0.37 | 0.35 01614 93 72 | 1017 | 538
3.65 || 1.13 | 0.57 | 0 252 10.08 |0 186 | 93 1.27 | 1.27 0| 1653 186 | 139 | 1016 | 551
0.33 | 0.32 0 | 1569 93 70 | 1017 | 554
0.37 | 0.35 0| 1233 117 85 | 762 | 411
0.25 | 0.25 0 | 1230 120 68 | 763 | 410
3.05 || 1.17 | 0.68 | 0 1.88 [0.12 | 0 243 | 100 093 0.5 01224 132 67 763 | 421
0.43 | 0.40 0 | 1206 117 95 | 762 | 420
0.17 | 0.17 0| 840 99 74| 508 | 280
0.18 | 0.18 0| 831 93 70 | 509 | 277
0.40 | 0.40 0] 855 159 | 113 | 509 | 285
445 | 147 | 1.03 | 0 2.98 [0.20 | 0 345 113 018 10183 0 816 105 791 508 | 291
0.12 | 0.12 0| 816 90 53 | 508 | 284
0.35 | 0.35 0| 846 153 | 108 | 508 | 282

Table B.6: Results for 2dF1 on ALPHA Network

8¢C

g xrpuaddy

SIUIULILNSDI JAT QOU’DUJJJ,O‘[JQJ panoiaq

Total Partition Analyze Subdomains
Time REAL | CPU | # PF REAL | CPU | # PF | DOF | AvgHt || REAL | CPU | # PF | DOF | extDOF | AvgHt | # Ele | # Nod
| 410 -] -] -[410[38] ofesof 122 -[-[-] -] -[-[-[-
1.25 | 1.23 013171 126 95 | 2025 | 1057
4.05 || 1.28 | 0.66 | 0 277 10.03 |0 126 | 63 1171115 03105 196 96 12025 [1076
1.07 | 1.07 0 | 2088 138 | 114 | 1350 | 729
4.28 || 1.55 | 0.87 | 0 273 [0.12 | 0 222 111 1.43 | 1.43 0] 2154 171 | 125 | 1350 | 726
1.13 | 1.12 0| 2133 138 | 116 | 1350 | 711
0.35 | 0.35 0 | 1620 144 72 | 1013 | 540
0.72] 0.72 0| 1626 132 | 107 | 1013 542
3.65 || 1.58 | 0.97 | 0 2.07 | 015 |0 267 | 114 037 1037 01596 35 "= 1012 | 550
0.70 | 0.70 0 | 1581 129 | 110 | 1012 | 550
0.28 | 0.28 011101 108 79| 675 | 367
0.77 | 0.77 0] 1122 195 | 136 | 675 | 374
0.18 | 0.18 0 | 1098 120 62 | 675 | 366
5.85 || 2.30 | 1.63 | O 1.85 | 042 | 0 414 | 139 032 1032 0 1068 105 87 675 372
0.77 | 0.75 0| 1116 186 | 132 | 675 | 372
0.18 | 0.18 0 | 1062 117 61 | 675 | 379

Table B.7: Results for 2dF2 on ALPHA Network

6¢¢

g xrpuaddy

SIUIULILNSDI JAT QOU’DUJJJ,O‘[JQJ panoiaq

Total Partition Analyze Subdomains
Time REAL| CPU| # PF REAL| CPU| #PF| DOF | AvgHt REAL| CPU | #PF| DOF | extDOF | Angt| # Ele | # Nod
[2310]- |- |- [2310]692]98 [7e50[151 | -] -] -] -] -1 -1 -1 -
2.72 [2.68 | 03897 | 150 | 115] 2525 | 1325
6.08 || 1.83 1092 10 1425 10.05 10 1150 | 75 o s 6o 0 [3003 | 150 | 113 | 2525 | 1326
1.30 | 1.28 | 0] 2580 | 153 | 107 | 1684 | 914
6.05 | 2.02 [1.22 |0 4.03 [0.17 |0 252 | 126 | 2.37 | 2.35| 0| 2664 | 171 | 142 | 1683 | 888
1.05 | 1.03 | 0] 2652 | 183 | 97| 1683 | 884
058058] 02007 | 153 | 841262 669
052 | 052 | 01968 | 147 | 79 | 1263 | 682
5.05 || 2.10 | 1.28 | 0 2.95 | 0.23 | 0 300 | 133 |35 TTes T o l32013 T 156 T 120 11263 | 682
1.17 | 1.17 | 0] 1968 | 150 | 122 | 1262 | 681
047]045] 01311] 117 94| 841 463
122 [1.22| 0] 1389 | 207 | 152 | 842 | 463
028028 01356 | 138 70| 842 | 452
742 | 263 | 1.92 |0 4.38 1047 |0 444 | 163 e Tos0 T o162 | o0 98 | sa2 T a5a
032028 01326 | 141 73| 841 | 467
1.57 | 1.55 | 0] 1362 | 177 | 141 | 842 | 454

Table B.8: Results for 2dF3 on ALPHA Network

0€¢

g xrpuaddy

SIUIULILNSDI JAT QOU’DUJJJ,O‘[JQJ panoiaq

Total Partition Analyze Subdomains
Time REAL| CPU| # PF REAL| CPU| #PF| DOF | AvgHt REAL| CPU | #PF| DOF | extDOF | Angt| # Ele | # Nod
| 57.20[- |- |- [5720863 [4220|9180 152 | -] -] -| -] -1 -1 -1 -
3.75 [3.72] 0]4638 [168 122 [3030 [1597
8.05 || 2.07 | 1.15 | 0 5.98 | 0.05 |0 168 |84 |5=s13rt o210 Tes T 119 13030 11570
1.67 [1.67 [0]3105[162] 110 [2020 [1086
8.23 || 2.48 | 1.57 | 0 3.38 1025 |0 288 | 144 | 3.98[3.93| 03189 | 195 | 157 | 2020 | 1063
1.83 [1.78 | 0| 3177 | 222 | 113 | 2020 | 1059
087083 02361 180 92[1515] 811
140 | 1.40 | 0| 2358 | 147 | 121 | 1515 | 797
5.98 || 2.60 | 1.65 | 0 3.38 1028 |0 330 | 44 ety T T30 159 127 [isis | 813
0.80 | 0.78 | 0 |2406 | 180 | 90 | 1515 | 802
0721072 0[1602] 135 108 [1010 | 548
1.88 [1.87 | 0| 1614 | 231 | 169 | 1010 | 560
040 [040 | 01605 | 159 | 77 | 1010 | 550
9.28 || 4.08 | 2.43 | 8 520 | 0.75 | 0 525|192 o =tom T ol 1623 B0 8317010 T 5o
110 [1.10 | 0| 1638 | 234 | 134 | 1010 | 546
043 | 043 | 01632 150 | 78| 1010 | 544

Table B.9: Results for 2dF4 on ALPHA Network

1€¢

g xrpuaddy

SIUIULILNSDI JAT QOU’DUJJJ,O‘[JQJ panoiaq

Total Partition Analyze Subdomains
Time REAL| CPU| # PF REAL| CPU| #PF| DOF | AvgHt REAL| CPU | #PF| DOF | extDOF | Angt| # Ele | # Nod
| 8153]- |- |- [[sts0]1010]6377 107100152 | - -] -] -] -1 -1 -1 -
812 [7.78 | 455487 [219 [152 [3535 | 1851
16.15| 2.58 | 1.58 |0 13.57| 0.13 | 0 219 | 110 |—coet—oo T 70 a5 | 210 T 155 | 3F3F 1 1843
2221220 0[3615[156 [113 [2356 | 1256
8.78 || 3.10 | 1.95 | 0 5.68 | 0.30 | 0 306 | 153 | 2.53 | 252 | 0| 3711 | 246 | 120 | 2357 | 1237
460 | 453 | 03693 | 213 | 154 | 2357 | 1231
2.53 [253 02769 177 [1421768 | 945
2.88 | 2.88 | 0| 2781 | 174 | 147 | 1767 | 927
8.62 || 3.10 | 2.03 | 0 552 035 |0 363 | 157 | os 190 T o0 l27909 213 103 [1768 933
2.37 | 2.35| 02730 | 168 | 138 | 1767 | 939
050 [048] 01857 156 [81 [1179 641
0.60 | 056 | 0| 1890 | 159 | 87| 1179 | 641
243 [242 01896 | 216 | 176 | 1179 | 630
10.85| 4.95 | 2.97 [17 | 5.90 | 0.72 | 0 525 | 179 | o5t 1o T ol iss | a8 178 626
110 [1.10 | 0| 1836 | 147 | 122 | 1178 | 641
242|242 0| 1884 | 234 | 174 | 1178 | 628

Table B.10: Results for 2dF5 on ALPHA Network

(444

NP Total Partition Analyze Subdomains
Time REAL| CPU| # PF REAL| CPU| #PF| DOF | AvgHt REAL| CPU | #PF| DOF | extDOF | Angt| # Ele | # Nod
11 [105.04 - | - | - | 105.00 11.40] 8220 | 12240 153 || - | -1 -] - | - | - | - | -
715 | 5.02] 125 [6168 | 159 | 126 | 4040 | 2107
3 15.40(2.82 | 1.55 | 0 12.58] 0.07 | 0 159 | 80 553 160 T 102 631 T 159 | 123 12040 2077
2.82 | 2.78 04197 156 | 115 [2694 [1399
4 28.3711 3.38 | 2.23 | 0 24.98) 0.37 | 0 321 | 161 | 18.55 | 17.02 | 90 | 4242 | 321 | 248 | 2693 | 1414
3.43 | 3.38 0| 4122 | 165 | 123 | 2693 | 1425
1.43 | 1.43 013147 [198 | 105 | 2020 | 1072
3.67 | 3.65 0 | 3141 | 189 | 149 | 2020 | 1075
5 10.301 4.22 | 2.45 | 8 6.08 | 0.40 | 0 393 | 161 503 T 3.03 03T T o8 T its 12020 1057
1.62 | 1.62 0| 3180 | 207 | 109 | 2020 | 1060
0.72 | 0.72 02124 186 901346 | 724
3.65 | 3.63 0 | 2160 | 243 | 189 | 1346 | 720
1.35 | 1.35 02091 | 156 | 129 | 1347 | 732
7 13.93(6.35 | 4.03 | 25 757 1080 | 0 579 | 192 3T 073 oo T T 0o 1307 713
1.93 | 1.93 0 | 2169 | 249 | 147 | 1347 | 723
0.65 | 0.63 0] 2148 | 159 | 86 | 1347 | 716

Table B.11: Results for 2dF6 on ALPHA Network

g xrpuaddy

SIUIULILNSDI JAT QOU’DUJJJ,O‘[JQJ panoiaq

€8¢

NP Total Partition Analyze Subdomains
Time REAL | CPU | # PF REAL | CPU | # PF | DOF | AvgHt REAL | CPU | # PF | DOF | extDOF | AvgHt | # Ele | # Nod
1 83.18| - - - 83.18| 17.03| 6235 | 7680 | 239 - - - - - - - -
6.57 | 6.50 0 | 4008 240 | 194 | 1280 | 668
3 10.15)| 1.47 | 0.78 | 0 8.68 [0.15 | 0 240 | 120 687 | 678 03912 540 | 198 | 1280 | 692
3.83 | 3.83 0| 2616 240 | 184 | 853 | 476
4 22121 3.67 [2.80 |0 18.451 1.73 | 0 486 | 243 || 13.30 | 13.20 0| 2784 384 | 293 | 854 | 464
12.58 | 12.45 0| 2778 384 | 285 | 853 | 463
5.85 | 5.85 0| 2112 312 | 250 | 640 | 352
5.86 | 5.86 0 | 2094 312 | 241 | 640 | 349
5 16.70) 4.33 | 3.22 | 0 12.3711.80 | 0 606 | 248 958 | 2.58 0 2062 306 | 186 | 640 | 363
242 | 240 0| 2034 300 | 178 | 640 | 360
1.35 | 1.32 0| 1434 282 | 168 | 427 | 239
1.20 | 1.15 0| 1434 270 | 154 | 427 | 239
1.07 | 1.05 0 | 1428 252 | 148 | 426 | 238
7 15.23 || 5.22 | 3.75 | 15 9.98 | 2.98 |3 780 | 281 510 | 2.08 01392 258 | 203 | 427 | 246
2.03 | 2.03 0| 1386 258 | 201 | 427 | 244
2.30 | 2.30 0 | 1416 270 | 207 | 426 | 249

Table B.12: Results for 3dF3 on ALPHA Network

g xrpuaddy

SIUIULILNSDI JAT QOU’DUJJJ,O‘[JQJ panoiaq

244

NP Total Partition Analyze Subdomains
Time REAL| CPU| # PF REAL| CPU| #PF| DOF | AvgHt REAL| CPU | #PF| DOF | extDOF | Angt| # Ele | # Nod
11 || 130.0] - | - | - | 130.01 20.70] 10163] 9360 | 238 | - | -1 -] - | -1 -] - | -
10.35 | 8.70 | 152 | 4872 | 240 | 203 | 1560 | 812
3 16.40(| 1.62 | 0.87 | 0 14.78] 0.15 | 0 240 | 120 |75 T 003 T 1o Taas T 240 T 200 T 1560 1 838
5.40 | 5.33 013174 | 246 | 193] 1040 | 569
4 33.92(3.78 | 2.90 |0 30.13 1.45 | 0 486 | 243 | 24.68 | 23.47 | 74 | 3360 | 486 | 348 | 1040 | 560
497 | 4.93 0| 3312 | 240 | 185 | 1040 | 552
8.98 | 897 02538 330 263 780 | 423
10.20 | 10.02 | 14 | 2544 | 342 | 271 | 780 | 424
5 22.50| 5.43 | 3.85 | 6 17.03] 2.23 | 1 648 | 260 TR 02245 T 306 T 953 780 | 432
5.40 | 5.38 0 | 2496 | 336 | 216 | 780 | 432
1.92 | 1.90 011740 | 300 | 173] 520 | 290
2.78 | 2.73 01758 | 342 | 199 | 520 | 293
3.33 | 3.30 0] 1722 | 288 | 219 | 520 | 287
7 20.581| 7.87 | 5.45 | 13 12.70| 4.27 | 3 900 | 305 S3E 1333 o601 300 T 922 1 520 | 204
3.40 | 3.38 01692 | 318 | 222 | 520 | 294
3.35 | 3.35 0] 1686 | 282 | 217 | 520 | 297

Table B.13: Results for 3dF4 on ALPHA Network

g xrpuaddy

SIUIULILNSDI JAT QOU’DUJJJ,O‘[JQJ panoiaq

Gge

NP Total Partition Analyze Subdomains
Time REAL | CPU | # PF REAL | CPU | # PF | DOF | AvgHt REAL | CPU | # PF | DOF | extDOF | AvgHt | # Ele | # Nod
(1 | wrsf- |- - 147.57 21.78] 11653 10800 237 [-] -] -] -] -1 -1 -]
13.38 | 10.45 | 342 | 5586 240 | 210 | 1800 | 931
3 23.82| 1.87 [0.93 |0 21.95| .17 0 240 | 120 1578 110.65 | 547 | 5454 540 | 214 | 1800 | 949
6.90 | 6.88 03774 246 | 194 | 1200 | 629
4 56.00| 4.28 | 3.25 | 0O 51.721 1.97 | 0 504 | 252 38.08 | 25.62 | 1176 | 3870 504 | 336 | 1200 | 645
7.95 | 7.86 82 | 3660 258 | 206 | 1200 | 650
14.27 | 14.15 0 | 2922 3721 294 | 900 | 487
14.40 | 14.03 0 | 2928 384 | 290 | 900 | 488
) 32.88| 7.18 | 5.62 | 7 25.50(2.90 | 11 732 | 283 192 | 4.20 0 12748 240 | 185 | 900 | 498
19.77 | 19.23 44 | 2946 480 | 341 | 900 | 491
3.13 | 3.15 0| 1992 354 | 200 | 600 | 332
3.23 | 3.18 0 | 2004 306 | 200 | 600 | 334
3.57 | 3.55 0 | 1986 366 | 217 | 600 | 331
7 29.57| 11.68| 7.60 | 46 17.60| 5.57 | 152 | 1008 | 329 195 | 495 0 1992 360 235 | 600 | 332
5.03 | 5.01 0 | 2004 396 | 249 | 600 | 334
248 | 248 0 | 1866 270 | 184 | 600 | 351
Table B.14: Results for 3dF5 on ALPHA Network

g xrpuaddy

SIUIULILNSDI JAT QOU’DUJJJ,O‘[JQJ panoiaq

962

g xrpuaddy

Total Partition Analyze Subdomains

Time REAL | CPU | # PF REAL | CPU | # PF | DOF | AvgHt REAL | CPU | # PF | DOF | extDOF | AvgHt | # Ele | # Nod
| 17348 - |- |- [173432567| 13783 122400236 | -] - -[-] -1 -1 - -]

w255 207 | 100 | o0 s0.48] 017 | 0 010 | 190 |L20-12 [12.05 [2034 [6312 [240 [214 [2040 [1052

39.53 | 12.42 | 2313 | 6168 240 | 219 | 2040 | 1068

14.17 | 7.26 | 1314 | 4242 240 | 196 | 1360 | 707

84.25| 4.08 | 297 |0 80.17| 1.68 | 0 480 | 240 || 65.98 | 33.98 | 2770 | 4344 480 | 360 | 1360 | 724

7.57 | 7.40 9 | 4134 240 | 200 | 1360 | 729

20.40 | 20.03 23 | 3300 480 | 328 | 1020 | 550

5.93 | 547 17 | 3252 240 | 185 | 1020 | 542
38.63| 7.87 | 5.82 | 2 30.75| 2.82 | 26 720 | 280

20.68 | 19.82 41 | 3288 480 | 329 | 1020 | 548

5.07 | 5.05 0] 3120 240 | 189 | 1020 | 560

4.65 | 4.60 0| 2208 252 | 217 | 680 | 368

SIUIULILNSDI JAT QOU’DUJJJ,O‘[JQJ panoiaq

12.85 | 12.12 67 | 2310 o504 | 325 | 680 | 385
413 | 4.10 0] 2220 330 | 214 | 680 | 370
45.63| 15.33| 10.50| 40 30.12| 6.90 | 470 | 1098 | 338 303 | 3.88 0 2202 208 | 235 | 680 | 381
6.93 | 6.88 0| 2196 348 | 258 | 680 | 382
7.37 | 7.28 0] 2220 372 263 | 680 | 380

Table B.15: Results for 3dF6 on ALPHA Network

L€¢

NP Total Partition Analyze Subdomains
Time || rREAL | CPU | # PF || REAL | CPU | # PF | DOF | AvgHt || REAL | CPU | # PF | DOF | extDOF | AvgHt | # Ele | # Nod
(1 [[26 [[- [- [- 26 |243]0 J4e50]93 | -[-] -[-[-[-] -] -
11 11 0| 2394 96 79 | 1525 798
32 |6 (4 |0 17102 10 196 |48 12 11| 02352 96| 821525 815
7 7 0| 1614 93 72 | 1017 538
4 40 10 6 0 30 1.4 0 186 93 27 | 27 0| 1653 186 139 | 1016 551
7 6 0| 1569 93 70 | 1017 554
8 7 01 1233 117 85 762 411
5 4 0 1230 120 68 763 410
5 22 10 7 0 12 2.0 0 243 100 7 7 0 1224 132 67 763 91
9 9 0| 1206 117 95 762 420
4 4 0 840 99 74 508 280
3 3 0 831 93 70 509 277
8 8 0 855 159 | 113 509 285
7 38 20 12 2 18 3.6 0 345 113 7 3 0 316 90 o F08 584
2 2 0 816 105 53 508 291
8 8 0 846 153 108 508 282

Table B.16: Results for 2dF1 on DEC Network

g xrpuaddy

SIUIULILNSDI JAT QOU’D’UJJJ,O‘[JQJ panoiaq

8€¢

Total Partition Analyze Subdomains
Time || reAL | CPU | # PF || REAL | CPU | # PF | DOF | AvgHt || REAL | CPU | # PF | DOF | extDOF | AvgHt | # Ele | # Nod
| 87 |- | - [62.7 |14 | 6150 | 122 -1 -] - - | -1 -] - | -
92 | 21| 03171] 126 952025 | 1057
38 110 |6 04 0 126 |63 5 [22| 03105 126 | 96 | 2025 | 1076
931 23| 02088 | 144 117 | 1350] 729
5 |14 |1 30 |0 |231 | 116 |26 26| 02154 | 162 | 124 | 1350 | 726
56 | 26 | 02142 | 159 | 117 | 1350 | 714
6] 6] 0]1620]| 144| 721013 540
15 15| 01626 | 132 107 | 1013 | 542
8% 151 30 10 1267 114 71 7 01596 | 135 | 75 [1012 | 550
15 15| 01581 | 129 110 | 1012] 550
61 6] 0]1101] 108] 79| 675 367
1] 11| o122 | 192| 113] 675 374
5T 3 01098 123| 62| 675 | 366
51)26 |20 6.8 |1 |44 139 61 6] 01068 105| 87| 675 372
15 15| 01116 | 186 132| 675 372
3T 3] o0l1062] 117 611 675 379

Table B.17: Results for 2dF2 on DEC Network

g xrpuaddy

SIUIULILNSDI JAT QOU’D’UJJJ,O‘[JQJ panoiaq

652

NP Total Partition Analyze Subdomains
Time REAL | CPU | # PF REAL | CPU | # PF | DOF | AvgHt REAL | CPU | # PF | DOF | extDOF | AvgHt | # Ele | # Nod
1 [362 |- | - | - | 362 | 131.4] 4146 | 7650 | 151 -1 -] - - | -1 -] - | -
38 [38 013897 150]| 112 2525 | 1327
3 || 60 13 49 0 47 107 10 150 | 75 57 [37 013903 | 150 | 112 | 2525 | 1324
30 | 29 012664] 156]| 109 | 1683 | 888
4 71 18 |14 |0 53 (38 |0 249 | 125 47 | 46 02631 | 177 | 147 | 1684 | 902
42 | 41 0| 2604 | 165 | 142 | 1683 | 894
23 | 23 02007 | 144] 1211262 669
12 12 01971 | 162 | 881263 | 685
5 |51 jp20 142 31149 10]300 | 133 50 [24| 01980 | 153 | 125 | 1262 | 683
23 | 23 01995 | 144 | 120 | 1263 | 665
0] 9 011350 | 111] 93] 841 450
6| 5 01326 | 129 | 68| 841 | 450
25 | 24 0| 1371 | 213 | 149 | 842 | 457
7 81 37 |25 |1 43 | 104 |23 | 444 | 162 6 0T T m e s s
51 5 0| 1314 | 120| 67| 842 | 461
15 | 14 011380 | 192 115]| 842 | 460

Table B.18: Results for 2dF3 on DEC Network

g xrpuaddy

SIUIULILNSDI JAT QOU’D’UJJJ,O‘[JQJ panoiaq

0ve

g xrpuaddy

SIUIULILNSDI JAT QOU’DUJJJ,O‘[JQJ panoiaq

Total Partition Analyze Subdomains
Time REAL | CPU | # PF REAL | CPU | # PF | DOF | AvgHt REAL | CPU | # PF | DOF | extDOF | AvgHt | # Ele | # Nod
[550 |- |- |- [550 |160.3[89089180152 | -] -| -] -] -1 -1 -] -
48 | 47| 014638 156 | 117 | 3030 | 1597
o6 10 4o8 108 0156 |78 49| 48 | 04698 | 156 | 117 | 3030 | 1566
32 32 03099] 153 110 | 2020 | 1084
94 || 32 |17 |2 61 |47 |0 267 | 134 30| 29| 03177 | 198 | 108 | 2020 | 1059
53 | 53 | 23174 | 186 | 145 | 2020 | 1058
35 35| 0[2364] 162] 137] 1515 | 815
33| 33| 02361 | 165 | 134 | 1515 | 811
0 24 119 10 146 163 10 1333 | 143 e or 5 (2400 | 147 | 122 | 1515 | 800
15| 15| 02394 | 198 | 91 | 1515 | 798
15| 14] 0[1590 | 129 | 105 | 1010 | 551
32| 31| 01608 | 216 | 156 | 1010 | 554
10| 10| 0] 1614| 159 | &5 | 1010 | 550
118 | 58 |31 |41 57 | 14.3 | 114 | 501 | 179 T o6 T 14 G0z 1010 539
30 | 29| 01644 | 237 | 148 | 1010 | 548
13| 12| 01614 | 126 | 951010 | 538

Table B.19: Results for 2dF4 on DEC Network

Ve

g xrpuaddy

SIUIULILNSDI JAT QOU’DUJJJ,O‘[JQJ panoiaq

Total Partition Analyze Subdomains
Time || reAL | CPU | # PF || REAL | CPU | # PF | DOF | AvgHt || REAL | CPU | # PF | DOF | extDOF | AvgHt | # Ele | # Nod
| 758 |- |- |- [7s8 |188.3[13889 10710/ 152 | -] -| -] -] -1 -1 -] -
581 57| 215472 | 153 | 120 | 3535 | 1824
9 |19 14l |08 |0 153 77 63| 59| 12 | 5391 | 153 | 121 | 3535 | 1848
40| 39| 03696 | 156 | 115 | 2357 | 1232
148 || 38 |24 |1 110 |69 |0 |303 | 152 |[99 98] 03660 225 184 | 2356 | 1250
A0 | 39| 23660 | 228 | 115 | 2357 | 1241
24| 24| 02790 192 1041768 930
2| 42| 02784 | 165 | 141 | 1768 | 928
86 32 125 |6 53 |73 10357 | 149 e T (9733 | 162 | 132 | 1767 | 942
97| 27 0| 2763 | 198 | 110 | 1767 | 941
0] 10] 01881 150 811178 627
16 16 | 01878 | 141 | 104 | 1178 | 626
51| 31 01908 | 252 | 144 | 1178 | 636
141 (66 |44 |27 |76 |94 |164 | 537 | 181 |ttt Tt
T 11| 01842 | 168 | 85| 1179 | 646
a7 [47| 01893 | 225 | 179 [1178 | 631

Table B.20: Results for 2dF5 on DEC Network

(474

NP Total Partition Analyze Subdomains
Time REAL | CPU | # PF REAL | CPU | # PF | DOF | AvgHt REAL | CPU | # PF | DOF | extDOF | AvgHt | # Ele | # Nod
11]| 894 |- | - | - | 894 | 215.6] 16387 12240[153 || -] -[-] - | -1 -] - | -
73 71 816168 | 159 | 126 | 4040 | 2107
3 || 123 23 214 |9 100 110 11 1159 |80 76 | 68| 626231 | 159 | 123 | 4040 | 2077
43| 43 014197 | 156 | 115 | 2694 | 1399
4 306 |53 |27 |24 252 |83 |189 | 321 | 161 233 | 224 | 65 | 4242 | 321 | 248 | 2693 | 1414
52 | 51 1] 4122 | 165 | 123 | 2693 | 1425
27 | 27 03147] 198] 105] 2020 | 66
58 | 57 0| 3141 | 189 | 149 | 2020 | 63
5 143 || 61 |28 |42 82 |94 |164 |393 | 161 51 6 o371 T Tos T 158 2000 T 66
20 | 29 03180 | 207 | 109 | 2020 | 69
14 | 13 02124 186 | 90| 1346 | 724
61 | 61 0| 2160 | 243 | 89 | 1346 | 720
14 | 14 0| 2091 | 156 | 129 | 1347 | 732
7 185 (|90 |51 |2 94 | 18.8 | 168 | 579 | 192 TRESY 0T eEe T T T e T13a T i3
36 | 36 0| 2169 | 249 | 147 | 1347 | 723
12 11 0| 2148 | 159 | 86 | 1347 | 716

Table B.21: Results for 2dF6 on DEC Network

g xrpuaddy

SIUIULILNSDI JAT QOU’DUJJJ,O‘[JQJ panoiaq

1574

NP Total Partition Analyze Subdomains
Time REAL| CPU| # PF REAL| CPU| #PF| DOF | AvgHt REAL | CPU | #PF| DOF | extDOF | Angt| # Ele | # Nod
1 [875 |- | - | - | 875 [341.5] 13156] 7680 [239 | -| -| -] - | -1 -] - | -
116 | 115 214008 | 240 | 194 [1280 | 668
3 | 140 14 100 0 126 |34 10 1240 | 120 997998 4 [3912 | 240 | 198 | 1280 | 692
67 | 67 1]2616 | 240 | 184 | 853 | 476
4 206 || 61 50 |5 230 | 28.7 | 73 | 486 | 243 192 | 191 2 [2784 | 384 | 293 | 854 | 464
178 | 176 2 (2778 | 360 | 285 | 853 | 463
102 | 101 02112] 312 250 | 640 | 352
94 | 93 2 12094 | 312 | 241 | 640 | 349
5 247 |83 |60 |32 162 | 34.4 | 591 | 606 | 248 R 02062 1 306 T 186 T 620 T 363
48 | 47 212034 | 300 | 178 | 640 | 360
29 | 28 01434 | 282 168 | 427 | 239
24 | 24 0| 1434 | 270 | 154 | 427 | 239
7 236 || 101 | 68 | 86 133 | 55.1 | 718 | 780 | 281 22 | 22 0| 1428 | 252 148 | 436 | 238
: 43| 43 01392 | 258 | 203 | 427 | 246
42 | 42 11386 | 258 | 201 | 427 | 244
46 | 46 11416 | 270 | 207 | 426 | 249

Table B.22: Results for 3dF3 on DEC Network

g xrpuaddy

SIUIULILNSDI JAT QOU’DUJJJ,O‘[JQJ panoiaq

e

NP Total Partition Analyze Subdomains
Time REAL | CPU | # PF REAL | CPU | # PF | DOF | AvgHt REAL | CPU | # PF | DOF | extDOF | AvgHt | # Ele | # Nod
1 [119 - | - | - | 1119 | 418.8] 17983/ 9360 [238 || -] ~-| -] - | -1 -] - | -
202 | 155 | 667 | 4872 | 240 | 203 | 1560 | 812
3 | 286 |14 11 0 22 135 |0 1240 1120\ 60967 [4728 | 240 | 209 | 1560 | 828
90 | 89 03174 | 246 | 193 | 1040 | 569
4 517 |75 |52 |0 441 | 28.7 | 213 | 486 | 243 | 368 | 321 | 787 | 3360 | 486 | 348 | 1040 | 560
86 | 86 03312 | 240 | 185 | 1040 | 552
136 | 136 012538 330 | 263 | 780 | 423
144 | 142 0 | 2544 | 342 | 271 | 780 | 424
5 325 |[111 |72 |50 213 | 40.4 | 810 | 648 | 260 95 1101 02138 T 306 T 253 80 T 432
85 | 85 0 | 2496 | 336 | 216 | 780 | 432
43 | 40 01740 | 300 | 173] 520 | 290
53 | 52 0| 1758 | 342 | 199 | 520 | 293
64 | 63 01722 | 288 | 219 | 520 | 287
7 309 || 133 | 100 | 74 174 | 74.0 | 1016 | 900 | 305 AR 01692 T 300 T 930 | to0 T 294
65 | 64 01692 | 318 | 222 | 520 | 294
62 | 61 01686 | 282 | 217 | 520 | 297

Table B.23: Results for 3dF4 on DEC Network

g xrpuaddy

SIUIULILNSDI JAT QOU’DUJJJ,O‘[JQJ panoiaq

574

NP T?tal Partition Analyze Subdomains

Time || rReaL | CPU | # PF || REAL | CPU | # PF | DOF | AvgHt || REAL | CPU | # PF | DOF | extDOF | AvgHt | # Ele | # Nod
F WOULD NOT RUN ON SINGLE DEC WORKSTATION DUE TO MEMORY LIMITS ON USERS

316 | 191 | 2644 | 5586 | 240 | 210 | 1800 | 931
3 || 416 16 12 10 400 134 10 1240 120\ YoR o800 | 5454 | 240 | 214 | 1800 | 949
108 | 108 | 0| 3774 | 246 | 194 | 1200 | 629
4 | 614 |86 |57 |18 || 527 |32.1 | 284 | 504 | 252 | 468 | 346 | 2317 | 3870 | 504 | 336 | 1200 | 645
120 [119 | 2 3660 | 258 | 206 | 1200 | 650
202 | 200 | 2| 2022 | 378 294 900 487
104 [193 | 22922 | 390 | 290 | 899 | 487
5 | 513 137 |107 |25 | 374 | 553|895 | 738 | 985 |0ttt T
983 | 272 | 122 | 2046 | 480 | 342 | 900 | 491
61] 60| 01992] 354 200] 600 332
60| 60| 0 |2004 | 306 200 600 | 334
70| 68| 01986 | 366 | 217 | 600 | 331
7| 415 | 176 | 140 |53 | 239 | 96.4 | 1479 | 1008 | 329 |ttt i00 a0 o3 T go0 g
91| 90| 02004 | 396 | 249 | 600 | 334
19| 48| 01866 | 270 | 184 | 600 | 351

Table B.24: Results for 3dF5 on DEC Network

g xrpuaddy

SIUIULILNSDI JAT QOU’DUJJJ,O‘[JQJ panoiaq

9¥¢

NP T(?tal Partition Analyze Subdomains

Time || rREAL | CPU | # PF || REAL | CPU | # PF | DOF | AvgHt || REAL | CPU | # PF | DOF | extDOF | AvgHt | # Ele | # Nod
1 WOULD NOT RUN ON SINGLE DEC WORKSTATION DUE TO MEMORY LIMITS ON USERS

427 | 224 | 5055 | 6312 | 240 | 214 | 2040 | 1052
3| %4 1T 13 0 536 | 3.4 10240 | 120 a0 5186 | 6168 | 240 | 219 | 2040 | 1068
125 | 124 | 17 | 4242 | 240 | 196 | 1360 | 707
a | ss1 |72 |51 |17 | 809 |27.7 | 200 |480 |240 |[726 | 459 | 7142 | 4344 | 480 | 360 | 1360 | 724
132 (127 | 56 | 4134 | 240 | 200 | 1360 | 729
300 | 280 | 418 | 3300 | 480 | 328 | 1020 | 550
85| 85 | 03252 | 240 | 185 | 1020 | 542
5 | 564 || 138 | 104 |34 [426 | 521 1007 | 720 | 280 st o s et
86| 85| 03120 | 240 | 189 | 1020 | 560
791 79| 42208 | 252 217 680 368
180 [183 | 112310 | 504 | 325 | 680 | 385
771 76 | 12220 | 330 | 263 | 680 | 370
7 | 648 || 250 | 190 |65 [387 | 1111|1814 | 1098 | 338 | it ree 1oy s T oge 650 el
115 [114 | 4| 2196 | 348 | 258 | 680 | 382
112 [119 | 4] 2220 | 372 | 263 | 680 | 380

Table B.25: Results for 3dF6 on DEC Network

g xrpuaddy

SIUIULILNSDI JAT QOU’DUJJJ,O‘[JQJ panoiaq

Lve

