How to Introduce a New Material into OpenSees
Version 1.1
August 21, 2001
Michael H. Scott and Gregory L. Fenves
PEER, University of California, Berkeley

1 Introduction

This document shows how to add a new material implementation to OpenSees. The hi-
erarchical nature of the OpenSees software architecture allows new material models to be
seamlessly added to the framework. By keeping element and material implementations sepa-
rate, a new material model can be used in an existing element without modifying the element
implementation, and vice versa. The programming language C++ directly supports the data
encapsulation and run-time binding necessary to achieve this complete separation of material
from element.

2 Material Abstractions

Currently, there are three Material abstractions in OpenSees, each of which can be used
across a wide range of element implementations:

1. UniaxialMaterial - Provides the interface for all one-dimensional material models,
either stress-strain or force-deformation. UniaxialMaterial models define the stress-
strain response of a truss element, uniaxial fiber behavior in a beam-column section,
or the force-deformation response of a beam section or zero-length element.

2. NDMaterial - The multi-dimensional generalization of UniaxialMaterial; provides the
stress-strain response at a point in a solid element, or multi-dimensional fiber behavior
in a plate or beam-column section.

3. SectionForceDeformation - Defines the interface for stress resultant models which
are used to describe both plate and beam-column force-deformation response as well
as the constitutive response of more general zero-length elements, e.g., for isolator
bearings.

Each interface listed above is essentially the same with minor differences. The NDMaterial
and SectionForceDeformation abstractions both represent multi-dimensional constitutive re-
sponse. However, a distinction is made between stress and stress resultant response to allow
for safer element implementations. Furthermore, the stress-strain equations for continuum
material models can be written in terms of tensors. This is not the case for stress resultant
models. Lastly, to avoid returning matrices and vectors or tensors of size one, the Uniaxial-
Material abstraction is made distinct for reasons of efficiency, as scalar values describe the
behavior of a one-dimensional model.

TaggedObject M ovableObject

A A

A

UniaxialMaterial SectionF orceDeformation NDMaterial

scalar matrix/vector tensor
matrix/vector

Figure 1: Material class hierarchy

As indicated in figure 1, each material abstraction is a subclass of Material. The Mate-
rial class is a subclass of both the TaggedObject and MovableObject classes, and therefore
inherits the functionality of these two classes. As a result, it can be said that a Material “is
a” TaggedObject as well as a MovableObject. Furthermore, since each of UniaxialMaterial,
NDMaterial, and SectionForceDeformation “is a” Material, each is also a TaggedObject and
a MovableObject. The TaggedObject class provides functionality for identifying materials,
through a tag, during model building; and the MovableObject class provides functionality
for parallel processing and database programming.

Rather than show examples of implementing a material model under each interface, only
the UniaxialMaterial interface is covered herein. The basic concepts of adding a material
model to OpenSees carry directly over from UniaxialMaterial to NDMaterial and Section-
ForceDeformation.

The remainder of this document is laid out as follows. First, the UniaxialMaterial in-
terface is listed and explained. Then, an example UniaxialMaterial implementation, Hard-
eningMaterial, is presented. Along with the C++ implementation, it is shown how to 1)
add the new model to the OpenSees Tcl model builder, and 2) make the new model “mov-
able” for parallel processing and database programming. Finally, a FORTRAN interface for
programming UniaxialMaterial models in OpenSees is described.

3 UniaxialMaterial Interface

Implementations of the UniaxialMaterial interface are used in several contexts within the
OpenSees modeling framework. Due to their simplicity, these models can define both stress-
strain and force-deformation relationships. It is up to the calling object, be it an element
object or another material object, to interpret the meaning appropriately.

Listed below is the UniaxialMaterial class interface. All methods in the UniaxialMaterial
interface are public, there are no protected or private data or methods. Following the
UniaxialMaterial class interface listing, each method in the interface is described.

#include <Material.h>

class Response;
class Information;

class UniaxialMaterial : public Material
{
public:
UniaxialMaterial(int tag, int classTag);
virtual “UniaxialMaterial(void);

virtual int setTrialStrain(double strain, double strainRate = 0.0) = 0;
virtual double getStrain(void) = O;

virtual double getStrainRate(void) ;

virtual double getStress(void) = 0;

virtual double getTangent(void) = 0;

virtual double getDampTangent (void);

virtual double getSecant(void);

virtual int commitState(void) = 0;
virtual int revertToLastCommit (void) = O;
virtual int revertToStart(void) = O0;

virtual UniaxialMaterial *getCopy(void) = 0;

virtual Response *setResponse(char **argv, int argc, Information &matInfo);
virtual int getResponse(int responseID, Information &matInfo);

protected:

private:

};

A note about the C++ syntax seen in the UniaxialMaterial interface. The keyword “vir-
tual” at the start of a method declaration indicates this method may be overridden by a
subclass of UniaxialMaterial. The UniaxialMaterial base class provides default implemen-
tations for its virtual methods. The notation “= 0” at the end of the method declaration
indicates the method is pure virtual, meaning it must be defined by subclasses because the
UniaxialMaterial base class does not provide a default implementation.

The UniaxialMaterial base class constructor takes a tag and classTag as its arguments.
The tag passed to the constructor identifies this UniaxialMaterial as unique among all other
UniaxialMaterial objects, and the classTag is used primarily for parallel processing and
database programming. Class tags are defined in the file classTags.h. The tag and classTag
arguments are passed to the Material class constructor, where they are in turn passed to
the TaggedObject and MovableObject class constructors, respectively. The UniaxialMaterial
destructor is declared, but does not do anything as the UniaxialMaterial base class contains
no data.

The method setTrialStrain() takes one or two arguments, an updated strain and strain
rate. The strain rate is an optional argument, with default value 0.0. This method is pure
virtual, so it must be implemented in all subclasses of UniaxialMaterial. The next two
methods, getStrain() and getStrainRate(), are to return the current strain and strain rate of
this UniaxialMaterial. The method getStrain() is pure virtual, while getStrainRate() is only
virtual; by default it returns 0.0, but may be overridden in subclasses if needed.

double
UniaxialMaterial::getStrainRate(void)

{

return 0.0;

}

The next method is getStress(), which is to return the current stress of this UniaxialMa-
terial. The current stress is a function of the current strain, ¢, and the current strain rate,
£,

o=o0(gé). (1)
The getStress() method is pure virtual and must be implemented by subclasses of Uniaxial-
Material.

The current material tangent is returned by the next method, get Tangent(). The material
tangent is the partial derivative of the material stress with respect to the current strain,

do
D= (2)
The getTangent() is also pure virtual and must be implemented in all UniaxialMaterial
subclasses.
The getDampTangent() method is next, and is to return the current damping tangent,
which is the partial derivative of the current stress with respect to the current strain rate,

77:%- (3)

By default, this method returns 0.0, and it may be overridden in subclasses of UniaxialMa-
terial where there is strain rate dependence.

double
UniaxialMaterial: :getDampTangent (void)

{

return 0.0;

}

Finally, the getSecant() method is provided to return the material secant, which is the
current stress divided by the current strain,

o

D, =—. (4)

By default, this method returns the result of dividing the current stress by the current strain.
If the current strain is zero, the current tangent is returned instead.

4

double
UniaxialMaterial::getSecant (void)

{
double strain = this->getStrain();
double stress = this->getStress();
if (strain != 0.0)
return stress/strain;
else
return this->getTangent();
}

The next set of methods deal with possible path dependent behavior of UniaxialMaterial
models. All Material objects in OpenSees are responsible for keeping track of and updating
their own history variables. First, the method commitState() is invoked to inform a Uniax-
ialMaterial object that its current state is on the converged solution path and its internal
history variables should be updated accordingly. Next, the method revertToLastCommit()
is provided to let a UniaxialMaterial object know that it should return to its last committed
state at. Finally, revertToStart() informs the UniaxialMaterial object to revert to its initial
state, i.e., at the start of the analysis. All three of these methods are pure virtual, and thus
must be implemented in all subclasses of UniaxialMaterial.

The getCopy() method is declared so a calling object, be it an Element, Fiber, or another
Material object, can obtain an exact copy of this UniaxialMaterial object. A pointer to the
new object is returned by this function, and the calling object is responsible for deleting
this dynamically allocated memory. This method is pure virtual because only a subclass of
UniaxialMaterial knows the internal representation of its data.

The final two methods, setResponse() and getResponse(), are declared for recording Uni-
axialMaterial state information. These methods have default implementations to record the
material stress, strain, and tangent. These methods may be overridden, but their implemen-
tations are not shown in this document.

4 Example — HardeningMaterial

In this section, it is shown how the rate-independent uniaxial hardening material model given
in Simo & Hughes, Computational Inelasticity (1998) is implemented in OpenSees. First,
the class implementation is shown, followed by its inclusion in the Tcl model builder.

4.1 Class Implementation

The HardeningMaterial class interface is shown below. Here, no methods are virtual since
this class provides implementations for the corresponding methods inherited from the Uni-
axialMaterial class.

Note, three additional methods not declared in the UniaxialMaterial interface, sendSelf(),
recvSelf(), and Print(), must be defined in implementations of UniaxialMaterial. These
methods are inherited from higher level classes in the OpenSees framework, particularly,

UniaxialMaterial

A

HardeningM aterial 000

Figure 2: HardeningMaterial class hierarchy

TaggedObject and MovableObject. An explanation of these methods is provided in what
follows.

#include <UniaxialMaterial.h>

class HardeningMaterial : public UniaxialMaterial
{
public:
HardeningMaterial(int tag, double E, double sigmaY, double Hiso, double Hkin);
HardeningMaterial() ;
“HardeningMaterial() ;

int setTrialStrain(double strain, double strainRate = 0.0);
double getStrain(void);
double getStress(void);
double getTangent (void) ;

int commitState(void);

int revertToLastCommit(void) ;

int revertToStart(void);

UniaxialMaterial *getCopy(void);

int sendSelf(int commitTag, Channel &theChannel) ;
int recvSelf(int commitTag, Channel &theChannel,

FEM_ObjectBroker &theBroker) ;

void Print(ostream &s, int flag = 0);

protected:
private:
// Material parameters
double E; // Elastic modulus
double sigmaY¥; // Yield stress
double Hiso; // Isotropic hardening modulus

double Hkin; // Kinematic hardening modulus

// Committed history variables
double CplasticStrain; // Committed plastic strain
double CbackStress; // Committed back stress;

double Chardening; // Committed internal hardening variable

// Trial history variables

double TplasticStrain; // Trial plastic strain
double TbackStress; // Trial back stress
double Thardening; // Trial internal hardening variable

// Trial state variables

double Tstrain; // Trial strain

double Tstress; // Trial stress

double Ttangent; // Trial tangent
};

The first two methods defined for HardeningMaterial are the constructors. The first construc-
tor takes the material tag and the material parameters: elastic modulus, F, yield stress, oy,
isotropic hardening modulus, H;,,, and kinematic hardening modulus, Hy;,. The Uniaxial-
Material base class constructor is invoked with the arguments tag and MAT_TAG_Hardening
(defined in classTags.h). The material parameters for this object are initialized in the ini-
tialization list with the arguments passed to the constructor, and all history variables are
initialized by invoking revertToStart(). The second constructor is a default constructor which

sets all material parameters to 0.0 then invokes revertToStart().

HardeningMaterial: :HardeningMaterial (int tag, double e, double s,
double hi, double hk)
:UniaxialMaterial (tag,MAT_TAG_Hardening),
E(e), sigma¥(s), Hiso(hi), Hkin(hk)
{
// Initialize variables
this->revertToStart();

HardeningMaterial: :HardeningMaterial()
:UniaxialMaterial (0,MAT_TAG_Hardening),
E(0.0), sigmaY(0.0), Hiso(0.0), Hkin(0.0)
{
// Initialize variables
this->revertToStart();
}

The next method defined is the destructor, which does nothing since no memory is dynam-

ically allocated by a HardeningMaterial object.

HardeningMaterial::“HardeningMaterial ()

{

// Does nothing

}

The following methods deal with the material state determination. The return mapping
algorithm is coded in setTrialStrain(). The stress and tangent of this HardeningMaterial
object are computed and stored in the instance variables Tstress and Ttangent and returned
by the methods getStress() and getTangent(), respectively. The trial strain, stored in the
instance variable Tstrain, is returned by the method getStrain().

int

HardeningMaterial::setTrialStrain(double strain, double strainRate)

{

// Set total strain
Tstrain = strain;

// Elastic trial stress
Tstress = E * (Tstrain-CplasticStrain);

// Compute trial stress relative to committed back stress

double xsi = Tstress - CbackStress;

// Compute yield criterion
double f = fabs(xsi) - (sigmaY + Hiso*Chardening) ;

// Elastic step ... no updates required
if (f <= 0.0) {

}

// Plastic step ...

// Set trial tangent
Ttangent = E;

else {

// Compute consistency parameter
double dGamma = f / (E+Hiso+Hkin);

// Find sign of xsi
int sign = (xsi < 0) 7 -1 : 1;

// Bring trial stress back to yield surface
Tstress -= dGamma*E*sign;

// Update plastic strain
TplasticStrain = CplasticStrain + dGamma*sign;

// Update back stress
TbackStress = CbackStress + dGamma*Hkin*sign;

perform return mapping algorithm

// Update internal hardening variable
Thardening = Chardening + dGamma;

// Set trial tangent
Ttangent = Ex(Hkin+Hiso) / (E+Hkin+Hiso);

return O;

double
HardeningMaterial::getStress(void)
{

return Tstress;

double
HardeningMaterial: :getTangent (void)

{

return Ttangent;

double
HardeningMaterial: :getStrain(void)

{

return Tstrain;

}

The next set of methods deal with the path dependent behavior of this HardeningMaterial
object. The method commitState() sets the committed history variables to be their corre-
sponding trial values. Nothing needs to be done in the method revertToLastCommit(), and
all history variables are set to 0.0 in revertToStart().

int
HardeningMaterial::commitState(void)
{
// Commit trial state variables
CplasticStrain = TplasticStrain;
CbackStress = TbackStress;
Chardening = Thardening;

return O;

int
HardeningMaterial: :revertToLastCommit (void)

// Nothing to do here
return O;

int
HardeningMaterial: :revertToStart(void)
{
// Reset committed history variables
CplasticStrain = 0.0;
CbackStress = 0.0;
Chardening = 0.0;

// Reset trial history variables
TplasticStrain = 0.0;
TbackStress = 0.0;

Thardening = 0.0;

// Initialize state variables
Tstrain = 0.0;
Tstress = 0.0;
Ttangent = E;

return O;

}

The getCopy() method is defined so this HardeningMaterial object can provide a clone of
itself to a calling object, be it an Element, Fiber, or other Material object. The constructor
is invoked to create a new object, then all instance variables are copied to the new object.
The calling object is responsible for deleting this dynamically allocated memory.

UniaxialMaterial*
HardeningMaterial: :getCopy(void)
{
HardeningMaterial *theCopy =
new HardeningMaterial (this->getTag(), E, sigma¥Y, Hiso, Hkin);

// Copy committed history variables
theCopy—>CplasticStrain = CplasticStrain;
theCopy—>CbackStress = CbackStress;
theCopy->Chardening = Chardening;

// Copy trial history variables
theCopy—->TplasticStrain = TplasticStrain;
theCopy->TbackStress = TbackStress;
theCopy->Thardening = Thardening;

10

// Copy trial state variables
theCopy—->Tstrain = Tstrain;
theCopy—->Tstress = Tstress;
theCopy—>Ttangent = Ttangent;

return theCopy;

}

The next two methods are defined for parallel processing and database programming, and are
inherited from MovableObject. The first method, sendSelf(), packs the material properties
and committed history variables in a Vector, then sends the Vector across the Channel object
passed as an argument to the method. The second method, recvSelf(), receives data from the
Channel object, then populates the data of this HardeningMaterial object with the received

data.

int

HardeningMaterial::sendSelf (int cTag, Channel &theChannel)

{

static Vector data(8);

data(0)
data(1)
data(2)
data(3)
data(4)
data(5)
data(6)
data(7)

int res
if (res
cerr

this->getTag();

= E;
= sigmaY;

= Hiso;

= Hkin;

= CplasticStrain;
= CbackStress;

<

Chardening;

theChannel.sendVector (this->getDbTag(), cTag, data);
0)

<< "HardeningMaterial::sendSelf() - failed to send data\n";

return res;

int

HardeningMaterial::recvSelf (int cTag, Channel &theChannel,

{

FEM_ObjectBroker &theBroker)

static Vector data(8);

int res = theChannel.recvVector(this->getDbTag(), cTag, data);

if (res < 0) {

cerr << "HardeningMaterial::recvSelf() - failed to receive data\n";

this->setTag(0);

11

}

else {
this->setTag((int)data(0));
E = data(1);

sigma¥ = data(2);

Hiso = data(3);

Hkin = data(4);
CplasticStrain = data(5);
CbackStress = data(6);
Chardening = data(7);

// Set the trial state variables
revertToLastCommit () ;

return res;

}

The final HardeningMaterial method is Print(), which writes the material name, tag, and
parameters to the output stream passed as an argument. This method is inherited from
TaggedObject.

void
HardeningMaterial::Print(ostream &s, int flag)
{
s << "HardeningMaterial, tag: " << this->getTag() << endl;
s << " E: " << E << endl;
s << " sigmaY: " << sigmaY¥ << endl;
s << " Hiso: " << Hiso << endl;
s

<< " Hkin: " << Hkin << endl;

4.2 Tcl Model Builder

The new HardeningMaterial model must be added to the OpenSees Tcl model builder in
order for it to be used by analysis models defined in Tcl script files. The general from of the
uniaxialMaterial command is as follows:

uniaxialMaterial materialType tag <specific material parameters>

So, for a HardeningMaterial object, it is necessary to read in the material parameters that
are passed to its constructor, namely the elastic modulus, yield stress, and isotropic and
kinematic hardening moduli. The general form of the command will be:

uniaxialMaterial Hardening tag E sigmaY Hiso Hkin

12

An example command to add a HardeningMaterial object with tag 1, elastic modulus of
30000.0, yield stress of 60.0, isotropic hardening modulus of 0.0, and kinematic hardening
modulus of 1000.0 may then look like:

uniaxialMaterial Hardening 1 30000.0 60.0 0.0 1000.0

How these values are parsed and used to construct a HardeningMaterial object is de-
scribed next. The parsing of input data for all UniaxialMaterial models is done in the func-
tion T'cIModelBuilder UniaxialMaterialCommand contained in the file TclModelBuilderUni-
axialMaterial Command.cpp. In this file there are multiple if/else statements, one for each
UniaxialMaterial that can be added to the model builder. To add the new model only re-
quires adding an additional case with the accompanying code to parse the Tcl command
line.

The above command is split into an array of character strings (argv) by the Tcl inter-
preter, then sent to the TclModelBuilderUniazialMaterialCommand function. argv[0] con-
tains the command name “uniaxialMaterial”, argv[1] holds the material keyword “Harden-
ing”, argv[2] contains the material tag, and the remaining entries in the argv array hold
the specific material parameters. These parameters are the arguments needed to call the
HardeningMaterial constructor. The number of elements in the argv array is stored in the
variable argc.

Calls are made to the Tcl routines Tecl_GetInt and Tcl_GetDouble to get integer and dou-
ble values from the character strings contained in argv. These routines perform error checking
and return the pre-defined value TCL_OK if there was no error. Once the UniaxialMaterial
has been allocated, it is added to the Tcl model builder at the end of the T'ciModelBuilderU-
niazialMaterial Command function, after the multiple if/else statement has ended.

int

TclModelBuilderUniaxialMaterialCommand (ClientData clienData, Tcl_Interp *interp,
int argc, char **argv,
TclModelBuilder *theTclBuilder)

// Pointer to a UniaxialMaterial that will be added to the model builder
UniaxialMaterial *theMaterial = O0;

if (strcmp(argv[1],"Elastic") == 0) {
//
// Additional code not shown
//

}

else if (strcmp(argv[1],"Hardening") == 0) {
if (argc < 7) {
cerr << "WARNING insufficient arguments\n";
printCommand (argc,argv) ;
cerr << "Want: uniaxialMaterial Hardening tag E sigmaY Hiso Hkin" << endl;

13

//
//
//

//
if

return TCL_ERROR;

int tag;
double E, sigmaY, Hiso, Hkin;

if (Tcl_GetInt(interp, argv[2], &tag) != TCL_OK) {
cerr << "WARNING invalid uniaxialMaterial Hardening tag" << endl;
return TCL_ERROR;

if (Tcl_GetDouble(interp, argv[3], &E) != TCL_OK) {
cerr << "WARNING invalid E\n";
cerr << "uniaxialMaterial Hardening: " << tag << endl;
return TCL_ERROR;

if (Tcl_GetDouble(interp, argv[4], &sigmaY) != TCL_O0K) {
cerr << "WARNING invalid sigma¥\n";
cerr << "uniaxialMaterial Hardening: " << tag << endl;
return TCL_ERROR;

if (Tcl_GetDouble(interp, argv[5], &Hiso) != TCL_OK) {
cerr << "WARNING invalid Hiso\n";
cerr << "uniaxialMaterial Hardening: " << tag << endl;
return TCL_ERROR;

if (Tcl_GetDouble(interp, argv[6], &Hkin) != TCL_OK) {
cerr << "WARNING invalid Hkin\n";
cerr << "uniaxialMaterial Hardening: " << tag << endl;
return TCL_ERROR;

// Parsing was successful, allocate the material
theMaterial = new HardeningMaterial(tag, E, sigmaY, Hiso, Hkin);

Additional code not shown

Now add the material to the modelBuilder
(theTclBuilder->addUniaxialMaterial (*theMaterial) < 0) {

cerr << "WARNING could not add uniaxialMaterial to the model builder\n";
cerr << xtheMaterial << endl;

14

delete theMaterial; // invoke the material objects destructor,
// otherwise memory leak
return TCL_ERROR;
3

return TCL_OK;

4.3 FEM_ObjectBroker

In order for the new HardeningMaterial object to be used for parallel processing and database
programming, the getNewUniazialMaterial() method in the FEM_ObjectBroker class must

be modified. An additional case statement should be added, as shown below. The MAT _TAG_Hardening
classTag is the same pre-defined value passed to the UniaxialMaterial constructor by the
HardeningMaterial constructor described earlier. The FEM_ObjectBroker simply returns

a blank HardeningMaterial object, whose data can be subsequently populated by invoking
recvSelf().

UniaxialMaterial*
FEM_ObjectBroker: :getNewUniaxialMaterial(int classTag)
{

switch(classTag) {

case MAT_TAG_Hardening:
return new HardeningMaterial();

//

// Additional cases not shown

//

default:
cerr << "FEM_0ObjectBroker::getPtrNewUniaxialMaterial - ";
cerr << " - no UniaxialMaterial type exists for class tag ";
cerr << classTag << endl;
return O;

X

5 A FORTRAN Interface for UniaxialMaterial Models

Subclasses of UniaxialMaterial hide their implementation details from calling objects, i.e.,
calling objects only see the public interface defined in the UniaxialMaterial base class. How
the interface is implemented is encapsulated by each subclass of UniaxialMaterial. Thus,
a particular UniaxialMaterial implementation need not be written in C++ as long as the
implementation conforms to the UniaxialMaterial interface.

15

As an example, the FEDEAS uniaxial material library developed by F.C. Filippou is
used as a FORTRAN interface for UniaxialMaterial models in OpenSees. This example is
meant to demonstrate the process of linking OpenSees with other material libraries and is
not limited to just the FEDEAS library. Material libraries with any well-defined interface,
e.g. DRAIN, may be linked in a similar manner. Similar concepts carry directly over to
implementing NDMaterial and SectionForceDeformation models in FORTRAN.

5.1 FEDEAS subroutine interface

The subroutine interface defined for a FEDEAS uniaxial material model named “ML1D” is
shown below.

subroutine ML1D(matpar,hstvP,hstv,epsP,sigP,deps,sig,tang,ist)
The subroutine arguments are given as follows:

1. matpar - a double array of material parameters (in)

2. hstvP - a double array of committed history variables (in)

3. hstv - a double array of trial history variables (out)

4. epsP - strain at the last committed state (in)

5. sigP - stress at the last committed state (in)

o

deps - change in strain from the last committed state (in)

~

sig - the stress at the current trial state (out)
8. tang - the tangent at the current trial state (out)

9. ist - integer indicating the operation to be performed (in): 0 - return number of material
parameters and history variables, 1 - compute stress and tangent, 2 - compute stress
and secant

5.2 FedeasMaterial Implementation in OpenSees

This section presents an implementation of UniaxialMaterial capable of wrapping any sub-
routine that conforms to the FEDEAS interface described in the previous section. This
implementation, FedeasMaterial, manages the data arrays sent to the FEDEAS subroutine,
i.e., FedeasMaterial is responsible for storing the material parameters and history variables,
as well as for swapping trial and committed history variables.

FedeasMaterial is a subclass of UniaxialMaterial, as shown in figure 3. Subclasses of
FedeasMaterial are responsible for defining constructors which take the appropriate material
parameters. All other functionality (state determination, swapping of history variables, etc.)
is common to all subclasses of FedeasMaterial. Therefore, this functionality is defined in the
base class, FedeasMaterial.

16

UniaxialMaterial

*

FedeasM aterial 000 HardeningM aterial

Figure 3: FedeasMaterial class hierarchy

The FedeasMaterial class interface is shown below. All methods are declared as virtual
so they may be overridden by subclasses of FedeasMaterial.

#include <UniaxialMaterial.h>

class FedeasMaterial : public UniaxialMaterial
{
public:
FedeasMaterial(int tag, int classTag, int nhv, int ndata);
virtual “FedeasMaterial();

virtual int setTrialStrain(double strain, double strainRate = 0.0);
virtual double getStrain(void);

virtual double getStress(void);

virtual double getTangent(void) ;

virtual int commitState(void);
virtual int revertToLastCommit (void);
virtual int revertToStart(void);

virtual UniaxialMaterial *getCopy(void) ;
virtual int sendSelf (int commitTag, Channel &theChannel);
virtual int recvSelf (int commitTag, Channel &theChannel,
FEM_ObjectBroker &theBroker) ;
virtual void Print(ostream &s, int flag = 0);
protected:

// Invokes the FORTRAN subroutine
virtual int invokeSubroutine(int ist);

double *data; // Material parameters array
double *hstv; // History array: first half is committed, second is trial
int numData; // Number of material parameters

17

int numHstv; // Number of history variables

double epsilonP; // Committed strain

double sigmaP; // Committed stress
private:

double epsilon; // Trial strain

double sigma; // Trial stress

double tangent; // Trial tangent

};

Instance variables are declared in FedeasMaterial to store history variables and material
parameters. First, data is a double array of size numData, the number of material parameters
for this object. Next, hstv is a double array of size 2*numHstv, where numHstv is the
number of history variables needed for this FedeasMaterial object. Note that committed
history variables are stored in the first half of the hstv array, while the trial values are kept
in the second half. The values epsilonP and sigmaP are the committed strain and stress,
respectively, of this FedeasMaterial object, as they are required by the FEDEAS subroutine
interface. Finally, three trial state variables, epsilon, sigma, and tangent are defined to store
the current strain, stress, and tangent.

The FedeasMaterial constructor initializes the number of history variables and number of
material parameters with arguments passed to the constructor. The UniaxialMaterial base
class constructor is invoked with the tag and classTag arguments. The trial and committed
strain and stress are initialized to 0.0. Then, the history variable and material parameter
arrays are allocated. All entries in the history variable and material parameter arrays are
initialized to 0.0.

FedeasMaterial::FedeasMaterial(int tag, int classTag, int nhv, int ndata)
:UniaxialMaterial (tag,classTag),

data(0), hstv(0), numData(ndata), numHstv(nhv),

epsilonP(0.0), sigmaP(0.0),

epsilon(0.0), sigma(0.0), tangent(0.0)

{

if (numHstv < 0)
numHstv = 0;

if (numHstv > 0) {
// Allocate history array
hstv = new double[2*numHstv];
if (hstv == 0)
g3ErrorHandler->fatal("%s -- failed to allocate history array -- type %d",
"FedeasMaterial: :FedeasMaterial", this->getClassTag());

// Initialize to zero

for (int i = 0; i < 2*numHstv; i++)
hstv[i] = 0.0;

18

if (numData < 0)
numData = 0;

if (numData > 0) {
// Allocate material parameter array
data = new double[numData];
if (data == 0)
g3ErrorHandler->fatal("%s -- failed to allocate data array -- type #%d",
"FedeasMaterial: :FedeasMaterial", this->getClassTag());

// Initialize to zero
for (int i = 0; i < numData; i++)
datali] 0.0;

}

The FedeasMaterial destructor deallocates the memory allocated in the constructor to hold
the history variables and material parameters.

FedeasMaterial: : “FedeasMaterial()

{
if (hstv != 0)
delete [] hstv;
if (data != 0)
delete [] data;
}

The next group of FedeasMaterial methods deals with material state determination. First,
setTrialStrain() stores the trial strain, then invokes the FEDEAS subroutine with ist =
1, indicating that normal stress and tangent quantities should be computed. The meth-
ods getStrain(), getStress(), and getTangent() return the strain, stress, and tangent of this
FedeasMaterial.

int
FedeasMaterial: :setTrialStrain(double strain, double strainRate)

{
// Store the strain
epsilon = strain;

// Tells subroutine to do normal operations for stress and tangent
int ist = 1;

// Call the subroutine
return this->invokeSubroutine(ist);

19

double
FedeasMaterial::getStrain(void)

{
return epsilon;
}
double
FedeasMaterial::getStress(void)
{
return sigma;
}
double
FedeasMaterial: :getTangent (void)
{
return tangent;
}

The next three methods deal with the path dependent behavior of this FedeasMaterial object.
The commitState() method copies the trial history variables from the second half of the hstv
array to the first half, where the committed values are stored. The committed values are
copied to the trial values in revertToLastCommit(), and all values are set to 0.0 in the
revertToStart() method.

int
FedeasMaterial::commitState (void)
{
// Set committed values equal to corresponding trial values
for (int i = 0; i < numHstv; i++)
hstv[i] = hstv[i+numHstv];

epsilonP = epsilon;
sigmaP = sigma;

return O;

int
FedeasMaterial: :revertToLastCommit (void)
{
// Set trial values equal to corresponding committed values
for (int i = 0; i < numHstv; i++)
hstv[i+numHstv] = hstv[i];

epsilon = epsilonP;
sigma = sigmaP;

20

return O;

}
int
FedeasMaterial: :revertToStart (void)
{
// Set all trial and committed values to zero
for (int i = 0; i < 2*numHstv; i++)
hstv[i] = 0.0;
epsilonP = 0.0;
sigmaP = 0.0;
return O;
}

A copy of this FedeasMaterial object is returned by getCopy(). First, the FedeasMaterial
constructor is called with the necessary tag, type, and array size data. Then, the committed
strain and stress, all history variables, and material parameters are copied to the new object
before it is returned.

UniaxialMaterialx*
FedeasMaterial: :getCopy(void)
{

FedeasMaterial *theCopy =
new FedeasMaterial(this->getTag(), this->getClassTag(), numHstv, numData) ;

// Copy history variables

int 1i;

for (i = 0; i < 2%numHstv; i++)
theCopy->hstv[i] = hstv[i];

for (i = 0; i < numData; i++)
theCopy->datali]l = datalil;

theCopy->epsilonP = epsilonP;
theCopy->sigmaP = sigmaP;

return theCopy;
}

The next two methods are defined for parallel processing and database programming. The
first method, sendSelf(), packs the tag and array size information for this FedeasMaterial
object into an ID vector and sends it across the Channel. Then, the material properties
and committed history variables are put in a Vector, and sent as well. The second method,
recuSelf(), receives both the ID and Vector data from the Channel object, then populates
the data of this FedeasMaterial object with the appropriate data.

21

int
FedeasMaterial::sendSelf(int commitTag, Channel &theChannel)
{

int res = 0;

static ID idData(3);

idData(0) = this->getTag();
idData(1l) = numHstv;
idData(2) = numData;

res += theChannel.sendID(this->getDbTag(), commitTag, idData);
if (res < 0)
cerr << "FedeasMaterial::sendSelf() - failed to send ID data\n";

Vector vecData(numHstv+numData+2);

int i, j;
// Copy only the committed history variables into vector
for (i = 0; i < numHstv; i++)

vecData(i) = hstv[i];

// Copy material properties into vector
for (i = 0, j = numHstv; i < numData; i++, j++)
vecData(j) = datalil;

vecData(j++) = epsilonP;
vecData(j++) = sigmaP;

res += theChannel.sendVector (this->getDbTag(), commitTag, vecData);
if (res < 0)
cerr << "FedeasMaterial::sendSelf() - failed to send Vector data\n";

return res;

int

FedeasMaterial::recvSelf(int commitTag, Channel &theChannel,
FEM_ObjectBroker &theBroker)

{

int res = 0;
static ID idData(3);
res += theChannel.recvID(this->getDbTag(), commitTag, idData) ;

if (res < 0) {
cerr << "FedeasMaterial::recvSelf() - failed to receive ID data\n";

22

return res;

}

this->setTag(idData(0));
numHstv = idData(1l);
numData = idData(2);

Vector vecData(numHstv+numData+2) ;

res += theChannel.recvVector(this->getDbTag(), commitTag, vecData);

if (res < 0) {
cerr << "FedeasMaterial::recvSelf() - failed to receive Vector data\n";
return res;

int i, j;
// Copy committed history variables from vector
for (i = 0; i < numHstv; i++)

hstv[i] = vecData(i);

// Copy material properties from vector
for (i = 0, j = numHstv; i < numData; i++, j++)
datal[i]l = vecData(j);

epsilonP = vecData(j++);
sigmaP vecData(j++);

return res;

}

The Print() method outputs the name of this FedeasMaterial object to the stream passed
as an argument. More cases can be added to the switch statement as additional subroutines
are added.

void
FedeasMaterial::Print (ostream &s, int flag)

{

s << "FedeasMaterial, type: ";

switch (this->getClassTag()) {

case MAT_TAG_FedeasHardening:
s << "Hardening" << endl;

break;

// Add more cases as needed

23

default:
S << "Material identifier = " << this->getClassTag() << endl;
break;

}

In order to link the FORTRAN subroutine with the OpenSees C++ libraries, the following
external function declarations are needed. There are two syntactic styles for these decla-
rations, one for Win32 and the other for everything else. The preprocessor directives put
the proper declaration into the source code. Additional declarations may be added as more
subroutines are included in OpenSees.

#ifdef _WIN32

extern "C" int _stdcall HARD_1(double #*matpar, double *hstvP, double *hstv,
double *strainP, double *stressP, double *dStrain,
double *tangent, double *stress, int *ist);

#define hard_1_ HARD_1
// Add more declarations as needed
#felse

extern "C" int hard_1_(double *matpar, double *hstvP, double *hstv,
double *strainP, double *stressP, double *dStrain,
double *tangent, double *stress, int *ist);

// Add more declarations as needed
#endif

The method invokeSubroutine() calls the appropriate subroutine based on the material
classTag. The FedeasMaterial instance variables are passed to the FORTRAN subroutine
from this method. Additional cases in the switch statement can be added as more subroutines
are linked with OpenSees.

int
FedeasMaterial: :invokeSubroutine(int ist)
{

// Compute strain increment

double dEpsilon = epsilon-epsilonP;

switch (this->getClassTag()) {
case MAT_TAG_FedeasHardening:
hard_1_(data, hstv, &hstv[numHstv], &epsilonP, &sigmaP, &dEpsilon,
&sigma, &tangent, &ist);

24

break;
// Add more cases as needed

default:
g3ErrorHandler->fatal("%s -- unknown material type",
"FedeasMaterial: :invokeSubroutine") ;
return -1;

}

return O;

5.3 Example — FedeasHardeningMaterial

The material data array defined in FedeasMaterial is populated by its subclasses. As an
example, consider the case where the uniaxial hardening material is coded in a FORTRAN
subroutine. In order to link this subroutine with OpenSees, a subclass of FedeasMaterial,
FedeasHardeningMaterial, must be created (see figure 4). The functionality of this subclass
is to populate the material parameter array and to determine the number of history variables
required for analysis.

UniaxialMaterial

$

FedeasM aterial 00O HardeningM aterial

A

FedeasHardeningM aterial coo

Figure 4: FedeasHardeningMaterial class hierarchy

As additional FEDEAS subroutines are added to OpenSees, new subclasses of FedeasMa-
terial must be added in order to populate the data array. This is all that need be done in the
derived class as the base class, FedeasMaterial, contains all the computational code and keeps
track of path dependent behavior. This functionality is inherited from the FedeasMaterial
base class. However, the FedeasMaterial class must be modified such that the appropriate
subroutine is called during state determination from the method invokeSubroutine().

25

5.3.1 FEDEAS Hardening Subroutine

This section contains the implementation of the uniaxial hardening material coded as a
FORTRAN subroutine using the FEDEAS interface. The subroutine declares local variables
to store the material parameters passed through the matpar array. The committed history
variables are received from hstvP, and the trial history variables are written to hstv upon
return. The trial stress and tangent are also set upon return in the variables sig and tang.

subroutine Hard_1(matpar,hstvP,hstv,epsP,sigP,deps,sig,tang,ist)
I matpar contains fixed properties (4)

E = Elastic modulus --> matpar(1)
sigY = Yield stress --> matpar(2)
Hiso = Isotropic hardening modulus --> matpar(3)
Hkin = Kinematic hardening modulus --> matpar (4)

I hstvP contains committed history variables:

ep = hstvP(1) --> plastic strain
alpha = hstvP(2) --> internal hardening variable
kappa = hstvP(3) --> back stress for kinematic hardening

hstv will be set to the corresponding trial values of hstvP
hstv(l) = ep

hstv(2) alpha

hstv(3) = kappa

epsP: strain at last committed state
sigP: stress at last committed state
deps: current strain increment
sig : updated stress
tang: updated tangent
ist : tangent calculation switch
1 = tangent, 2 = incremental secant, 3 = total secant

0000000000000 00000O00o0o0 o0
H OO H H H o

implicit none

c Arguments
integer ist
real*8 matpar(4),hstvP(3),hstv(3)
real*8 epsP,sigP,deps
real*8 sig,tang

c Local variables
real*8 E,sigY,Hiso,Hkin
real*8 ep,alpha,kappa
real*8 eps,f,xsi,dGamma
integer sgn

26

Material parameters

E = matpar (1)
sigY = matpar(2)
Hiso = matpar(3)
Hkin = matpar(4)

History variables

ep = hstvP(1)
alpha = hstvP(2)
kappa = hstvP(3)

Current strain
eps = epsP + deps

Elastic predictor
sig = E * (eps - ep)

Stress relative to back stress
xsi = sig - kappa

Yield function
f = dabs(xsi) - (sigY + Hiso*alpha)

Inside yield surface
if (f <= 0.0) then

tang = E
Outside yield surface ... do return mapping
else

Consistency parameter
dGamma = f / (E+Hiso+Hkin)

Normal to yield surface
if (xsi <= 0.40) then
sgn = -1
else
sgn = 1
endif

Updated stress
sig = sig — dGamma*E*sgn

Updated plastic strain
ep = ep + dGamma*sgn

Updated back stress
kappa = kappa + dGamma*Hkin*sgn

27

c Updated internal hardening variable
alpha = alpha + dGamma

c Elasto-plastic tangent
tang = Ex(Hkin+Hiso) / (E+Hkin+Hiso)
endif
c Update history variables
hstv(1l) = ep

hstv(2) = alpha
hstv(3) = kappa

c Compute requested tangent
if (ist==2.and.deps/=0.d0) then
tang = (sig-sigP)/deps
else if (ist==3.and.eps/=0.d0)then
tang = sig/eps
else

c add additional cases, if needed
endif

return

end subroutine

5.3.2 FedeasHardeningMaterial Subclass

As stated previously, the functionality of the FedeasHardeningMaterial class is to read in
the material parameters required for the Hard_1 subroutine invoked from the FedeasMaterial
method invokeSubroutine(). In addition, the required number of history variables must be
passed to the FedeasMaterial base class.

The class interface for FedeasHardeningMaterial is shown below. The constructor takes
the tag and material parameters as arguments. No other methods are declared in the
FedeasHardeningMaterial interface as all functionality is inherited from FedeasMaterial.

#include <FedeasMaterial.h>

class FedeasHardeningMaterial : public FedeasMaterial
{
public:
FedeasHardeningMaterial(int tag, double E, double sigmay,
double Hiso, double Hkin);
FedeasHardeningMaterial (void) ;
“FedeasHardeningMaterial();

protected:

28

private:

};

The constructor takes the tag, elastic modulus, yield stress, and isotropic and kinematic
hardening moduli as arguments. The FedeasMaterial class constructor is called with the tag
and classTag MAT _TAG FedeasHardening defined in classTags.h and the number of history
variables and material parameters required for this particular material model. Then the
material parameters are inserted into the data array. The default constructor simply invokes
the base class constructor, and the destructor does nothing.

FedeasHardeningMaterial::FedeasHardeningMaterial (int tag,

double E, double sigmaY, double Hiso, double Hkin):
// 3 history variables and 4 material parameters
FedeasMaterial(tag, MAT_TAG_FedeasHardening, 3, 4)

{
datal[0] = E;
data[1] = sigmaY;
data[2] = Hiso;
data[3] = Hkin;

}

FedeasHardeningMaterial::FedeasHardeningMaterial(void):
FedeasMaterial(0, MAT_TAG_FedeasHardening, 3, 4)

{
// Does nothing
}
FedeasHardeningMaterial:: “FedeasHardeningMaterial (void)
{
// Does nothing
}

5.3.3 Important Polymorphic Note

Should any method in the FedeasMaterial class need to be overridden, e.g., if a subclass does
not want all of its history variables set to 0.0 in revertToStart(), the getCopy() method must
also be overridden to return a pointer to the subclass. If getCopy() is not overridden, the
dynamic type of the returned pointer will be of the FedeasMaterial type and the overridden
method, e.g., revertToStart(), will not be called.

5.4 Tcl Model Builder

Adding the FedeasHardeningMaterial model to the Tcl model builder is done in exactly the
same manner as for HardeningMaterial since both models have the same material parameters.
Only the material allocation would change. The following line in TclModelBuilderUniaxial-
Material Command.cpp

29

// Parsing was successful, allocate the material
theMaterial = new HardeningMaterial(tag, E, sigmaY, Hiso, Hkin);

would be changed to

// Parsing was successful, allocate the material
theMaterial = new FedeasHardeningMaterial(tag, E, sigmaY, Hiso, Hkin);

5.5 FEM_ObjectBroker

As for the HardeningMaterial class, an additional case needs to be added to the getNewU-
niazialMaterial() method in FEM_ObjectBroker in order for the FedeasHardeningMaterial
class to be used for parallel processing and database programming.

UniaxialMaterial#*
FEM_ObjectBroker: :getNewUniaxialMaterial (int classTag)
{

switch(classTag) {

case MAT_TAG_Hardening:
return new HardeningMaterial();

case MAT_TAG_FedeasHardening:
return new FedeasHardeningMaterial();

//

// Additional cases not shown

//

default:
cerr << "FEM_0ObjectBroker::getPtrNewUniaxialMaterial - ";
cerr << " - no UniaxialMaterial type exists for class tag ";
cerr << classTag << endl;
return O;

}

30

